1 /*
2  *
3  * Copyright (C) 2001 MontaVista Software, ppopov@mvista.com
4  * Copied and modified Carsten Langgaard's time.c
5  *
6  * Carsten Langgaard, carstenl@mips.com
7  * Copyright (C) 1999,2000 MIPS Technologies, Inc.  All rights reserved.
8  *
9  * ########################################################################
10  *
11  *  This program is free software; you can distribute it and/or modify it
12  *  under the terms of the GNU General Public License (Version 2) as
13  *  published by the Free Software Foundation.
14  *
15  *  This program is distributed in the hope it will be useful, but WITHOUT
16  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  *  for more details.
19  *
20  *  You should have received a copy of the GNU General Public License along
21  *  with this program; if not, write to the Free Software Foundation, Inc.,
22  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
23  *
24  * ########################################################################
25  *
26  * Setting up the clock on the MIPS boards.
27  *
28  * Update.  Always configure the kernel with CONFIG_NEW_TIME_C.  This
29  * will use the user interface gettimeofday() functions from the
30  * arch/mips/kernel/time.c, and we provide the clock interrupt processing
31  * and the timer offset compute functions.  If CONFIG_PM is selected,
32  * we also ensure the 32KHz timer is available.   -- Dan
33  */
34 
35 #include <linux/types.h>
36 #include <linux/config.h>
37 #include <linux/init.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/sched.h>
40 #include <linux/spinlock.h>
41 
42 #include <asm/compiler.h>
43 #include <asm/mipsregs.h>
44 #include <asm/ptrace.h>
45 #include <asm/time.h>
46 #include <asm/hardirq.h>
47 #include <asm/div64.h>
48 #include <asm/au1000.h>
49 
50 #include <linux/mc146818rtc.h>
51 #include <linux/timex.h>
52 
53 extern void startup_match20_interrupt(void);
54 extern void do_softirq(void);
55 extern volatile unsigned long wall_jiffies;
56 unsigned long missed_heart_beats = 0;
57 
58 static unsigned long r4k_offset; /* Amount to increment compare reg each time */
59 static unsigned long r4k_cur;    /* What counter should be at next timer irq */
60 extern rwlock_t xtime_lock;
61 int	no_au1xxx_32khz;
62 void	(*au1k_wait_ptr)(void);
63 
64 /* Cycle counter value at the previous timer interrupt.. */
65 static unsigned int timerhi = 0, timerlo = 0;
66 
67 #ifdef CONFIG_PM
68 #define MATCH20_INC 328
69 extern void startup_match20_interrupt(void);
70 static unsigned long last_pc0, last_match20;
71 #endif
72 
73 static spinlock_t time_lock = SPIN_LOCK_UNLOCKED;
74 
ack_r4ktimer(unsigned long newval)75 static inline void ack_r4ktimer(unsigned long newval)
76 {
77 	write_c0_compare(newval);
78 }
79 
80 /*
81  * There are a lot of conceptually broken versions of the MIPS timer interrupt
82  * handler floating around.  This one is rather different, but the algorithm
83  * is provably more robust.
84  */
85 unsigned long wtimer;
mips_timer_interrupt(struct pt_regs * regs)86 void mips_timer_interrupt(struct pt_regs *regs)
87 {
88 	int irq = 63;
89 	unsigned long count;
90 	int cpu = smp_processor_id();
91 
92 	irq_enter(cpu, irq);
93 	kstat.irqs[cpu][irq]++;
94 
95 	if (r4k_offset == 0)
96 		goto null;
97 
98 	do {
99 		count = read_c0_count();
100 		timerhi += (count < timerlo);   /* Wrap around */
101 		timerlo = count;
102 
103 		kstat.irqs[0][irq]++;
104 		do_timer(regs);
105 		r4k_cur += r4k_offset;
106 		ack_r4ktimer(r4k_cur);
107 
108 	} while (((unsigned long)read_c0_count()
109 	         - r4k_cur) < 0x7fffffff);
110 
111 	irq_exit(cpu, irq);
112 
113 	if (softirq_pending(cpu))
114 		do_softirq();
115 	return;
116 
117 null:
118 	ack_r4ktimer(0);
119 }
120 
121 #ifdef CONFIG_PM
counter0_irq(int irq,void * dev_id,struct pt_regs * regs)122 void counter0_irq(int irq, void *dev_id, struct pt_regs *regs)
123 {
124 	unsigned long pc0;
125 	int time_elapsed;
126 	static int jiffie_drift = 0;
127 
128 	kstat.irqs[0][irq]++;
129 	if (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_M20) {
130 		/* should never happen! */
131 		printk(KERN_WARNING "counter 0 w status eror\n");
132 		return;
133 	}
134 
135 	pc0 = au_readl(SYS_TOYREAD);
136 	if (pc0 < last_match20) {
137 		/* counter overflowed */
138 		time_elapsed = (0xffffffff - last_match20) + pc0;
139 	}
140 	else {
141 		time_elapsed = pc0 - last_match20;
142 	}
143 
144 	while (time_elapsed > 0) {
145 		do_timer(regs);
146 		time_elapsed -= MATCH20_INC;
147 		last_match20 += MATCH20_INC;
148 		jiffie_drift++;
149 	}
150 
151 	last_pc0 = pc0;
152 	au_writel(last_match20 + MATCH20_INC, SYS_TOYMATCH2);
153 	au_sync();
154 
155 	/* our counter ticks at 10.009765625 ms/tick, we we're running
156 	 * almost 10uS too slow per tick.
157 	 */
158 
159 	if (jiffie_drift >= 999) {
160 		jiffie_drift -= 999;
161 		do_timer(regs); /* increment jiffies by one */
162 	}
163 }
164 
165 /* When we wakeup from sleep, we have to "catch up" on all of the
166  * timer ticks we have missed.
167  */
168 void
wakeup_counter0_adjust(void)169 wakeup_counter0_adjust(void)
170 {
171 	unsigned long pc0;
172 	int time_elapsed;
173 
174 	pc0 = au_readl(SYS_TOYREAD);
175 	if (pc0 < last_match20) {
176 		/* counter overflowed */
177 		time_elapsed = (0xffffffff - last_match20) + pc0;
178 	}
179 	else {
180 		time_elapsed = pc0 - last_match20;
181 	}
182 
183 	while (time_elapsed > 0) {
184 		time_elapsed -= MATCH20_INC;
185 		last_match20 += MATCH20_INC;
186 	}
187 
188 	last_pc0 = pc0;
189 	au_writel(last_match20 + MATCH20_INC, SYS_TOYMATCH2);
190 	au_sync();
191 
192 }
193 
194 /* This is just for debugging to set the timer for a sleep delay.
195 */
196 void
wakeup_counter0_set(int ticks)197 wakeup_counter0_set(int ticks)
198 {
199 	unsigned long pc0;
200 
201 	pc0 = au_readl(SYS_TOYREAD);
202 	last_pc0 = pc0;
203 	au_writel(last_match20 + (MATCH20_INC * ticks), SYS_TOYMATCH2);
204 	au_sync();
205 }
206 #endif
207 
208 /* I haven't found anyone that doesn't use a 12 MHz source clock,
209  * but just in case.....
210  */
211 #ifdef CONFIG_AU1000_SRC_CLK
212 #define AU1000_SRC_CLK	CONFIG_AU1000_SRC_CLK
213 #else
214 #define AU1000_SRC_CLK	12000000
215 #endif
216 
217 /*
218  * We read the real processor speed from the PLL.  This is important
219  * because it is more accurate than computing it from the 32KHz
220  * counter, if it exists.  If we don't have an accurate processor
221  * speed, all of the peripherals that derive their clocks based on
222  * this advertised speed will introduce error and sometimes not work
223  * properly.  This function is futher convoluted to still allow configurations
224  * to do that in case they have really, really old silicon with a
225  * write-only PLL register, that we need the 32KHz when power management
226  * "wait" is enabled, and we need to detect if the 32KHz isn't present
227  * but requested......got it? :-)		-- Dan
228  */
cal_r4koff(void)229 unsigned long cal_r4koff(void)
230 {
231 	unsigned long count;
232 	unsigned long cpu_speed;
233 	unsigned long flags;
234 	unsigned long counter;
235 
236 	spin_lock_irqsave(&time_lock, flags);
237 
238 	/* Power management cares if we don't have a 32KHz counter.
239 	*/
240 	no_au1xxx_32khz = 0;
241 	counter = au_readl(SYS_COUNTER_CNTRL);
242 	if (counter & SYS_CNTRL_E0) {
243 		int trim_divide = 16;
244 
245 		au_writel(counter | SYS_CNTRL_EN1, SYS_COUNTER_CNTRL);
246 
247 		while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_T1S);
248 		/* RTC now ticks at 32.768/16 kHz */
249 		au_writel(trim_divide-1, SYS_RTCTRIM);
250 		while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_T1S);
251 
252 		while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C1S);
253 		au_writel (0, SYS_TOYWRITE);
254 		while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C1S);
255 
256 #if defined(CONFIG_AU1000_USE32K)
257 		{
258 			unsigned long start, end;
259 
260 			start = au_readl(SYS_RTCREAD);
261 			start += 2;
262 			/* wait for the beginning of a new tick
263 			*/
264 			while (au_readl(SYS_RTCREAD) < start);
265 
266 			/* Start r4k counter.
267 			*/
268 			write_c0_count(0);
269 
270 			/* Wait 0.5 seconds.
271 			*/
272 			end = start + (32768 / trim_divide)/2;
273 
274 			while (end > au_readl(SYS_RTCREAD));
275 
276 			count = read_c0_count();
277 			cpu_speed = count * 2;
278 		}
279 #else
280 		cpu_speed = (au_readl(SYS_CPUPLL) & 0x0000003f) *
281 			AU1000_SRC_CLK;
282 		count = cpu_speed / 2;
283 #endif
284 	}
285 	else {
286 		/* The 32KHz oscillator isn't running, so assume there
287 		 * isn't one and grab the processor speed from the PLL.
288 		 * NOTE: some old silicon doesn't allow reading the PLL.
289 		 */
290 		cpu_speed = (au_readl(SYS_CPUPLL) & 0x0000003f) * AU1000_SRC_CLK;
291 		count = cpu_speed / 2;
292 		no_au1xxx_32khz = 1;
293 	}
294 	mips_hpt_frequency = count;
295 	// Equation: Baudrate = CPU / (SD * 2 * CLKDIV * 16)
296 	set_au1x00_uart_baud_base(cpu_speed / (2 * ((int)(au_readl(SYS_POWERCTRL)&0x03) + 2) * 16));
297 	spin_unlock_irqrestore(&time_lock, flags);
298 	return (cpu_speed / HZ);
299 }
300 
301 /* This is for machines which generate the exact clock. */
302 #define USECS_PER_JIFFY (1000000/HZ)
303 #define USECS_PER_JIFFY_FRAC (0x100000000*1000000/HZ&0xffffffff)
304 
305 
306 static unsigned long
div64_32(unsigned long v1,unsigned long v2,unsigned long v3)307 div64_32(unsigned long v1, unsigned long v2, unsigned long v3)
308 {
309 	unsigned long r0;
310 	do_div64_32(r0, v1, v2, v3);
311 	return r0;
312 }
313 
do_fast_cp0_gettimeoffset(void)314 static unsigned long do_fast_cp0_gettimeoffset(void)
315 {
316 	u32 count;
317 	unsigned long res, tmp;
318 	unsigned long r0;
319 
320 	/* Last jiffy when do_fast_gettimeoffset() was called. */
321 	static unsigned long last_jiffies=0;
322 	unsigned long quotient;
323 
324 	/*
325 	 * Cached "1/(clocks per usec)*2^32" value.
326 	 * It has to be recalculated once each jiffy.
327 	 */
328 	static unsigned long cached_quotient=0;
329 
330 	tmp = jiffies;
331 
332 	quotient = cached_quotient;
333 
334 	if (tmp && last_jiffies != tmp) {
335 		last_jiffies = tmp;
336 		if (last_jiffies != 0) {
337 			r0 = div64_32(timerhi, timerlo, tmp);
338 			quotient = div64_32(USECS_PER_JIFFY, USECS_PER_JIFFY_FRAC, r0);
339 			cached_quotient = quotient;
340 		}
341 	}
342 
343 	/* Get last timer tick in absolute kernel time */
344 	count = read_c0_count();
345 
346 	/* .. relative to previous jiffy (32 bits is enough) */
347 	count -= timerlo;
348 
349 	__asm__("multu\t%1,%2\n\t"
350 		"mfhi\t%0"
351 		: "=r" (res)
352 		: "r" (count), "r" (quotient)
353 		: "hi", "lo", GCC_REG_ACCUM);
354 
355 	/*
356  	 * Due to possible jiffies inconsistencies, we need to check
357 	 * the result so that we'll get a timer that is monotonic.
358 	 */
359 	if (res >= USECS_PER_JIFFY)
360 		res = USECS_PER_JIFFY-1;
361 
362 	return res;
363 }
364 
365 #ifdef CONFIG_PM
do_fast_pm_gettimeoffset(void)366 static unsigned long do_fast_pm_gettimeoffset(void)
367 {
368 	unsigned long pc0;
369 	unsigned long offset;
370 
371 	pc0 = au_readl(SYS_TOYREAD);
372 	au_sync();
373 	offset = pc0 - last_pc0;
374 	if (offset > 2*MATCH20_INC) {
375 		printk("huge offset %x, last_pc0 %x last_match20 %x pc0 %x\n",
376 				(unsigned)offset, (unsigned)last_pc0,
377 				(unsigned)last_match20, (unsigned)pc0);
378 	}
379 	offset = (unsigned long)((offset * 305) / 10);
380 	return offset;
381 }
382 #endif
383 
au1xxx_timer_setup(void)384 void __init au1xxx_timer_setup(void)
385 {
386         unsigned int est_freq;
387 	extern unsigned long (*do_gettimeoffset)(void);
388 	extern void au1k_wait(void);
389 
390 	printk("calculating r4koff... ");
391 	r4k_offset = cal_r4koff();
392 	printk("%08lx(%d)\n", r4k_offset, (int) r4k_offset);
393 
394 	//est_freq = 2*r4k_offset*HZ;
395 	est_freq = r4k_offset*HZ;
396 	est_freq += 5000;    /* round */
397 	est_freq -= est_freq%10000;
398 	printk("CPU frequency %d.%02d MHz\n", est_freq/1000000,
399 	       (est_freq%1000000)*100/1000000);
400  	set_au1x00_speed(est_freq);
401  	set_au1x00_lcd_clock(); // program the LCD clock
402 
403 	r4k_cur = (read_c0_count() + r4k_offset);
404 	write_c0_compare(r4k_cur);
405 
406 	/* no RTC on the pb1000 */
407 	xtime.tv_sec = 0;
408 	xtime.tv_usec = 0;
409 
410 #ifdef CONFIG_PM
411 	/*
412 	 * setup counter 0, since it keeps ticking after a
413 	 * 'wait' instruction has been executed. The CP0 timer and
414 	 * counter 1 do NOT continue running after 'wait'
415 	 *
416 	 * It's too early to call request_irq() here, so we handle
417 	 * counter 0 interrupt as a special irq and it doesn't show
418 	 * up under /proc/interrupts.
419 	 *
420 	 * Check to ensure we really have a 32KHz oscillator before
421 	 * we do this.
422 	 */
423 	if (no_au1xxx_32khz) {
424 		unsigned int c0_status;
425 
426 		printk("WARNING: no 32KHz clock found.\n");
427 		do_gettimeoffset = do_fast_cp0_gettimeoffset;
428 
429 		/* Ensure we get CPO_COUNTER interrupts.
430 		*/
431 		c0_status = read_c0_status();
432 		c0_status |= IE_IRQ5;
433 		write_c0_status(c0_status);
434 	}
435 	else {
436 		while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C0S);
437 		au_writel(0, SYS_TOYWRITE);
438 		while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C0S);
439 
440 		au_writel(au_readl(SYS_WAKEMSK) | (1<<8), SYS_WAKEMSK);
441 		au_writel(~0, SYS_WAKESRC);
442 		au_sync();
443 		while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_M20);
444 
445 		/* setup match20 to interrupt once every 10ms */
446 		last_pc0 = last_match20 = au_readl(SYS_TOYREAD);
447 		au_writel(last_match20 + MATCH20_INC, SYS_TOYMATCH2);
448 		au_sync();
449 		while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_M20);
450 		startup_match20_interrupt();
451 
452 		do_gettimeoffset = do_fast_pm_gettimeoffset;
453 
454 		/* We can use the real 'wait' instruction.
455 		*/
456 		au1k_wait_ptr = au1k_wait;
457 	}
458 
459 #else
460 	/* We have to do this here instead of in timer_init because
461 	 * the generic code in arch/mips/kernel/time.c will write
462 	 * over our function pointer.
463 	 */
464 	do_gettimeoffset = do_fast_cp0_gettimeoffset;
465 #endif
466 }
467 
au1xxx_time_init(void)468 void __init au1xxx_time_init(void)
469 {
470 }
471