1 /*
2 * Initialize MMU support.
3 *
4 * Copyright (C) 1998-2002 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 */
7 #include <linux/config.h>
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11
12 #include <linux/bootmem.h>
13 #include <linux/mm.h>
14 #include <linux/personality.h>
15 #include <linux/reboot.h>
16 #include <linux/slab.h>
17 #include <linux/swap.h>
18 #include <linux/efi.h>
19 #include <linux/mmzone.h>
20
21 #include <asm/bitops.h>
22 #include <asm/dma.h>
23 #include <asm/ia32.h>
24 #include <asm/io.h>
25 #include <asm/machvec.h>
26 #include <asm/numa.h>
27 #include <asm/pgalloc.h>
28 #include <asm/sal.h>
29 #include <asm/system.h>
30 #include <asm/uaccess.h>
31 #include <asm/mca.h>
32
33 /* References to section boundaries: */
34 extern char _stext, _etext, _edata, __init_begin, __init_end;
35
36 extern void ia64_tlb_init (void);
37 extern int filter_rsvd_memory (unsigned long, unsigned long, void *);
38
39 /* Note - may be changed by platform_setup */
40 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
41 #define LARGE_GAP 0x40000000 /* Use virtual mem map if a hole is > than this */
42
43 static unsigned long totalram_pages, reserved_pages;
44 struct page *zero_page_memmap_ptr; /* map entry for zero page */
45
46 unsigned long vmalloc_end = VMALLOC_END_INIT;
47
48 static struct page *vmem_map;
49 static unsigned long num_dma_physpages;
50
51 int
do_check_pgt_cache(int low,int high)52 do_check_pgt_cache (int low, int high)
53 {
54 int freed = 0;
55
56 if (pgtable_cache_size > high) {
57 do {
58 if (pgd_quicklist)
59 free_page((unsigned long)pgd_alloc_one_fast(0)), ++freed;
60 if (pmd_quicklist)
61 free_page((unsigned long)pmd_alloc_one_fast(0, 0)), ++freed;
62 if (pte_quicklist)
63 free_page((unsigned long)pte_alloc_one_fast(0, 0)), ++freed;
64 } while (pgtable_cache_size > low);
65 }
66 return freed;
67 }
68
69 inline void
ia64_set_rbs_bot(void)70 ia64_set_rbs_bot (void)
71 {
72 unsigned long stack_size = current->rlim[RLIMIT_STACK].rlim_max & -16;
73
74 if (stack_size > MAX_USER_STACK_SIZE)
75 stack_size = MAX_USER_STACK_SIZE;
76 current->thread.rbs_bot = STACK_TOP - stack_size;
77 }
78
79 /*
80 * This performs some platform-dependent address space initialization.
81 * On IA-64, we want to setup the VM area for the register backing
82 * store (which grows upwards) and install the gateway page which is
83 * used for signal trampolines, etc.
84 */
85 void
ia64_init_addr_space(void)86 ia64_init_addr_space (void)
87 {
88 struct vm_area_struct *vma;
89
90 ia64_set_rbs_bot();
91
92 /*
93 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
94 * the problem. When the process attempts to write to the register backing store
95 * for the first time, it will get a SEGFAULT in this case.
96 */
97 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
98 if (vma) {
99 vma->vm_mm = current->mm;
100 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
101 vma->vm_end = vma->vm_start + PAGE_SIZE;
102 vma->vm_page_prot = PAGE_COPY;
103 vma->vm_flags = VM_READ|VM_WRITE|VM_MAYREAD|VM_MAYWRITE|VM_GROWSUP;
104 vma->vm_ops = NULL;
105 vma->vm_pgoff = 0;
106 vma->vm_file = NULL;
107 vma->vm_private_data = NULL;
108 down_write(¤t->mm->mmap_sem);
109 if (insert_vm_struct(current->mm, vma)) {
110 up_write(¤t->mm->mmap_sem);
111 kmem_cache_free(vm_area_cachep, vma);
112 return;
113 }
114 up_write(¤t->mm->mmap_sem);
115 }
116
117 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
118 if (!(current->personality & MMAP_PAGE_ZERO)) {
119 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
120 if (vma) {
121 memset(vma, 0, sizeof(*vma));
122 vma->vm_mm = current->mm;
123 vma->vm_end = PAGE_SIZE;
124 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
125 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
126 down_write(¤t->mm->mmap_sem);
127 if (insert_vm_struct(current->mm, vma)) {
128 up_write(¤t->mm->mmap_sem);
129 kmem_cache_free(vm_area_cachep, vma);
130 return;
131 }
132 up_write(¤t->mm->mmap_sem);
133 }
134 }
135 }
136
137 void
free_initmem(void)138 free_initmem (void)
139 {
140 unsigned long addr, eaddr;
141
142 addr = (unsigned long) ia64_imva(&__init_begin);
143 eaddr = (unsigned long) ia64_imva(&__init_end);
144 for (; addr < eaddr; addr += PAGE_SIZE) {
145 clear_bit(PG_reserved, &virt_to_page((void *)addr)->flags);
146 set_page_count(virt_to_page((void *)addr), 1);
147 free_page(addr);
148 ++totalram_pages;
149 }
150 printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
151 (&__init_end - &__init_begin) >> 10);
152 }
153
154 void
free_initrd_mem(unsigned long start,unsigned long end)155 free_initrd_mem(unsigned long start, unsigned long end)
156 {
157 /*
158 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
159 * Thus EFI and the kernel may have different page sizes. It is
160 * therefore possible to have the initrd share the same page as
161 * the end of the kernel (given current setup).
162 *
163 * To avoid freeing/using the wrong page (kernel sized) we:
164 * - align up the beginning of initrd
165 * - align down the end of initrd
166 *
167 * | |
168 * |=============| a000
169 * | |
170 * | |
171 * | | 9000
172 * |/////////////|
173 * |/////////////|
174 * |=============| 8000
175 * |///INITRD////|
176 * |/////////////|
177 * |/////////////| 7000
178 * | |
179 * |KKKKKKKKKKKKK|
180 * |=============| 6000
181 * |KKKKKKKKKKKKK|
182 * |KKKKKKKKKKKKK|
183 * K=kernel using 8KB pages
184 *
185 * In this example, we must free page 8000 ONLY. So we must align up
186 * initrd_start and keep initrd_end as is.
187 */
188 start = PAGE_ALIGN(start);
189 end = end & PAGE_MASK;
190
191 if (start < end)
192 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
193
194 for (; start < end; start += PAGE_SIZE) {
195 if (!VALID_PAGE(virt_to_page((void *)start)))
196 continue;
197 clear_bit(PG_reserved, &virt_to_page((void *)start)->flags);
198 set_page_count(virt_to_page((void *)start), 1);
199 free_page(start);
200 ++totalram_pages;
201 }
202 }
203
204 void
si_meminfo(struct sysinfo * val)205 si_meminfo (struct sysinfo *val)
206 {
207 val->totalram = totalram_pages;
208 val->sharedram = 0;
209 val->freeram = nr_free_pages();
210 val->bufferram = atomic_read(&buffermem_pages);
211 val->totalhigh = 0;
212 val->freehigh = 0;
213 val->mem_unit = PAGE_SIZE;
214 return;
215 }
216
217 void
show_mem(void)218 show_mem(void)
219 {
220 int i, reserved;
221 int shared, cached;
222 pg_data_t *pgdat;
223 char *tchar = (numnodes > 1) ? "\t" : "";
224
225 printk("Mem-info:\n");
226 show_free_areas();
227
228 printk("Free swap: %6dkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
229 for_each_pgdat(pgdat) {
230 reserved=0;
231 cached=0;
232 shared=0;
233 if (numnodes > 1)
234 printk("Node ID: %d\n", pgdat->node_id);
235 for(i = 0; i < pgdat->node_size; i++) {
236 if (!VALID_PAGE(pgdat->node_mem_map+i))
237 continue;
238 if (PageReserved(pgdat->node_mem_map+i))
239 reserved++;
240 else if (PageSwapCache(pgdat->node_mem_map+i))
241 cached++;
242 else if (page_count(pgdat->node_mem_map + i))
243 shared += page_count(pgdat->node_mem_map + i) - 1;
244 }
245 printk("%s%ld pages of RAM\n", tchar, pgdat->node_size);
246 printk("%s%d reserved pages\n", tchar, reserved);
247 printk("%s%d pages shared\n", tchar, shared);
248 printk("%s%d pages swap cached\n", tchar, cached);
249 }
250 printk("Total of %ld pages in page table cache\n", pgtable_cache_size);
251 show_buffers();
252 printk("%d free buffer pages\n", nr_free_buffer_pages());
253 }
254
255 /*
256 * This is like put_dirty_page() but installs a clean page with PAGE_GATE protection
257 * (execute-only, typically).
258 */
259 struct page *
put_gate_page(struct page * page,unsigned long address)260 put_gate_page (struct page *page, unsigned long address)
261 {
262 pgd_t *pgd;
263 pmd_t *pmd;
264 pte_t *pte;
265
266 if (!PageReserved(page))
267 printk(KERN_ERR "put_gate_page: gate page at 0x%p not in reserved memory\n",
268 page_address(page));
269
270 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
271
272 spin_lock(&init_mm.page_table_lock);
273 {
274 pmd = pmd_alloc(&init_mm, pgd, address);
275 if (!pmd)
276 goto out;
277 pte = pte_alloc(&init_mm, pmd, address);
278 if (!pte)
279 goto out;
280 if (!pte_none(*pte)) {
281 pte_ERROR(*pte);
282 goto out;
283 }
284 flush_page_to_ram(page);
285 set_pte(pte, mk_pte(page, PAGE_GATE));
286 }
287 out: spin_unlock(&init_mm.page_table_lock);
288 /* no need for flush_tlb */
289 return page;
290 }
291
292 void __init
ia64_mmu_init(void * my_cpu_data)293 ia64_mmu_init (void *my_cpu_data)
294 {
295 unsigned long psr, rid, pta, impl_va_bits;
296 extern void __init tlb_init (void);
297 #ifdef CONFIG_IA64_MCA
298 int cpu;
299 #endif
300
301 #ifdef CONFIG_DISABLE_VHPT
302 # define VHPT_ENABLE_BIT 0
303 #else
304 # define VHPT_ENABLE_BIT 1
305 #endif
306
307 /*
308 * Set up the kernel identity mapping for regions 6 and 5. The mapping for region
309 * 7 is setup up in _start().
310 */
311 psr = ia64_clear_ic();
312
313 rid = ia64_rid(IA64_REGION_ID_KERNEL, __IA64_UNCACHED_OFFSET);
314 ia64_set_rr(__IA64_UNCACHED_OFFSET, (rid << 8) | (IA64_GRANULE_SHIFT << 2));
315
316 rid = ia64_rid(IA64_REGION_ID_KERNEL, VMALLOC_START);
317 ia64_set_rr(VMALLOC_START, (rid << 8) | (PAGE_SHIFT << 2) | 1);
318
319 /* ensure rr6 is up-to-date before inserting the PERCPU_ADDR translation: */
320 ia64_srlz_d();
321
322 ia64_itr(0x2, IA64_TR_PERCPU_DATA, PERCPU_ADDR,
323 pte_val(mk_pte_phys(__pa(my_cpu_data), PAGE_KERNEL)), PAGE_SHIFT);
324
325 ia64_set_psr(psr);
326 ia64_srlz_i();
327
328 /*
329 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
330 * address space. The IA-64 architecture guarantees that at least 50 bits of
331 * virtual address space are implemented but if we pick a large enough page size
332 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
333 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
334 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
335 * problem in practice. Alternatively, we could truncate the top of the mapped
336 * address space to not permit mappings that would overlap with the VMLPT.
337 * --davidm 00/12/06
338 */
339 # define pte_bits 3
340 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
341 /*
342 * The virtual page table has to cover the entire implemented address space within
343 * a region even though not all of this space may be mappable. The reason for
344 * this is that the Access bit and Dirty bit fault handlers perform
345 * non-speculative accesses to the virtual page table, so the address range of the
346 * virtual page table itself needs to be covered by virtual page table.
347 */
348 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
349 # define POW2(n) (1ULL << (n))
350
351 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
352
353 if (impl_va_bits < 51 || impl_va_bits > 61)
354 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
355
356 /* place the VMLPT at the end of each page-table mapped region: */
357 pta = POW2(61) - POW2(vmlpt_bits);
358
359 if (POW2(mapped_space_bits) >= pta)
360 panic("mm/init: overlap between virtually mapped linear page table and "
361 "mapped kernel space!");
362 /*
363 * Set the (virtually mapped linear) page table address. Bit
364 * 8 selects between the short and long format, bits 2-7 the
365 * size of the table, and bit 0 whether the VHPT walker is
366 * enabled.
367 */
368 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
369
370 ia64_tlb_init();
371
372 #ifdef CONFIG_IA64_MCA
373 cpu = smp_processor_id();
374
375 /* mca handler uses cr.lid as key to pick the right entry */
376 ia64_mca_tlb_list[cpu].cr_lid = ia64_get_lid();
377
378 /* insert this percpu data information into our list for MCA recovery purposes */
379 ia64_mca_tlb_list[cpu].percpu_paddr = pte_val(mk_pte_phys(__pa(my_cpu_data), PAGE_KERNEL));
380 /* Also save per-cpu tlb flush recipe for use in physical mode mca handler */
381 ia64_mca_tlb_list[cpu].ptce_base = local_cpu_data->ptce_base;
382 ia64_mca_tlb_list[cpu].ptce_count[0] = local_cpu_data->ptce_count[0];
383 ia64_mca_tlb_list[cpu].ptce_count[1] = local_cpu_data->ptce_count[1];
384 ia64_mca_tlb_list[cpu].ptce_stride[0] = local_cpu_data->ptce_stride[0];
385 ia64_mca_tlb_list[cpu].ptce_stride[1] = local_cpu_data->ptce_stride[1];
386 #endif
387 }
388
389 static int
create_mem_map_page_table(u64 start,u64 end,void * arg)390 create_mem_map_page_table (u64 start, u64 end, void *arg)
391 {
392 unsigned long address, start_page, end_page, next_blk_page;
393 unsigned long blk_start;
394 struct page *map_start, *map_end;
395 int node=0;
396 pgd_t *pgd;
397 pmd_t *pmd;
398 pte_t *pte;
399
400 /* should we use platform_map_nr here? */
401
402 map_start = vmem_map + MAP_NR_DENSE(start);
403 map_end = vmem_map + MAP_NR_DENSE(end);
404
405 start_page = (unsigned long) map_start & PAGE_MASK;
406 end_page = PAGE_ALIGN((unsigned long) map_end);
407
408 /* force the first iteration to get node id */
409 blk_start = start;
410 next_blk_page = 0;
411
412 for (address = start_page; address < end_page; address += PAGE_SIZE) {
413
414 /* if we went across a node boundary, get new nid */
415 if (address >= next_blk_page) {
416 struct page *map_next_blk;
417
418 node = paddr_to_nid(__pa(blk_start));
419
420 /* get end addr of this memblk as next blk_start */
421 blk_start = (unsigned long) __va(min(end, memblk_endpaddr(__pa(blk_start))));
422 map_next_blk = vmem_map + MAP_NR_DENSE(blk_start);
423 next_blk_page = PAGE_ALIGN((unsigned long) map_next_blk);
424 }
425
426 pgd = pgd_offset_k(address);
427 if (pgd_none(*pgd))
428 pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
429 pmd = pmd_offset(pgd, address);
430
431 if (pmd_none(*pmd))
432 pmd_populate(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
433 pte = pte_offset(pmd, address);
434
435 if (pte_none(*pte))
436 set_pte(pte, mk_pte_phys(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)),
437 PAGE_KERNEL));
438 }
439 return 0;
440 }
441
442 struct memmap_init_callback_data {
443 memmap_init_callback_t *memmap_init;
444 struct page *start;
445 struct page *end;
446 int zone;
447 int highmem;
448 };
449
450 struct memmap_count_callback_data {
451 int node;
452 unsigned long num_physpages;
453 unsigned long num_dma_physpages;
454 unsigned long min_pfn;
455 unsigned long max_pfn;
456 } cdata;
457
458 static int
virtual_memmap_init(u64 start,u64 end,void * arg)459 virtual_memmap_init (u64 start, u64 end, void *arg)
460 {
461 struct memmap_init_callback_data *args;
462 struct page *map_start, *map_end;
463
464 args = (struct memmap_init_callback_data *) arg;
465
466 /* Should we use platform_map_nr here? */
467
468 map_start = mem_map + MAP_NR_DENSE(start);
469 map_end = mem_map + MAP_NR_DENSE(end);
470
471 if (map_start < args->start)
472 map_start = args->start;
473 if (map_end > args->end)
474 map_end = args->end;
475
476 /*
477 * We have to initialize "out of bounds" struct page elements
478 * that fit completely on the same pages that were allocated
479 * for the "in bounds" elements because they may be referenced
480 * later (and found to be "reserved").
481 */
482 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1))
483 / sizeof(struct page);
484 map_end += ((PAGE_ALIGN((unsigned long) map_end) -
485 (unsigned long) map_end)
486 / sizeof(struct page));
487
488 if (map_start < map_end)
489 (*args->memmap_init)(map_start, map_end, args->zone,
490 page_to_phys(map_start), args->highmem);
491
492 return 0;
493 }
494
495 unsigned long
arch_memmap_init(memmap_init_callback_t * memmap_init,struct page * start,struct page * end,int zone,unsigned long start_paddr,int highmem)496 arch_memmap_init (memmap_init_callback_t *memmap_init, struct page *start,
497 struct page *end, int zone, unsigned long start_paddr, int highmem)
498 {
499 if (!vmem_map)
500 memmap_init(start,end,zone,page_to_phys(start),highmem);
501 else {
502 struct memmap_init_callback_data args;
503
504 args.memmap_init = memmap_init;
505 args.start = start;
506 args.end = end;
507 args.zone = zone;
508 args.highmem = highmem;
509
510 efi_memmap_walk(virtual_memmap_init, &args);
511 }
512
513 return page_to_phys(end-1) + PAGE_SIZE;;
514 }
515
516 int
ia64_page_valid(struct page * page)517 ia64_page_valid (struct page *page)
518 {
519 char byte;
520
521 return (__get_user(byte, (char *) page) == 0)
522 && (__get_user(byte, (char *) (page + 1) - 1) == 0);
523 }
524
525 #define GRANULEROUNDDOWN(n) ((n) & ~(IA64_GRANULE_SIZE-1))
526 #define GRANULEROUNDUP(n) (((n)+IA64_GRANULE_SIZE-1) & ~(IA64_GRANULE_SIZE-1))
527 #define ORDERROUNDDOWN(n) ((n) & ~((PAGE_SIZE<<MAX_ORDER)-1))
528 static int
count_pages(u64 start,u64 end,int node)529 count_pages (u64 start, u64 end, int node)
530 {
531 start = __pa(start);
532 end = __pa(end);
533 if (node == cdata.node) {
534 cdata.num_physpages += (end - start) >> PAGE_SHIFT;
535 if (start <= __pa(MAX_DMA_ADDRESS))
536 cdata.num_dma_physpages += (min(end, __pa(MAX_DMA_ADDRESS)) - start) >> PAGE_SHIFT;
537 start = GRANULEROUNDDOWN(__pa(start));
538 start = ORDERROUNDDOWN(start);
539 end = GRANULEROUNDUP(__pa(end));
540 cdata.max_pfn = max(cdata.max_pfn, end >> PAGE_SHIFT);
541 cdata.min_pfn = min(cdata.min_pfn, start >> PAGE_SHIFT);
542 }
543 return 0;
544 }
545
546 static int
find_largest_hole(u64 start,u64 end,void * arg)547 find_largest_hole(u64 start, u64 end, void *arg)
548 {
549 u64 *max_gap = arg;
550 static u64 last_end = PAGE_OFFSET;
551
552 /* NOTE: this algorithm assumes efi memmap table is ordered */
553
554 if (*max_gap < (start - last_end))
555 *max_gap = start - last_end;
556 last_end = end;
557 return 0;
558 }
559
560 /*
561 * Set up the page tables.
562 */
563 void
paging_init(void)564 paging_init (void)
565 {
566 unsigned long max_dma;
567 unsigned long zones_size[MAX_NR_ZONES];
568 unsigned long zholes_size[MAX_NR_ZONES];
569 unsigned long max_gap;
570 int node;
571
572 /* initialize mem_map[] */
573
574 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
575 max_gap = 0;
576 efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
577
578 for (node=0; node < numnodes; node++) {
579 memset(zones_size, 0, sizeof(zones_size));
580 memset(zholes_size, 0, sizeof(zholes_size));
581 memset(&cdata, 0, sizeof(cdata));
582
583 cdata.node = node;
584 cdata.min_pfn = ~0;
585
586 efi_memmap_walk(filter_rsvd_memory, count_pages);
587 num_dma_physpages += cdata.num_dma_physpages;
588 num_physpages += cdata.num_physpages;
589
590 if (cdata.min_pfn >= max_dma) {
591 zones_size[ZONE_NORMAL] = cdata.max_pfn - cdata.min_pfn;
592 zholes_size[ZONE_NORMAL] = cdata.max_pfn - cdata.min_pfn - cdata.num_physpages;
593 } else if (cdata.max_pfn < max_dma) {
594 zones_size[ZONE_DMA] = cdata.max_pfn - cdata.min_pfn;
595 zholes_size[ZONE_DMA] = cdata.max_pfn - cdata.min_pfn - cdata.num_dma_physpages;
596 } else {
597 zones_size[ZONE_DMA] = max_dma - cdata.min_pfn;
598 zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - cdata.num_dma_physpages;
599 zones_size[ZONE_NORMAL] = cdata.max_pfn - max_dma;
600 zholes_size[ZONE_NORMAL] = zones_size[ZONE_NORMAL] - (cdata.num_physpages - cdata.num_dma_physpages);
601 }
602
603 if (numnodes == 1 && max_gap < LARGE_GAP) {
604 vmem_map = (struct page *)0;
605 zones_size[ZONE_DMA] += cdata.min_pfn;
606 zholes_size[ZONE_DMA] += cdata.min_pfn;
607 free_area_init_core(0, NODE_DATA(node), &mem_map, zones_size, 0, zholes_size, NULL);
608 } else {
609
610 /* allocate virtual mem_map */
611
612 if (node == 0) {
613 unsigned long map_size;
614 map_size = PAGE_ALIGN(max_low_pfn*sizeof(struct page));
615 vmalloc_end -= map_size;
616 mem_map = vmem_map = (struct page *) vmalloc_end;
617 efi_memmap_walk(create_mem_map_page_table, 0);
618 printk(KERN_INFO "Virtual mem_map starts at 0x%p\n", mem_map);
619 }
620
621 free_area_init_node(node, NODE_DATA(node), vmem_map+cdata.min_pfn, zones_size,
622 cdata.min_pfn<<PAGE_SHIFT, zholes_size);
623 }
624 }
625
626 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
627 }
628
629 static int
count_reserved_pages(u64 start,u64 end,void * arg)630 count_reserved_pages (u64 start, u64 end, void *arg)
631 {
632 unsigned long num_reserved = 0;
633 struct page *pg;
634
635 for (pg = virt_to_page((void *)start); pg < virt_to_page((void *)end); ++pg)
636 if (PageReserved(pg))
637 ++num_reserved;
638 reserved_pages += num_reserved;
639 return 0;
640 }
641
642 void
mem_init(void)643 mem_init (void)
644 {
645 extern char __start_gate_section[];
646 long codesize, datasize, initsize;
647 unsigned long num_pgt_pages;
648 pg_data_t *pgdat;
649
650
651 #ifdef CONFIG_PCI
652 /*
653 * This needs to be called _after_ the command line has been parsed but _before_
654 * any drivers that may need the PCI DMA interface are initialized or bootmem has
655 * been freed.
656 */
657 platform_pci_dma_init();
658 #endif
659
660 if (!mem_map)
661 BUG();
662
663 max_mapnr = max_low_pfn;
664 high_memory = __va(max_low_pfn * PAGE_SIZE);
665
666 for_each_pgdat(pgdat)
667 totalram_pages += free_all_bootmem_node(pgdat);
668
669 reserved_pages = 0;
670 efi_memmap_walk(filter_rsvd_memory, count_reserved_pages);
671
672 codesize = (unsigned long) &_etext - (unsigned long) &_stext;
673 datasize = (unsigned long) &_edata - (unsigned long) &_etext;
674 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
675
676 printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, %luk data, %luk init)\n",
677 (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
678 num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
679 reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
680
681 /*
682 * Allow for enough (cached) page table pages so that we can map the entire memory
683 * at least once. Each task also needs a couple of page tables pages, so add in a
684 * fudge factor for that (don't use "threads-max" here; that would be wrong!).
685 * Don't allow the cache to be more than 10% of total memory, though.
686 */
687 # define NUM_TASKS 500 /* typical number of tasks */
688 num_pgt_pages = nr_free_pages() / PTRS_PER_PGD + NUM_TASKS;
689 if (num_pgt_pages > nr_free_pages() / 10)
690 num_pgt_pages = nr_free_pages() / 10;
691 if (num_pgt_pages > pgt_cache_water[1])
692 pgt_cache_water[1] = num_pgt_pages;
693
694 /* install the gate page in the global page table: */
695 put_gate_page(virt_to_page(ia64_imva(__start_gate_section)), GATE_ADDR);
696
697 #ifdef CONFIG_IA32_SUPPORT
698 ia32_gdt_init();
699 #endif
700 }
701