1 /*
2  * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
3  *
4  * MIPS floating point support
5  * Copyright (C) 1994-2000 Algorithmics Ltd.  All rights reserved.
6  * http://www.algor.co.uk
7  *
8  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
9  * Copyright (C) 2000  MIPS Technologies, Inc.
10  *
11  *  This program is free software; you can distribute it and/or modify it
12  *  under the terms of the GNU General Public License (Version 2) as
13  *  published by the Free Software Foundation.
14  *
15  *  This program is distributed in the hope it will be useful, but WITHOUT
16  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  *  for more details.
19  *
20  *  You should have received a copy of the GNU General Public License along
21  *  with this program; if not, write to the Free Software Foundation, Inc.,
22  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
23  *
24  * A complete emulator for MIPS coprocessor 1 instructions.  This is
25  * required for #float(switch) or #float(trap), where it catches all
26  * COP1 instructions via the "CoProcessor Unusable" exception.
27  *
28  * More surprisingly it is also required for #float(ieee), to help out
29  * the hardware fpu at the boundaries of the IEEE-754 representation
30  * (denormalised values, infinities, underflow, etc).  It is made
31  * quite nasty because emulation of some non-COP1 instructions is
32  * required, e.g. in branch delay slots.
33  *
34  * Note if you know that you won't have an fpu, then you'll get much
35  * better performance by compiling with -msoft-float!
36  */
37 #include <asm/inst.h>
38 #include <asm/bootinfo.h>
39 #include <asm/cpu.h>
40 #include <asm/processor.h>
41 #include <asm/ptrace.h>
42 #include <asm/signal.h>
43 #include <asm/mipsregs.h>
44 #include <asm/fpu_emulator.h>
45 #include <asm/uaccess.h>
46 #include <asm/branch.h>
47 
48 #include "ieee754.h"
49 #include "dsemul.h"
50 
51 /* Strap kernel emulator for full MIPS IV emulation */
52 
53 #ifdef __mips
54 #undef __mips
55 #endif
56 #define __mips 4
57 
58 /* Function which emulates a floating point instruction. */
59 
60 static int fpu_emu(struct pt_regs *, struct mips_fpu_soft_struct *,
61 	mips_instruction);
62 
63 #if __mips >= 4 && __mips != 32
64 static int fpux_emu(struct pt_regs *,
65 	struct mips_fpu_soft_struct *, mips_instruction);
66 #endif
67 
68 /* Further private data for which no space exists in mips_fpu_soft_struct */
69 
70 struct mips_fpu_emulator_private fpuemuprivate;
71 
72 /* Control registers */
73 
74 #define FPCREG_RID	0	/* $0  = revision id */
75 #define FPCREG_CSR	31	/* $31 = csr */
76 
77 /* Convert Mips rounding mode (0..3) to IEEE library modes. */
78 static const unsigned char ieee_rm[4] = {
79 	IEEE754_RN, IEEE754_RZ, IEEE754_RU, IEEE754_RD
80 };
81 
82 #if __mips >= 4
83 /* convert condition code register number to csr bit */
84 static const unsigned int fpucondbit[8] = {
85 	FPU_CSR_COND0,
86 	FPU_CSR_COND1,
87 	FPU_CSR_COND2,
88 	FPU_CSR_COND3,
89 	FPU_CSR_COND4,
90 	FPU_CSR_COND5,
91 	FPU_CSR_COND6,
92 	FPU_CSR_COND7
93 };
94 #endif
95 
96 
97 /*
98  * Redundant with logic already in kernel/branch.c,
99  * embedded in compute_return_epc.  At some point,
100  * a single subroutine should be used across both
101  * modules.
102  */
isBranchInstr(mips_instruction * i)103 static int isBranchInstr(mips_instruction * i)
104 {
105 	switch (MIPSInst_OPCODE(*i)) {
106 	case spec_op:
107 		switch (MIPSInst_FUNC(*i)) {
108 		case jalr_op:
109 		case jr_op:
110 			return 1;
111 		}
112 		break;
113 
114 	case bcond_op:
115 		switch (MIPSInst_RT(*i)) {
116 		case bltz_op:
117 		case bgez_op:
118 		case bltzl_op:
119 		case bgezl_op:
120 		case bltzal_op:
121 		case bgezal_op:
122 		case bltzall_op:
123 		case bgezall_op:
124 			return 1;
125 		}
126 		break;
127 
128 	case j_op:
129 	case jal_op:
130 	case jalx_op:
131 	case beq_op:
132 	case bne_op:
133 	case blez_op:
134 	case bgtz_op:
135 	case beql_op:
136 	case bnel_op:
137 	case blezl_op:
138 	case bgtzl_op:
139 		return 1;
140 
141 	case cop0_op:
142 	case cop1_op:
143 	case cop2_op:
144 	case cop1x_op:
145 		if (MIPSInst_RS(*i) == bc_op)
146 			return 1;
147 		break;
148 	}
149 
150 	return 0;
151 }
152 
153 /*
154  * In the Linux kernel, we support selection of FPR format on the
155  * basis of the Status.FR bit.  This does imply that, if a full 32
156  * FPRs are desired, there needs to be a flip-flop that can be written
157  * to one at that bit position.  In any case, O32 MIPS ABI uses
158  * only the even FPRs (Status.FR = 0).
159  */
160 
161 #define CP0_STATUS_FR_SUPPORT
162 
163 #ifdef CP0_STATUS_FR_SUPPORT
164 #define FR_BIT ST0_FR
165 #else
166 #define FR_BIT 0
167 #endif
168 
169 #define SIFROMREG(si,x)	((si) = \
170 			(xcp->cp0_status & FR_BIT) || !(x & 1) ? \
171 			(int)ctx->regs[x] : \
172 			(int)(ctx->regs[x & ~1] >> 32 ))
173 #define SITOREG(si,x)	(ctx->regs[x & ~((xcp->cp0_status & FR_BIT) == 0)] = \
174 			(xcp->cp0_status & FR_BIT) || !(x & 1) ? \
175 			ctx->regs[x & ~1] >> 32 << 32 | (u32)(si) : \
176 			ctx->regs[x & ~1] << 32 >> 32 | (u64)(si) << 32)
177 
178 #define DIFROMREG(di,x)	((di) = \
179 			ctx->regs[x & ~((xcp->cp0_status & FR_BIT) == 0)])
180 #define DITOREG(di,x)	(ctx->regs[x & ~((xcp->cp0_status & FR_BIT) == 0)] \
181 			= (di))
182 #define DIFROMREG(di,x)	((di) = \
183 			ctx->regs[x & ~((xcp->cp0_status & FR_BIT) == 0)])
184 #define DITOREG(di,x)	(ctx->regs[x & ~((xcp->cp0_status & FR_BIT) == 0)] \
185 			= (di))
186 
187 #define SPFROMREG(sp,x)	SIFROMREG((sp).bits,x)
188 #define SPTOREG(sp,x)	SITOREG((sp).bits,x)
189 #define DPFROMREG(dp,x)	DIFROMREG((dp).bits,x)
190 #define DPTOREG(dp,x)	DITOREG((dp).bits,x)
191 
192 /*
193  * Emulate the single floating point instruction pointed at by EPC.
194  * Two instructions if the instruction is in a branch delay slot.
195  */
196 
cop1Emulate(struct pt_regs * xcp,struct mips_fpu_soft_struct * ctx)197 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_soft_struct *ctx)
198 {
199 	mips_instruction ir;
200 	vaddr_t emulpc, contpc;
201 	unsigned int cond;
202 
203 	if (get_user(ir, (mips_instruction *) xcp->cp0_epc)) {
204 		fpuemuprivate.stats.errors++;
205 		return SIGBUS;
206 	}
207 
208 	/* XXX NEC Vr54xx bug workaround */
209 	if ((xcp->cp0_cause & CAUSEF_BD) && !isBranchInstr(&ir))
210 		xcp->cp0_cause &= ~CAUSEF_BD;
211 
212 	if (xcp->cp0_cause & CAUSEF_BD) {
213 		/*
214 		 * The instruction to be emulated is in a branch delay slot
215 		 * which means that we have to  emulate the branch instruction
216 		 * BEFORE we do the cop1 instruction.
217 		 *
218 		 * This branch could be a COP1 branch, but in that case we
219 		 * would have had a trap for that instruction, and would not
220 		 * come through this route.
221 		 *
222 		 * Linux MIPS branch emulator operates on context, updating the
223 		 * cp0_epc.
224 		 */
225 		emulpc = REG_TO_VA(xcp->cp0_epc + 4);	/* Snapshot emulation target */
226 
227 		if (__compute_return_epc(xcp)) {
228 #ifdef CP1DBG
229 			printk("failed to emulate branch at %p\n",
230 				REG_TO_VA(xcp->cp0_epc));
231 #endif
232 			return SIGILL;
233 		}
234 		if (get_user(ir, (mips_instruction *) emulpc)) {
235 			fpuemuprivate.stats.errors++;
236 			return SIGBUS;
237 		}
238 		/* __computer_return_epc() will have updated cp0_epc */
239 		contpc = REG_TO_VA xcp->cp0_epc;
240 		/* In order not to confuse ptrace() et al, tweak context */
241 		xcp->cp0_epc = VA_TO_REG emulpc - 4;
242 	}
243 	else {
244 		emulpc = REG_TO_VA xcp->cp0_epc;
245 		contpc = REG_TO_VA(xcp->cp0_epc + 4);
246 	}
247 
248       emul:
249 	fpuemuprivate.stats.emulated++;
250 	switch (MIPSInst_OPCODE(ir)) {
251 #ifndef SINGLE_ONLY_FPU
252 	case ldc1_op:{
253 		u64 *va = REG_TO_VA(xcp->regs[MIPSInst_RS(ir)] +
254 			MIPSInst_SIMM(ir));
255 		u64 val;
256 
257 		fpuemuprivate.stats.loads++;
258 		if (get_user(val, va)) {
259 			fpuemuprivate.stats.errors++;
260 			return SIGBUS;
261 		}
262 		DITOREG(val, MIPSInst_RT(ir));
263 		break;
264 	}
265 
266 	case sdc1_op:{
267 		u64 *va = REG_TO_VA(xcp->regs[MIPSInst_RS(ir)] +
268 			MIPSInst_SIMM(ir));
269 		u64 val;
270 
271 		fpuemuprivate.stats.stores++;
272 		DIFROMREG(val, MIPSInst_RT(ir));
273 		if (put_user(val, va)) {
274 			fpuemuprivate.stats.errors++;
275 			return SIGBUS;
276 		}
277 		break;
278 	}
279 #endif
280 
281 	case lwc1_op:{
282 		u32 *va = REG_TO_VA(xcp->regs[MIPSInst_RS(ir)] +
283 			MIPSInst_SIMM(ir));
284 		u32 val;
285 
286 		fpuemuprivate.stats.loads++;
287 		if (get_user(val, va)) {
288 			fpuemuprivate.stats.errors++;
289 			return SIGBUS;
290 		}
291 #ifdef SINGLE_ONLY_FPU
292 		if (MIPSInst_RT(ir) & 1) {
293 			/* illegal register in single-float mode */
294 			return SIGILL;
295 		}
296 #endif
297 		SITOREG(val, MIPSInst_RT(ir));
298 		break;
299 	}
300 
301 	case swc1_op:{
302 		u32 *va = REG_TO_VA(xcp->regs[MIPSInst_RS(ir)] +
303 			MIPSInst_SIMM(ir));
304 		u32 val;
305 
306 		fpuemuprivate.stats.stores++;
307 #ifdef SINGLE_ONLY_FPU
308 		if (MIPSInst_RT(ir) & 1) {
309 			/* illegal register in single-float mode */
310 			return SIGILL;
311 		}
312 #endif
313 		SIFROMREG(val, MIPSInst_RT(ir));
314 		if (put_user(val, va)) {
315 			fpuemuprivate.stats.errors++;
316 			return SIGBUS;
317 		}
318 		break;
319 	}
320 
321 	case cop1_op:
322 		switch (MIPSInst_RS(ir)) {
323 
324 #if __mips64 && !defined(SINGLE_ONLY_FPU)
325 		case dmfc_op:
326 			/* copregister fs -> gpr[rt] */
327 			if (MIPSInst_RT(ir) != 0) {
328 				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
329 					MIPSInst_RD(ir));
330 			}
331 			break;
332 
333 		case dmtc_op:
334 			/* copregister fs <- rt */
335 			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
336 			break;
337 #endif
338 
339 		case mfc_op:
340 			/* copregister rd -> gpr[rt] */
341 #ifdef SINGLE_ONLY_FPU
342 			if (MIPSInst_RD(ir) & 1) {
343 				/* illegal register in single-float mode */
344 				return SIGILL;
345 			}
346 #endif
347 			if (MIPSInst_RT(ir) != 0) {
348 				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
349 					MIPSInst_RD(ir));
350 			}
351 			break;
352 
353 		case mtc_op:
354 			/* copregister rd <- rt */
355 #ifdef SINGLE_ONLY_FPU
356 			if (MIPSInst_RD(ir) & 1) {
357 				/* illegal register in single-float mode */
358 				return SIGILL;
359 			}
360 #endif
361 			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
362 			break;
363 
364 		case cfc_op:{
365 			/* cop control register rd -> gpr[rt] */
366 			u32 value;
367 
368 			if (ir == CP1UNDEF) {
369 				return do_dsemulret(xcp);
370 			}
371 			if (MIPSInst_RD(ir) == FPCREG_CSR) {
372 				value = ctx->sr;
373 #ifdef CSRTRACE
374 				printk("%p gpr[%d]<-csr=%08x\n",
375 					REG_TO_VA(xcp->cp0_epc),
376 					MIPSInst_RT(ir), value);
377 #endif
378 			}
379 			else if (MIPSInst_RD(ir) == FPCREG_RID)
380 				value = 0;
381 			else
382 				value = 0;
383 			if (MIPSInst_RT(ir))
384 				xcp->regs[MIPSInst_RT(ir)] = value;
385 			break;
386 		}
387 
388 		case ctc_op:{
389 			/* copregister rd <- rt */
390 			u32 value;
391 
392 			if (MIPSInst_RT(ir) == 0)
393 				value = 0;
394 			else
395 				value = xcp->regs[MIPSInst_RT(ir)];
396 
397 			/* we only have one writable control reg
398 			 */
399 			if (MIPSInst_RD(ir) == FPCREG_CSR) {
400 #ifdef CSRTRACE
401 				printk("%p gpr[%d]->csr=%08x\n",
402 					REG_TO_VA(xcp->cp0_epc),
403 					MIPSInst_RT(ir), value);
404 #endif
405 				ctx->sr = value;
406 				/* copy new rounding mode and
407 				   flush bit to ieee library state! */
408 				ieee754_csr.nod = (ctx->sr & 0x1000000) != 0;
409 				ieee754_csr.rm = ieee_rm[value & 0x3];
410 			}
411 			if ((ctx->sr >> 5) & ctx->sr & FPU_CSR_ALL_E) {
412 				return SIGFPE;
413 			}
414 			break;
415 		}
416 
417 		case bc_op:{
418 			int likely = 0;
419 
420 			if (xcp->cp0_cause & CAUSEF_BD)
421 				return SIGILL;
422 
423 #if __mips >= 4
424 			cond = ctx->sr & fpucondbit[MIPSInst_RT(ir) >> 2];
425 #else
426 			cond = ctx->sr & FPU_CSR_COND;
427 #endif
428 			switch (MIPSInst_RT(ir) & 3) {
429 			case bcfl_op:
430 				likely = 1;
431 			case bcf_op:
432 				cond = !cond;
433 				break;
434 			case bctl_op:
435 				likely = 1;
436 			case bct_op:
437 				break;
438 			default:
439 				/* thats an illegal instruction */
440 				return SIGILL;
441 			}
442 
443 			xcp->cp0_cause |= CAUSEF_BD;
444 			if (cond) {
445 				/* branch taken: emulate dslot
446 				 * instruction
447 				 */
448 				xcp->cp0_epc += 4;
449 				contpc = REG_TO_VA
450 					(xcp->cp0_epc +
451 					(MIPSInst_SIMM(ir) << 2));
452 
453 				if (get_user(ir, (mips_instruction *)
454 						REG_TO_VA xcp->cp0_epc)) {
455 					fpuemuprivate.stats.errors++;
456 					return SIGBUS;
457 				}
458 
459 				switch (MIPSInst_OPCODE(ir)) {
460 				case lwc1_op:
461 				case swc1_op:
462 #if (__mips >= 2 || __mips64) && !defined(SINGLE_ONLY_FPU)
463 				case ldc1_op:
464 				case sdc1_op:
465 #endif
466 				case cop1_op:
467 #if __mips >= 4 && __mips != 32
468 				case cop1x_op:
469 #endif
470 					/* its one of ours */
471 					goto emul;
472 #if __mips >= 4
473 				case spec_op:
474 					if (MIPSInst_FUNC(ir) == movc_op)
475 						goto emul;
476 					break;
477 #endif
478 				}
479 
480 				/*
481 				 * Single step the non-cp1
482 				 * instruction in the dslot
483 				 */
484 				return mips_dsemul(xcp, ir, VA_TO_REG contpc);
485 			}
486 			else {
487 				/* branch not taken */
488 				if (likely) {
489 					/*
490 					 * branch likely nullifies
491 					 * dslot if not taken
492 					 */
493 					xcp->cp0_epc += 4;
494 					contpc += 4;
495 					/*
496 					 * else continue & execute
497 					 * dslot as normal insn
498 					 */
499 				}
500 			}
501 			break;
502 		}
503 
504 		default:
505 			if (!(MIPSInst_RS(ir) & 0x10))
506 				return SIGILL;
507 			{
508 				int sig;
509 
510 				/* a real fpu computation instruction */
511 				if ((sig = fpu_emu(xcp, ctx, ir)))
512 					return sig;
513 			}
514 		}
515 		break;
516 
517 #if __mips >= 4 && __mips != 32
518 	case cop1x_op:{
519 		int sig;
520 
521 		if ((sig = fpux_emu(xcp, ctx, ir)))
522 			return sig;
523 		break;
524 	}
525 #endif
526 
527 #if __mips >= 4
528 	case spec_op:
529 		if (MIPSInst_FUNC(ir) != movc_op)
530 			return SIGILL;
531 		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
532 		if (((ctx->sr & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
533 			xcp->regs[MIPSInst_RD(ir)] =
534 				xcp->regs[MIPSInst_RS(ir)];
535 		break;
536 #endif
537 
538 	default:
539 		return SIGILL;
540 	}
541 
542 	/* we did it !! */
543 	xcp->cp0_epc = VA_TO_REG(contpc);
544 	xcp->cp0_cause &= ~CAUSEF_BD;
545 	return 0;
546 }
547 
548 /*
549  * Conversion table from MIPS compare ops 48-63
550  * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
551  */
552 static const unsigned char cmptab[8] = {
553 	0,			/* cmp_0 (sig) cmp_sf */
554 	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
555 	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
556 	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
557 	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
558 	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
559 	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
560 	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
561 };
562 
563 
564 #if __mips >= 4 && __mips != 32
565 
566 /*
567  * Additional MIPS4 instructions
568  */
569 
570 #define DEF3OP(name, p, f1, f2, f3) \
571 static ieee754##p fpemu_##p##_##name (ieee754##p r, ieee754##p s, \
572     ieee754##p t) \
573 { \
574 	struct ieee754_csr ieee754_csr_save; \
575 	s = f1 (s, t); \
576 	ieee754_csr_save = ieee754_csr; \
577 	s = f2 (s, r); \
578 	ieee754_csr_save.cx |= ieee754_csr.cx; \
579 	ieee754_csr_save.sx |= ieee754_csr.sx; \
580 	s = f3 (s); \
581 	ieee754_csr.cx |= ieee754_csr_save.cx; \
582 	ieee754_csr.sx |= ieee754_csr_save.sx; \
583 	return s; \
584 }
585 
fpemu_dp_recip(ieee754dp d)586 static ieee754dp fpemu_dp_recip(ieee754dp d)
587 {
588 	return ieee754dp_div(ieee754dp_one(0), d);
589 }
590 
fpemu_dp_rsqrt(ieee754dp d)591 static ieee754dp fpemu_dp_rsqrt(ieee754dp d)
592 {
593 	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
594 }
595 
fpemu_sp_recip(ieee754sp s)596 static ieee754sp fpemu_sp_recip(ieee754sp s)
597 {
598 	return ieee754sp_div(ieee754sp_one(0), s);
599 }
600 
fpemu_sp_rsqrt(ieee754sp s)601 static ieee754sp fpemu_sp_rsqrt(ieee754sp s)
602 {
603 	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
604 }
605 
606 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add,);
607 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub,);
608 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
609 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
610 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add,);
611 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub,);
612 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
613 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
614 
fpux_emu(struct pt_regs * xcp,struct mips_fpu_soft_struct * ctx,mips_instruction ir)615 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_soft_struct *ctx,
616 	mips_instruction ir)
617 {
618 	unsigned rcsr = 0;	/* resulting csr */
619 
620 	fpuemuprivate.stats.cp1xops++;
621 
622 	switch (MIPSInst_FMA_FFMT(ir)) {
623 	case s_fmt:{		/* 0 */
624 
625 		ieee754sp(*handler) (ieee754sp, ieee754sp, ieee754sp);
626 		ieee754sp fd, fr, fs, ft;
627 		u32 *va;
628 		u32 val;
629 
630 		switch (MIPSInst_FUNC(ir)) {
631 		case lwxc1_op:
632 			va = REG_TO_VA(xcp->regs[MIPSInst_FR(ir)] +
633 				xcp->regs[MIPSInst_FT(ir)]);
634 
635 			fpuemuprivate.stats.loads++;
636 			if (get_user(val, va)) {
637 				fpuemuprivate.stats.errors++;
638 				return SIGBUS;
639 			}
640 #ifdef SINGLE_ONLY_FPU
641 			if (MIPSInst_FD(ir) & 1) {
642 				/* illegal register in single-float
643 				 * mode
644 				 */
645 				return SIGILL;
646 			}
647 #endif
648 			SITOREG(val, MIPSInst_FD(ir));
649 			break;
650 
651 		case swxc1_op:
652 			va = REG_TO_VA(xcp->regs[MIPSInst_FR(ir)] +
653 				xcp->regs[MIPSInst_FT(ir)]);
654 
655 			fpuemuprivate.stats.stores++;
656 #ifdef SINGLE_ONLY_FPU
657 			if (MIPSInst_FS(ir) & 1) {
658 				/* illegal register in single-float
659 				 * mode
660 				 */
661 				return SIGILL;
662 			}
663 #endif
664 
665 			SIFROMREG(val, MIPSInst_FS(ir));
666 			if (put_user(val, va)) {
667 				fpuemuprivate.stats.errors++;
668 				return SIGBUS;
669 			}
670 			break;
671 
672 		case madd_s_op:
673 			handler = fpemu_sp_madd;
674 			goto scoptop;
675 		case msub_s_op:
676 			handler = fpemu_sp_msub;
677 			goto scoptop;
678 		case nmadd_s_op:
679 			handler = fpemu_sp_nmadd;
680 			goto scoptop;
681 		case nmsub_s_op:
682 			handler = fpemu_sp_nmsub;
683 			goto scoptop;
684 
685 		      scoptop:
686 			SPFROMREG(fr, MIPSInst_FR(ir));
687 			SPFROMREG(fs, MIPSInst_FS(ir));
688 			SPFROMREG(ft, MIPSInst_FT(ir));
689 			fd = (*handler) (fr, fs, ft);
690 			SPTOREG(fd, MIPSInst_FD(ir));
691 
692 		      copcsr:
693 			if (ieee754_cxtest(IEEE754_INEXACT))
694 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
695 			if (ieee754_cxtest(IEEE754_UNDERFLOW))
696 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
697 			if (ieee754_cxtest(IEEE754_OVERFLOW))
698 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
699 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
700 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
701 
702 			ctx->sr = (ctx->sr & ~FPU_CSR_ALL_X) | rcsr;
703 			if (ieee754_csr.nod)
704 				ctx->sr |= 0x1000000;
705 			if ((ctx->sr >> 5) & ctx->sr & FPU_CSR_ALL_E) {
706 				/*printk ("SIGFPE: fpu csr = %08x\n",
707 				   ctx->sr); */
708 				return SIGFPE;
709 			}
710 
711 			break;
712 
713 		default:
714 			return SIGILL;
715 		}
716 		break;
717 	}
718 
719 #ifndef SINGLE_ONLY_FPU
720 	case d_fmt:{		/* 1 */
721 		ieee754dp(*handler) (ieee754dp, ieee754dp, ieee754dp);
722 		ieee754dp fd, fr, fs, ft;
723 		u64 *va;
724 		u64 val;
725 
726 		switch (MIPSInst_FUNC(ir)) {
727 		case ldxc1_op:
728 			va = REG_TO_VA(xcp->regs[MIPSInst_FR(ir)] +
729 				xcp->regs[MIPSInst_FT(ir)]);
730 
731 			fpuemuprivate.stats.loads++;
732 			if (get_user(val, va)) {
733 				fpuemuprivate.stats.errors++;
734 				return SIGBUS;
735 			}
736 			DITOREG(val, MIPSInst_FD(ir));
737 			break;
738 
739 		case sdxc1_op:
740 			va = REG_TO_VA(xcp->regs[MIPSInst_FR(ir)] +
741 				xcp->regs[MIPSInst_FT(ir)]);
742 
743 			fpuemuprivate.stats.stores++;
744 			DIFROMREG(val, MIPSInst_FS(ir));
745 			if (put_user(val, va)) {
746 				fpuemuprivate.stats.errors++;
747 				return SIGBUS;
748 			}
749 			break;
750 
751 		case madd_d_op:
752 			handler = fpemu_dp_madd;
753 			goto dcoptop;
754 		case msub_d_op:
755 			handler = fpemu_dp_msub;
756 			goto dcoptop;
757 		case nmadd_d_op:
758 			handler = fpemu_dp_nmadd;
759 			goto dcoptop;
760 		case nmsub_d_op:
761 			handler = fpemu_dp_nmsub;
762 			goto dcoptop;
763 
764 		      dcoptop:
765 			DPFROMREG(fr, MIPSInst_FR(ir));
766 			DPFROMREG(fs, MIPSInst_FS(ir));
767 			DPFROMREG(ft, MIPSInst_FT(ir));
768 			fd = (*handler) (fr, fs, ft);
769 			DPTOREG(fd, MIPSInst_FD(ir));
770 			goto copcsr;
771 
772 		default:
773 			return SIGILL;
774 		}
775 		break;
776 	}
777 #endif
778 
779 	case 0x7:		/* 7 */
780 		if (MIPSInst_FUNC(ir) != pfetch_op) {
781 			return SIGILL;
782 		}
783 		/* ignore prefx operation */
784 		break;
785 
786 	default:
787 		return SIGILL;
788 	}
789 
790 	return 0;
791 }
792 #endif
793 
794 
795 
796 /*
797  * Emulate a single COP1 arithmetic instruction.
798  */
fpu_emu(struct pt_regs * xcp,struct mips_fpu_soft_struct * ctx,mips_instruction ir)799 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_soft_struct *ctx,
800 	mips_instruction ir)
801 {
802 	int rfmt;		/* resulting format */
803 	unsigned rcsr = 0;	/* resulting csr */
804 	unsigned cond;
805 	union {
806 		ieee754dp d;
807 		ieee754sp s;
808 		int w;
809 #if __mips64
810 		s64 l;
811 #endif
812 	} rv;			/* resulting value */
813 
814 	fpuemuprivate.stats.cp1ops++;
815 	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
816 	case s_fmt:{		/* 0 */
817 		union {
818 			ieee754sp(*b) (ieee754sp, ieee754sp);
819 			ieee754sp(*u) (ieee754sp);
820 		} handler;
821 
822 		switch (MIPSInst_FUNC(ir)) {
823 			/* binary ops */
824 		case fadd_op:
825 			handler.b = ieee754sp_add;
826 			goto scopbop;
827 		case fsub_op:
828 			handler.b = ieee754sp_sub;
829 			goto scopbop;
830 		case fmul_op:
831 			handler.b = ieee754sp_mul;
832 			goto scopbop;
833 		case fdiv_op:
834 			handler.b = ieee754sp_div;
835 			goto scopbop;
836 
837 			/* unary  ops */
838 #if __mips >= 2 || __mips64
839 		case fsqrt_op:
840 			handler.u = ieee754sp_sqrt;
841 			goto scopuop;
842 #endif
843 #if __mips >= 4 && __mips != 32
844 		case frsqrt_op:
845 			handler.u = fpemu_sp_rsqrt;
846 			goto scopuop;
847 		case frecip_op:
848 			handler.u = fpemu_sp_recip;
849 			goto scopuop;
850 #endif
851 #if __mips >= 4
852 		case fmovc_op:
853 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
854 			if (((ctx->sr & cond) != 0) !=
855 				((MIPSInst_FT(ir) & 1) != 0))
856 				return 0;
857 			SPFROMREG(rv.s, MIPSInst_FS(ir));
858 			break;
859 		case fmovz_op:
860 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
861 				return 0;
862 			SPFROMREG(rv.s, MIPSInst_FS(ir));
863 			break;
864 		case fmovn_op:
865 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
866 				return 0;
867 			SPFROMREG(rv.s, MIPSInst_FS(ir));
868 			break;
869 #endif
870 		case fabs_op:
871 			handler.u = ieee754sp_abs;
872 			goto scopuop;
873 		case fneg_op:
874 			handler.u = ieee754sp_neg;
875 			goto scopuop;
876 		case fmov_op:
877 			/* an easy one */
878 			SPFROMREG(rv.s, MIPSInst_FS(ir));
879 			goto copcsr;
880 
881 			/* binary op on handler */
882 		      scopbop:
883 			{
884 				ieee754sp fs, ft;
885 
886 				SPFROMREG(fs, MIPSInst_FS(ir));
887 				SPFROMREG(ft, MIPSInst_FT(ir));
888 
889 				rv.s = (*handler.b) (fs, ft);
890 				goto copcsr;
891 			}
892 		      scopuop:
893 			{
894 				ieee754sp fs;
895 
896 				SPFROMREG(fs, MIPSInst_FS(ir));
897 				rv.s = (*handler.u) (fs);
898 				goto copcsr;
899 			}
900 		      copcsr:
901 			if (ieee754_cxtest(IEEE754_INEXACT))
902 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
903 			if (ieee754_cxtest(IEEE754_UNDERFLOW))
904 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
905 			if (ieee754_cxtest(IEEE754_OVERFLOW))
906 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
907 			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE))
908 				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
909 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
910 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
911 			break;
912 
913 			/* unary conv ops */
914 		case fcvts_op:
915 			return SIGILL;	/* not defined */
916 		case fcvtd_op:{
917 #ifdef SINGLE_ONLY_FPU
918 			return SIGILL;	/* not defined */
919 #else
920 			ieee754sp fs;
921 
922 			SPFROMREG(fs, MIPSInst_FS(ir));
923 			rv.d = ieee754dp_fsp(fs);
924 			rfmt = d_fmt;
925 			goto copcsr;
926 		}
927 #endif
928 		case fcvtw_op:{
929 			ieee754sp fs;
930 
931 			SPFROMREG(fs, MIPSInst_FS(ir));
932 			rv.w = ieee754sp_tint(fs);
933 			rfmt = w_fmt;
934 			goto copcsr;
935 		}
936 
937 #if __mips >= 2 || __mips64
938 		case fround_op:
939 		case ftrunc_op:
940 		case fceil_op:
941 		case ffloor_op:{
942 			unsigned int oldrm = ieee754_csr.rm;
943 			ieee754sp fs;
944 
945 			SPFROMREG(fs, MIPSInst_FS(ir));
946 			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
947 			rv.w = ieee754sp_tint(fs);
948 			ieee754_csr.rm = oldrm;
949 			rfmt = w_fmt;
950 			goto copcsr;
951 		}
952 #endif /* __mips >= 2 */
953 
954 #if __mips64 && !defined(SINGLE_ONLY_FPU)
955 		case fcvtl_op:{
956 			ieee754sp fs;
957 
958 			SPFROMREG(fs, MIPSInst_FS(ir));
959 			rv.l = ieee754sp_tlong(fs);
960 			rfmt = l_fmt;
961 			goto copcsr;
962 		}
963 
964 		case froundl_op:
965 		case ftruncl_op:
966 		case fceill_op:
967 		case ffloorl_op:{
968 			unsigned int oldrm = ieee754_csr.rm;
969 			ieee754sp fs;
970 
971 			SPFROMREG(fs, MIPSInst_FS(ir));
972 			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
973 			rv.l = ieee754sp_tlong(fs);
974 			ieee754_csr.rm = oldrm;
975 			rfmt = l_fmt;
976 			goto copcsr;
977 		}
978 #endif /* __mips64 && !fpu(single) */
979 
980 		default:
981 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
982 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
983 				ieee754sp fs, ft;
984 
985 				SPFROMREG(fs, MIPSInst_FS(ir));
986 				SPFROMREG(ft, MIPSInst_FT(ir));
987 				rv.w = ieee754sp_cmp(fs, ft,
988 					cmptab[cmpop & 0x7], cmpop & 0x8);
989 				rfmt = -1;
990 				if ((cmpop & 0x8) && ieee754_cxtest
991 					(IEEE754_INVALID_OPERATION))
992 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
993 				else
994 					goto copcsr;
995 
996 			}
997 			else {
998 				return SIGILL;
999 			}
1000 			break;
1001 		}
1002 		break;
1003 	}
1004 
1005 #ifndef SINGLE_ONLY_FPU
1006 	case d_fmt:{
1007 		union {
1008 			ieee754dp(*b) (ieee754dp, ieee754dp);
1009 			ieee754dp(*u) (ieee754dp);
1010 		} handler;
1011 
1012 		switch (MIPSInst_FUNC(ir)) {
1013 			/* binary ops */
1014 		case fadd_op:
1015 			handler.b = ieee754dp_add;
1016 			goto dcopbop;
1017 		case fsub_op:
1018 			handler.b = ieee754dp_sub;
1019 			goto dcopbop;
1020 		case fmul_op:
1021 			handler.b = ieee754dp_mul;
1022 			goto dcopbop;
1023 		case fdiv_op:
1024 			handler.b = ieee754dp_div;
1025 			goto dcopbop;
1026 
1027 			/* unary  ops */
1028 #if __mips >= 2 || __mips64
1029 		case fsqrt_op:
1030 			handler.u = ieee754dp_sqrt;
1031 			goto dcopuop;
1032 #endif
1033 #if __mips >= 4 && __mips != 32
1034 		case frsqrt_op:
1035 			handler.u = fpemu_dp_rsqrt;
1036 			goto dcopuop;
1037 		case frecip_op:
1038 			handler.u = fpemu_dp_recip;
1039 			goto dcopuop;
1040 #endif
1041 #if __mips >= 4
1042 		case fmovc_op:
1043 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1044 			if (((ctx->sr & cond) != 0) !=
1045 				((MIPSInst_FT(ir) & 1) != 0))
1046 				return 0;
1047 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1048 			break;
1049 		case fmovz_op:
1050 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1051 				return 0;
1052 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1053 			break;
1054 		case fmovn_op:
1055 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1056 				return 0;
1057 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1058 			break;
1059 #endif
1060 		case fabs_op:
1061 			handler.u = ieee754dp_abs;
1062 			goto dcopuop;
1063 
1064 		case fneg_op:
1065 			handler.u = ieee754dp_neg;
1066 			goto dcopuop;
1067 
1068 		case fmov_op:
1069 			/* an easy one */
1070 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1071 			goto copcsr;
1072 
1073 			/* binary op on handler */
1074 		      dcopbop:{
1075 				ieee754dp fs, ft;
1076 
1077 				DPFROMREG(fs, MIPSInst_FS(ir));
1078 				DPFROMREG(ft, MIPSInst_FT(ir));
1079 
1080 				rv.d = (*handler.b) (fs, ft);
1081 				goto copcsr;
1082 			}
1083 		      dcopuop:{
1084 				ieee754dp fs;
1085 
1086 				DPFROMREG(fs, MIPSInst_FS(ir));
1087 				rv.d = (*handler.u) (fs);
1088 				goto copcsr;
1089 			}
1090 
1091 			/* unary conv ops */
1092 		case fcvts_op:{
1093 			ieee754dp fs;
1094 
1095 			DPFROMREG(fs, MIPSInst_FS(ir));
1096 			rv.s = ieee754sp_fdp(fs);
1097 			rfmt = s_fmt;
1098 			goto copcsr;
1099 		}
1100 		case fcvtd_op:
1101 			return SIGILL;	/* not defined */
1102 
1103 		case fcvtw_op:{
1104 			ieee754dp fs;
1105 
1106 			DPFROMREG(fs, MIPSInst_FS(ir));
1107 			rv.w = ieee754dp_tint(fs);	/* wrong */
1108 			rfmt = w_fmt;
1109 			goto copcsr;
1110 		}
1111 
1112 #if __mips >= 2 || __mips64
1113 		case fround_op:
1114 		case ftrunc_op:
1115 		case fceil_op:
1116 		case ffloor_op:{
1117 			unsigned int oldrm = ieee754_csr.rm;
1118 			ieee754dp fs;
1119 
1120 			DPFROMREG(fs, MIPSInst_FS(ir));
1121 			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
1122 			rv.w = ieee754dp_tint(fs);
1123 			ieee754_csr.rm = oldrm;
1124 			rfmt = w_fmt;
1125 			goto copcsr;
1126 		}
1127 #endif
1128 
1129 #if __mips64 && !defined(SINGLE_ONLY_FPU)
1130 		case fcvtl_op:{
1131 			ieee754dp fs;
1132 
1133 			DPFROMREG(fs, MIPSInst_FS(ir));
1134 			rv.l = ieee754dp_tlong(fs);
1135 			rfmt = l_fmt;
1136 			goto copcsr;
1137 		}
1138 
1139 		case froundl_op:
1140 		case ftruncl_op:
1141 		case fceill_op:
1142 		case ffloorl_op:{
1143 			unsigned int oldrm = ieee754_csr.rm;
1144 			ieee754dp fs;
1145 
1146 			DPFROMREG(fs, MIPSInst_FS(ir));
1147 			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
1148 			rv.l = ieee754dp_tlong(fs);
1149 			ieee754_csr.rm = oldrm;
1150 			rfmt = l_fmt;
1151 			goto copcsr;
1152 		}
1153 #endif /* __mips >= 3 && !fpu(single) */
1154 
1155 		default:
1156 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1157 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1158 				ieee754dp fs, ft;
1159 
1160 				DPFROMREG(fs, MIPSInst_FS(ir));
1161 				DPFROMREG(ft, MIPSInst_FT(ir));
1162 				rv.w = ieee754dp_cmp(fs, ft,
1163 					cmptab[cmpop & 0x7], cmpop & 0x8);
1164 				rfmt = -1;
1165 				if ((cmpop & 0x8)
1166 					&&
1167 					ieee754_cxtest
1168 					(IEEE754_INVALID_OPERATION))
1169 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1170 				else
1171 					goto copcsr;
1172 
1173 			}
1174 			else {
1175 				return SIGILL;
1176 			}
1177 			break;
1178 		}
1179 		break;
1180 	}
1181 #endif /* ifndef SINGLE_ONLY_FPU */
1182 
1183 	case w_fmt:{
1184 		ieee754sp fs;
1185 
1186 		switch (MIPSInst_FUNC(ir)) {
1187 		case fcvts_op:
1188 			/* convert word to single precision real */
1189 			SPFROMREG(fs, MIPSInst_FS(ir));
1190 			rv.s = ieee754sp_fint(fs.bits);
1191 			rfmt = s_fmt;
1192 			goto copcsr;
1193 #ifndef SINGLE_ONLY_FPU
1194 		case fcvtd_op:
1195 			/* convert word to double precision real */
1196 			SPFROMREG(fs, MIPSInst_FS(ir));
1197 			rv.d = ieee754dp_fint(fs.bits);
1198 			rfmt = d_fmt;
1199 			goto copcsr;
1200 #endif
1201 		default:
1202 			return SIGILL;
1203 		}
1204 		break;
1205 	}
1206 
1207 #if __mips64 && !defined(SINGLE_ONLY_FPU)
1208 	case l_fmt:{
1209 		switch (MIPSInst_FUNC(ir)) {
1210 		case fcvts_op:
1211 			/* convert long to single precision real */
1212 			rv.s = ieee754sp_flong(ctx->regs[MIPSInst_FS(ir)]);
1213 			rfmt = s_fmt;
1214 			goto copcsr;
1215 		case fcvtd_op:
1216 			/* convert long to double precision real */
1217 			rv.d = ieee754dp_flong(ctx->regs[MIPSInst_FS(ir)]);
1218 			rfmt = d_fmt;
1219 			goto copcsr;
1220 		default:
1221 			return SIGILL;
1222 		}
1223 		break;
1224 	}
1225 #endif
1226 
1227 	default:
1228 		return SIGILL;
1229 	}
1230 
1231 	/*
1232 	 * Update the fpu CSR register for this operation.
1233 	 * If an exception is required, generate a tidy SIGFPE exception,
1234 	 * without updating the result register.
1235 	 * Note: cause exception bits do not accumulate, they are rewritten
1236 	 * for each op; only the flag/sticky bits accumulate.
1237 	 */
1238 	ctx->sr = (ctx->sr & ~FPU_CSR_ALL_X) | rcsr;
1239 	if ((ctx->sr >> 5) & ctx->sr & FPU_CSR_ALL_E) {
1240 		/*printk ("SIGFPE: fpu csr = %08x\n",ctx->sr); */
1241 		return SIGFPE;
1242 	}
1243 
1244 	/*
1245 	 * Now we can safely write the result back to the register file.
1246 	 */
1247 	switch (rfmt) {
1248 	case -1:{
1249 #if __mips >= 4
1250 		cond = fpucondbit[MIPSInst_FD(ir) >> 2];
1251 #else
1252 		cond = FPU_CSR_COND;
1253 #endif
1254 		if (rv.w)
1255 			ctx->sr |= cond;
1256 		else
1257 			ctx->sr &= ~cond;
1258 		break;
1259 	}
1260 #ifndef SINGLE_ONLY_FPU
1261 	case d_fmt:
1262 		DPTOREG(rv.d, MIPSInst_FD(ir));
1263 		break;
1264 #endif
1265 	case s_fmt:
1266 		SPTOREG(rv.s, MIPSInst_FD(ir));
1267 		break;
1268 	case w_fmt:
1269 		SITOREG(rv.w, MIPSInst_FD(ir));
1270 		break;
1271 #if __mips64 && !defined(SINGLE_ONLY_FPU)
1272 	case l_fmt:
1273 		DITOREG(rv.l, MIPSInst_FD(ir));
1274 		break;
1275 #endif
1276 	default:
1277 		return SIGILL;
1278 	}
1279 
1280 	return 0;
1281 }
1282 
1283 int fpu_emulator_cop1Handler(int xcptno, struct pt_regs *xcp,
1284 	struct mips_fpu_soft_struct *ctx)
1285 {
1286 	gpreg_t oldepc, prevepc;
1287 	mips_instruction insn;
1288 	int sig = 0;
1289 
1290 	oldepc = xcp->cp0_epc;
1291 	do {
1292 		prevepc = xcp->cp0_epc;
1293 
1294 		if (get_user(insn, (mips_instruction *) xcp->cp0_epc)) {
1295 			fpuemuprivate.stats.errors++;
1296 			return SIGBUS;
1297 		}
1298 		if (insn == 0)
1299 			xcp->cp0_epc += 4;	/* skip nops */
1300 		else {
1301 			/* Update ieee754_csr. Only relevant if we have a
1302 			   h/w FPU */
1303 			ieee754_csr.nod = (ctx->sr & 0x1000000) != 0;
1304 			ieee754_csr.rm = ieee_rm[ctx->sr & 0x3];
1305 			ieee754_csr.cx = (ctx->sr >> 12) & 0x1f;
1306 			sig = cop1Emulate(xcp, ctx);
1307 		}
1308 
1309 		if (cpu_has_fpu)
1310 			break;
1311 		if (sig)
1312 			break;
1313 #ifdef STANDALONE_EMULATOR
1314 		if (xcptno == EX_FPE)
1315 			break;
1316 #else
1317 		if (current->need_resched)
1318 			schedule();
1319 #endif
1320 	} while (xcp->cp0_epc > prevepc);
1321 
1322 	/* SIGILL indicates a non-fpu instruction */
1323 	if (sig == SIGILL && xcp->cp0_epc != oldepc)
1324 		/* but if epc has advanced, then ignore it */
1325 		sig = 0;
1326 
1327 	return sig;
1328 }
1329