1 /*
2  * SN2 Platform specific SMP Support
3  *
4  * Copyright (C) 2000-2003 Silicon Graphics, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it would be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
13  *
14  * Further, this software is distributed without any warranty that it is
15  * free of the rightful claim of any third person regarding infringement
16  * or the like.  Any license provided herein, whether implied or
17  * otherwise, applies only to this software file.  Patent licenses, if
18  * any, provided herein do not apply to combinations of this program with
19  * other software, or any other product whatsoever.
20  *
21  * You should have received a copy of the GNU General Public
22  * License along with this program; if not, write the Free Software
23  * Foundation, Inc., 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
24  *
25  * Contact information:  Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
26  * Mountain View, CA  94043, or:
27  *
28  * http://www.sgi.com
29  *
30  * For further information regarding this notice, see:
31  *
32  * http://oss.sgi.com/projects/GenInfo/NoticeExplan
33  */
34 
35 #include <linux/init.h>
36 #include <linux/kernel.h>
37 #include <linux/spinlock.h>
38 #include <linux/threads.h>
39 #include <linux/sched.h>
40 #include <linux/smp.h>
41 #include <linux/interrupt.h>
42 #include <linux/irq.h>
43 #include <linux/mmzone.h>
44 
45 #include <asm/processor.h>
46 #include <asm/irq.h>
47 #include <asm/sal.h>
48 #include <asm/system.h>
49 #include <asm/delay.h>
50 #include <asm/io.h>
51 #include <asm/smp.h>
52 #include <asm/hw_irq.h>
53 #include <asm/current.h>
54 #include <asm/sn/sn_cpuid.h>
55 #include <asm/sn/addrs.h>
56 #include <asm/sn/sn2/shub_mmr.h>
57 #include <asm/sn/nodepda.h>
58 #include <asm/sn/rw_mmr.h>
59 
60 void sn2_ptc_deadlock_recovery(unsigned long data0, unsigned long data1);
61 
62 
63 static spinlock_t sn2_global_ptc_lock __cacheline_aligned = SPIN_LOCK_UNLOCKED;
64 
65 static unsigned long sn2_ptc_deadlock_count;
66 
67 
68 static inline unsigned long
wait_piowc(void)69 wait_piowc(void)
70 {
71 	volatile unsigned long *piows;
72 	unsigned long	ws;
73 
74 	piows = pda.pio_write_status_addr;
75 	do {
76 		__asm__ __volatile__ ("mf.a" ::: "memory");
77 	} while (((ws = *piows) & SH_PIO_WRITE_STATUS_0_PENDING_WRITE_COUNT_MASK) !=
78 			SH_PIO_WRITE_STATUS_0_PENDING_WRITE_COUNT_MASK);
79 	return ws;
80 }
81 
82 
83 
84 /**
85  * sn2_global_tlb_purge - globally purge translation cache of virtual address range
86  * @start: start of virtual address range
87  * @end: end of virtual address range
88  * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc))
89  *
90  * Purges the translation caches of all processors of the given virtual address
91  * range.
92  */
93 
94 void
sn2_global_tlb_purge(unsigned long start,unsigned long end,unsigned long nbits)95 sn2_global_tlb_purge (unsigned long start, unsigned long end, unsigned long nbits)
96 {
97 	int			cnode, mycnode, nasid, flushed=0;
98 	volatile unsigned	long	*ptc0, *ptc1;
99 	unsigned long		flags=0, data0, data1;
100 
101 	data0 = (1UL<<SH_PTC_0_A_SHFT) |
102 		(nbits<<SH_PTC_0_PS_SHFT) |
103 		((ia64_get_rr(start)>>8)<<SH_PTC_0_RID_SHFT) |
104 		(1UL<<SH_PTC_0_START_SHFT);
105 
106 	ptc0 = (long*)GLOBAL_MMR_PHYS_ADDR(0, SH_PTC_0);
107 	ptc1 = (long*)GLOBAL_MMR_PHYS_ADDR(0, SH_PTC_1);
108 
109 	mycnode = numa_node_id();
110 
111 	spin_lock_irqsave(&sn2_global_ptc_lock, flags);
112 
113 	do {
114 		data1 = start | (1UL<<SH_PTC_1_START_SHFT);
115 		for (cnode = 0; cnode < numnodes; cnode++) {
116 			if (is_headless_node(cnode))
117 				continue;
118 			if (cnode == mycnode) {
119 				asm volatile ("ptc.ga %0,%1;;srlz.i;;" :: "r"(start), "r"(nbits<<2) : "memory");
120 			} else if (current->shared_mm || test_bit(cnode, current->node_history)) {
121 				nasid = cnodeid_to_nasid(cnode);
122 				ptc0 = CHANGE_NASID(nasid, ptc0);
123 				ptc1 = CHANGE_NASID(nasid, ptc1);
124 				pio_atomic_phys_write_mmrs(ptc0, data0, ptc1, data1);
125 				flushed = 1;
126 			}
127 		}
128 
129 		if (flushed && (wait_piowc() & SH_PIO_WRITE_STATUS_0_WRITE_DEADLOCK_MASK)) {
130 			sn2_ptc_deadlock_recovery(data0, data1);
131 		}
132 
133 		start += (1UL << nbits);
134 
135 	} while (start < end);
136 
137 	spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
138 
139 }
140 
141 /*
142  * sn2_ptc_deadlock_recovery
143  *
144  * Recover from PTC deadlocks conditions. Recovery requires stepping thru each
145  * TLB flush transaction.  The recovery sequence is somewhat tricky & is
146  * coded in assembly language.
147  */
148 void
sn2_ptc_deadlock_recovery(unsigned long data0,unsigned long data1)149 sn2_ptc_deadlock_recovery(unsigned long data0, unsigned long data1)
150 {
151 	extern void sn2_ptc_deadlock_recovery_core(long*, long, long*, long, long*);
152 	int	cnode, mycnode, nasid;
153 	long	*ptc0, *ptc1, *piows;
154 
155 	sn2_ptc_deadlock_count++;
156 
157 	ptc0 = (long*)GLOBAL_MMR_PHYS_ADDR(0, SH_PTC_0);
158 	ptc1 = (long*)GLOBAL_MMR_PHYS_ADDR(0, SH_PTC_1);
159 	piows = (long*)pda.pio_write_status_addr;
160 
161 	mycnode = numa_node_id();
162 
163 	for (cnode = 0; cnode < numnodes; cnode++) {
164 		if (is_headless_node(cnode) || cnode == mycnode)
165 			continue;
166 		nasid = cnodeid_to_nasid(cnode);
167 		ptc0 = CHANGE_NASID(nasid, ptc0);
168 		ptc1 = CHANGE_NASID(nasid, ptc1);
169 		sn2_ptc_deadlock_recovery_core(ptc0, data0, ptc1, data1, piows);
170 	}
171 }
172 
173 /**
174  * sn_send_IPI_phys - send an IPI to a Nasid and slice
175  * @physid: physical cpuid to receive the interrupt.
176  * @vector: command to send
177  * @delivery_mode: delivery mechanism
178  *
179  * Sends an IPI (interprocessor interrupt) to the processor specified by
180  * @physid
181  *
182  * @delivery_mode can be one of the following
183  *
184  * %IA64_IPI_DM_INT - pend an interrupt
185  * %IA64_IPI_DM_PMI - pend a PMI
186  * %IA64_IPI_DM_NMI - pend an NMI
187  * %IA64_IPI_DM_INIT - pend an INIT interrupt
188  */
189 void
sn_send_IPI_phys(long physid,int vector,int delivery_mode)190 sn_send_IPI_phys(long physid, int vector, int delivery_mode)
191 {
192 	long		nasid, slice, val;
193 	unsigned long	flags=0;
194 	volatile long	*p;
195 
196 	nasid = cpu_physical_id_to_nasid(physid);
197         slice = cpu_physical_id_to_slice(physid);
198 
199 	p = (long*)GLOBAL_MMR_PHYS_ADDR(nasid, SH_IPI_INT);
200 	val =   (1UL<<SH_IPI_INT_SEND_SHFT) |
201 		(physid<<SH_IPI_INT_PID_SHFT) |
202 	        ((long)delivery_mode<<SH_IPI_INT_TYPE_SHFT) |
203 		((long)vector<<SH_IPI_INT_IDX_SHFT) |
204 		(0x000feeUL<<SH_IPI_INT_BASE_SHFT);
205 
206 	mb();
207 	if (enable_shub_wars_1_1() ) {
208 		spin_lock_irqsave(&sn2_global_ptc_lock, flags);
209 	}
210 	pio_phys_write_mmr(p, val);
211 	if (enable_shub_wars_1_1() ) {
212 		wait_piowc();
213 		spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
214 	}
215 
216 }
217 
218 /**
219  * sn2_send_IPI - send an IPI to a processor
220  * @cpuid: target of the IPI
221  * @vector: command to send
222  * @delivery_mode: delivery mechanism
223  * @redirect: redirect the IPI?
224  *
225  * Sends an IPI (InterProcessor Interrupt) to the processor specified by
226  * @cpuid.  @vector specifies the command to send, while @delivery_mode can
227  * be one of the following
228  *
229  * %IA64_IPI_DM_INT - pend an interrupt
230  * %IA64_IPI_DM_PMI - pend a PMI
231  * %IA64_IPI_DM_NMI - pend an NMI
232  * %IA64_IPI_DM_INIT - pend an INIT interrupt
233  */
234 void
sn2_send_IPI(int cpuid,int vector,int delivery_mode,int redirect)235 sn2_send_IPI(int cpuid, int vector, int delivery_mode, int redirect)
236 {
237 	long		physid;
238 
239 	physid = cpu_physical_id(cpuid);
240 
241 	sn_send_IPI_phys(physid, vector, delivery_mode);
242 }
243