1 #include <linux/config.h>
2 #include <linux/ptrace.h>
3 #include <linux/errno.h>
4 #include <linux/signal.h>
5 #include <linux/sched.h>
6 #include <linux/ioport.h>
7 #include <linux/interrupt.h>
8 #include <linux/timex.h>
9 #include <linux/slab.h>
10 #include <linux/random.h>
11 #include <linux/smp_lock.h>
12 #include <linux/init.h>
13 #include <linux/kernel_stat.h>
14 
15 #include <asm/acpi.h>
16 #include <asm/atomic.h>
17 #include <asm/system.h>
18 #include <asm/io.h>
19 #include <asm/irq.h>
20 #include <asm/bitops.h>
21 #include <asm/pgtable.h>
22 #include <asm/delay.h>
23 #include <asm/desc.h>
24 #include <asm/apic.h>
25 
26 #include <linux/irq.h>
27 
28 /*
29  * Common place to define all x86 IRQ vectors
30  *
31  * This builds up the IRQ handler stubs using some ugly macros in irq.h
32  *
33  * These macros create the low-level assembly IRQ routines that save
34  * register context and call do_IRQ(). do_IRQ() then does all the
35  * operations that are needed to keep the AT (or SMP IOAPIC)
36  * interrupt-controller happy.
37  */
38 
39 BUILD_COMMON_IRQ()
40 
41 #define BI(x,y) \
42 	BUILD_IRQ(x##y)
43 
44 #define BUILD_16_IRQS(x) \
45 	BI(x,0) BI(x,1) BI(x,2) BI(x,3) \
46 	BI(x,4) BI(x,5) BI(x,6) BI(x,7) \
47 	BI(x,8) BI(x,9) BI(x,a) BI(x,b) \
48 	BI(x,c) BI(x,d) BI(x,e) BI(x,f)
49 
50 /*
51  * ISA PIC or low IO-APIC triggered (INTA-cycle or APIC) interrupts:
52  * (these are usually mapped to vectors 0x20-0x2f)
53  */
54 BUILD_16_IRQS(0x0)
55 
56 #ifdef CONFIG_X86_IO_APIC
57 /*
58  * The IO-APIC gives us many more interrupt sources. Most of these
59  * are unused but an SMP system is supposed to have enough memory ...
60  * sometimes (mostly wrt. hw bugs) we get corrupted vectors all
61  * across the spectrum, so we really want to be prepared to get all
62  * of these. Plus, more powerful systems might have more than 64
63  * IO-APIC registers.
64  *
65  * (these are usually mapped into the 0x30-0xff vector range)
66  */
67 		   BUILD_16_IRQS(0x1) BUILD_16_IRQS(0x2) BUILD_16_IRQS(0x3)
68 BUILD_16_IRQS(0x4) BUILD_16_IRQS(0x5) BUILD_16_IRQS(0x6) BUILD_16_IRQS(0x7)
69 BUILD_16_IRQS(0x8) BUILD_16_IRQS(0x9) BUILD_16_IRQS(0xa) BUILD_16_IRQS(0xb)
70 BUILD_16_IRQS(0xc) BUILD_16_IRQS(0xd)
71 #endif
72 
73 #undef BUILD_16_IRQS
74 #undef BI
75 
76 
77 /*
78  * The following vectors are part of the Linux architecture, there
79  * is no hardware IRQ pin equivalent for them, they are triggered
80  * through the ICC by us (IPIs)
81  */
82 #ifdef CONFIG_SMP
83 BUILD_SMP_INTERRUPT(reschedule_interrupt,RESCHEDULE_VECTOR)
84 BUILD_SMP_INTERRUPT(invalidate_interrupt,INVALIDATE_TLB_VECTOR)
85 BUILD_SMP_INTERRUPT(call_function_interrupt,CALL_FUNCTION_VECTOR)
86 #endif
87 
88 /*
89  * every pentium local APIC has two 'local interrupts', with a
90  * soft-definable vector attached to both interrupts, one of
91  * which is a timer interrupt, the other one is error counter
92  * overflow. Linux uses the local APIC timer interrupt to get
93  * a much simpler SMP time architecture:
94  */
95 #ifdef CONFIG_X86_LOCAL_APIC
96 BUILD_SMP_TIMER_INTERRUPT(apic_timer_interrupt,LOCAL_TIMER_VECTOR)
97 BUILD_SMP_INTERRUPT(error_interrupt,ERROR_APIC_VECTOR)
98 BUILD_SMP_INTERRUPT(spurious_interrupt,SPURIOUS_APIC_VECTOR)
99 #endif
100 
101 #define IRQ(x,y) \
102 	IRQ##x##y##_interrupt
103 
104 #define IRQLIST_16(x) \
105 	IRQ(x,0), IRQ(x,1), IRQ(x,2), IRQ(x,3), \
106 	IRQ(x,4), IRQ(x,5), IRQ(x,6), IRQ(x,7), \
107 	IRQ(x,8), IRQ(x,9), IRQ(x,a), IRQ(x,b), \
108 	IRQ(x,c), IRQ(x,d), IRQ(x,e), IRQ(x,f)
109 
110 void (*interrupt[NR_IRQS])(void) = {
111 	IRQLIST_16(0x0),
112 
113 #ifdef CONFIG_X86_IO_APIC
114 			 IRQLIST_16(0x1), IRQLIST_16(0x2), IRQLIST_16(0x3),
115 	IRQLIST_16(0x4), IRQLIST_16(0x5), IRQLIST_16(0x6), IRQLIST_16(0x7),
116 	IRQLIST_16(0x8), IRQLIST_16(0x9), IRQLIST_16(0xa), IRQLIST_16(0xb),
117 	IRQLIST_16(0xc), IRQLIST_16(0xd)
118 #endif
119 };
120 
121 #undef IRQ
122 #undef IRQLIST_16
123 
124 /*
125  * This is the 'legacy' 8259A Programmable Interrupt Controller,
126  * present in the majority of PC/AT boxes.
127  * plus some generic x86 specific things if generic specifics makes
128  * any sense at all.
129  * this file should become arch/i386/kernel/irq.c when the old irq.c
130  * moves to arch independent land
131  */
132 
133 spinlock_t i8259A_lock = SPIN_LOCK_UNLOCKED;
134 
end_8259A_irq(unsigned int irq)135 static void end_8259A_irq (unsigned int irq)
136 {
137 	if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS)))
138 		enable_8259A_irq(irq);
139 }
140 
141 #define shutdown_8259A_irq	disable_8259A_irq
142 
143 void mask_and_ack_8259A(unsigned int);
144 
startup_8259A_irq(unsigned int irq)145 static unsigned int startup_8259A_irq(unsigned int irq)
146 {
147 	enable_8259A_irq(irq);
148 	return 0; /* never anything pending */
149 }
150 
151 static struct hw_interrupt_type i8259A_irq_type = {
152 	"XT-PIC",
153 	startup_8259A_irq,
154 	shutdown_8259A_irq,
155 	enable_8259A_irq,
156 	disable_8259A_irq,
157 	mask_and_ack_8259A,
158 	end_8259A_irq,
159 	NULL
160 };
161 
162 /*
163  * 8259A PIC functions to handle ISA devices:
164  */
165 
166 /*
167  * This contains the irq mask for both 8259A irq controllers,
168  */
169 static unsigned int cached_irq_mask = 0xffff;
170 
171 #define __byte(x,y) 	(((unsigned char *)&(y))[x])
172 #define cached_21	(__byte(0,cached_irq_mask))
173 #define cached_A1	(__byte(1,cached_irq_mask))
174 
175 /*
176  * Not all IRQs can be routed through the IO-APIC, eg. on certain (older)
177  * boards the timer interrupt is not really connected to any IO-APIC pin,
178  * it's fed to the master 8259A's IR0 line only.
179  *
180  * Any '1' bit in this mask means the IRQ is routed through the IO-APIC.
181  * this 'mixed mode' IRQ handling costs nothing because it's only used
182  * at IRQ setup time.
183  */
184 unsigned long io_apic_irqs;
185 
disable_8259A_irq(unsigned int irq)186 void disable_8259A_irq(unsigned int irq)
187 {
188 	unsigned int mask = 1 << irq;
189 	unsigned long flags;
190 
191 	spin_lock_irqsave(&i8259A_lock, flags);
192 	cached_irq_mask |= mask;
193 	if (irq & 8)
194 		outb(cached_A1,0xA1);
195 	else
196 		outb(cached_21,0x21);
197 	spin_unlock_irqrestore(&i8259A_lock, flags);
198 }
199 
enable_8259A_irq(unsigned int irq)200 void enable_8259A_irq(unsigned int irq)
201 {
202 	unsigned int mask = ~(1 << irq);
203 	unsigned long flags;
204 
205 	spin_lock_irqsave(&i8259A_lock, flags);
206 	cached_irq_mask &= mask;
207 	if (irq & 8)
208 		outb(cached_A1,0xA1);
209 	else
210 		outb(cached_21,0x21);
211 	spin_unlock_irqrestore(&i8259A_lock, flags);
212 }
213 
i8259A_irq_pending(unsigned int irq)214 int i8259A_irq_pending(unsigned int irq)
215 {
216 	unsigned int mask = 1<<irq;
217 	unsigned long flags;
218 	int ret;
219 
220 	spin_lock_irqsave(&i8259A_lock, flags);
221 	if (irq < 8)
222 		ret = inb(0x20) & mask;
223 	else
224 		ret = inb(0xA0) & (mask >> 8);
225 	spin_unlock_irqrestore(&i8259A_lock, flags);
226 
227 	return ret;
228 }
229 
make_8259A_irq(unsigned int irq)230 void make_8259A_irq(unsigned int irq)
231 {
232 	disable_irq_nosync(irq);
233 	io_apic_irqs &= ~(1<<irq);
234 	irq_desc[irq].handler = &i8259A_irq_type;
235 	enable_irq(irq);
236 }
237 
238 /*
239  * This function assumes to be called rarely. Switching between
240  * 8259A registers is slow.
241  * This has to be protected by the irq controller spinlock
242  * before being called.
243  */
i8259A_irq_real(unsigned int irq)244 static inline int i8259A_irq_real(unsigned int irq)
245 {
246 	int value;
247 	int irqmask = 1<<irq;
248 
249 	if (irq < 8) {
250 		outb(0x0B,0x20);		/* ISR register */
251 		value = inb(0x20) & irqmask;
252 		outb(0x0A,0x20);		/* back to the IRR register */
253 		return value;
254 	}
255 	outb(0x0B,0xA0);		/* ISR register */
256 	value = inb(0xA0) & (irqmask >> 8);
257 	outb(0x0A,0xA0);		/* back to the IRR register */
258 	return value;
259 }
260 
261 /*
262  * Careful! The 8259A is a fragile beast, it pretty
263  * much _has_ to be done exactly like this (mask it
264  * first, _then_ send the EOI, and the order of EOI
265  * to the two 8259s is important!
266  */
mask_and_ack_8259A(unsigned int irq)267 void mask_and_ack_8259A(unsigned int irq)
268 {
269 	unsigned int irqmask = 1 << irq;
270 	unsigned long flags;
271 
272 	spin_lock_irqsave(&i8259A_lock, flags);
273 	/*
274 	 * Lightweight spurious IRQ detection. We do not want
275 	 * to overdo spurious IRQ handling - it's usually a sign
276 	 * of hardware problems, so we only do the checks we can
277 	 * do without slowing down good hardware unnecesserily.
278 	 *
279 	 * Note that IRQ7 and IRQ15 (the two spurious IRQs
280 	 * usually resulting from the 8259A-1|2 PICs) occur
281 	 * even if the IRQ is masked in the 8259A. Thus we
282 	 * can check spurious 8259A IRQs without doing the
283 	 * quite slow i8259A_irq_real() call for every IRQ.
284 	 * This does not cover 100% of spurious interrupts,
285 	 * but should be enough to warn the user that there
286 	 * is something bad going on ...
287 	 */
288 	if (cached_irq_mask & irqmask)
289 		goto spurious_8259A_irq;
290 	cached_irq_mask |= irqmask;
291 
292 handle_real_irq:
293 	if (irq & 8) {
294 		inb(0xA1);		/* DUMMY - (do we need this?) */
295 		outb(cached_A1,0xA1);
296 		outb(0x60+(irq&7),0xA0);/* 'Specific EOI' to slave */
297 		outb(0x62,0x20);	/* 'Specific EOI' to master-IRQ2 */
298 	} else {
299 		inb(0x21);		/* DUMMY - (do we need this?) */
300 		outb(cached_21,0x21);
301 		outb(0x60+irq,0x20);	/* 'Specific EOI' to master */
302 	}
303 	spin_unlock_irqrestore(&i8259A_lock, flags);
304 	return;
305 
306 spurious_8259A_irq:
307 	/*
308 	 * this is the slow path - should happen rarely.
309 	 */
310 	if (i8259A_irq_real(irq))
311 		/*
312 		 * oops, the IRQ _is_ in service according to the
313 		 * 8259A - not spurious, go handle it.
314 		 */
315 		goto handle_real_irq;
316 
317 	{
318 		static int spurious_irq_mask;
319 		/*
320 		 * At this point we can be sure the IRQ is spurious,
321 		 * lets ACK and report it. [once per IRQ]
322 		 */
323 		if (!(spurious_irq_mask & irqmask)) {
324 			printk("spurious 8259A interrupt: IRQ%d.\n", irq);
325 			spurious_irq_mask |= irqmask;
326 		}
327 		atomic_inc(&irq_err_count);
328 		/*
329 		 * Theoretically we do not have to handle this IRQ,
330 		 * but in Linux this does not cause problems and is
331 		 * simpler for us.
332 		 */
333 		goto handle_real_irq;
334 	}
335 }
336 
init_8259A(int auto_eoi)337 void __init init_8259A(int auto_eoi)
338 {
339 	unsigned long flags;
340 
341 	spin_lock_irqsave(&i8259A_lock, flags);
342 
343 	outb(0xff, 0x21);	/* mask all of 8259A-1 */
344 	outb(0xff, 0xA1);	/* mask all of 8259A-2 */
345 
346 	/*
347 	 * outb_p - this has to work on a wide range of PC hardware.
348 	 */
349 	outb_p(0x11, 0x20);	/* ICW1: select 8259A-1 init */
350 	outb_p(0x20 + 0, 0x21);	/* ICW2: 8259A-1 IR0-7 mapped to 0x20-0x27 */
351 	outb_p(0x04, 0x21);	/* 8259A-1 (the master) has a slave on IR2 */
352 	if (auto_eoi)
353 		outb_p(0x03, 0x21);	/* master does Auto EOI */
354 	else
355 		outb_p(0x01, 0x21);	/* master expects normal EOI */
356 
357 	outb_p(0x11, 0xA0);	/* ICW1: select 8259A-2 init */
358 	outb_p(0x20 + 8, 0xA1);	/* ICW2: 8259A-2 IR0-7 mapped to 0x28-0x2f */
359 	outb_p(0x02, 0xA1);	/* 8259A-2 is a slave on master's IR2 */
360 	outb_p(0x01, 0xA1);	/* (slave's support for AEOI in flat mode
361 				    is to be investigated) */
362 
363 	if (auto_eoi)
364 		/*
365 		 * in AEOI mode we just have to mask the interrupt
366 		 * when acking.
367 		 */
368 		i8259A_irq_type.ack = disable_8259A_irq;
369 	else
370 		i8259A_irq_type.ack = mask_and_ack_8259A;
371 
372 	udelay(100);		/* wait for 8259A to initialize */
373 
374 	outb(cached_21, 0x21);	/* restore master IRQ mask */
375 	outb(cached_A1, 0xA1);	/* restore slave IRQ mask */
376 
377 	spin_unlock_irqrestore(&i8259A_lock, flags);
378 }
379 
380 /*
381  * Note that on a 486, we don't want to do a SIGFPE on an irq13
382  * as the irq is unreliable, and exception 16 works correctly
383  * (ie as explained in the intel literature). On a 386, you
384  * can't use exception 16 due to bad IBM design, so we have to
385  * rely on the less exact irq13.
386  *
387  * Careful.. Not only is IRQ13 unreliable, but it is also
388  * leads to races. IBM designers who came up with it should
389  * be shot.
390  */
391 
math_error_irq(int cpl,void * dev_id,struct pt_regs * regs)392 static void math_error_irq(int cpl, void *dev_id, struct pt_regs *regs)
393 {
394 	extern void math_error(void *);
395 	outb(0,0xF0);
396 	if (ignore_irq13 || !boot_cpu_data.hard_math)
397 		return;
398 	math_error((void *)regs->eip);
399 }
400 
401 /*
402  * New motherboards sometimes make IRQ 13 be a PCI interrupt,
403  * so allow interrupt sharing.
404  */
405 static struct irqaction irq13 = { math_error_irq, 0, 0, "fpu", NULL, NULL };
406 
407 /*
408  * IRQ2 is cascade interrupt to second interrupt controller
409  */
410 
411 #ifndef CONFIG_VISWS
412 static struct irqaction irq2 = { no_action, 0, 0, "cascade", NULL, NULL};
413 #endif
414 
415 
init_ISA_irqs(void)416 void __init init_ISA_irqs (void)
417 {
418 	int i;
419 
420 #ifdef CONFIG_X86_LOCAL_APIC
421 	init_bsp_APIC();
422 #endif
423 	init_8259A(0);
424 
425 	for (i = 0; i < NR_IRQS; i++) {
426 		irq_desc[i].status = IRQ_DISABLED;
427 		irq_desc[i].action = 0;
428 		irq_desc[i].depth = 1;
429 
430 		if (i < 16) {
431 			/*
432 			 * 16 old-style INTA-cycle interrupts:
433 			 */
434 			irq_desc[i].handler = &i8259A_irq_type;
435 		} else {
436 			/*
437 			 * 'high' PCI IRQs filled in on demand
438 			 */
439 			irq_desc[i].handler = &no_irq_type;
440 		}
441 	}
442 }
443 
init_IRQ(void)444 void __init init_IRQ(void)
445 {
446 	int i;
447 
448 #ifndef CONFIG_X86_VISWS_APIC
449 	init_ISA_irqs();
450 #else
451 	init_VISWS_APIC_irqs();
452 #endif
453 	/*
454 	 * Cover the whole vector space, no vector can escape
455 	 * us. (some of these will be overridden and become
456 	 * 'special' SMP interrupts)
457 	 */
458 	for (i = 0; i < NR_IRQS; i++) {
459 		int vector = FIRST_EXTERNAL_VECTOR + i;
460 		if (vector != SYSCALL_VECTOR)
461 			set_intr_gate(vector, interrupt[i]);
462 	}
463 
464 #ifdef CONFIG_SMP
465 	/*
466 	 * IRQ0 must be given a fixed assignment and initialized,
467 	 * because it's used before the IO-APIC is set up.
468 	 */
469 	set_intr_gate(FIRST_DEVICE_VECTOR, interrupt[0]);
470 
471 	/*
472 	 * The reschedule interrupt is a CPU-to-CPU reschedule-helper
473 	 * IPI, driven by wakeup.
474 	 */
475 	set_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
476 
477 	/* IPI for invalidation */
478 	set_intr_gate(INVALIDATE_TLB_VECTOR, invalidate_interrupt);
479 
480 	/* IPI for generic function call */
481 	set_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
482 #endif
483 
484 #ifdef CONFIG_X86_LOCAL_APIC
485 	/* self generated IPI for local APIC timer */
486 	set_intr_gate(LOCAL_TIMER_VECTOR, apic_timer_interrupt);
487 
488 	/* IPI vectors for APIC spurious and error interrupts */
489 	set_intr_gate(SPURIOUS_APIC_VECTOR, spurious_interrupt);
490 	set_intr_gate(ERROR_APIC_VECTOR, error_interrupt);
491 #endif
492 
493 	/*
494 	 * Set the clock to HZ Hz, we already have a valid
495 	 * vector now:
496 	 */
497 	outb_p(0x34,0x43);		/* binary, mode 2, LSB/MSB, ch 0 */
498 	outb_p(LATCH & 0xff , 0x40);	/* LSB */
499 	outb(LATCH >> 8 , 0x40);	/* MSB */
500 
501 #ifndef CONFIG_VISWS
502 	if (!acpi_ioapic)
503 		setup_irq(2, &irq2);
504 #endif
505 
506 	/*
507 	 * External FPU? Set up irq13 if so, for
508 	 * original braindamaged IBM FERR coupling.
509 	 */
510 	if (boot_cpu_data.hard_math && !cpu_has_fpu)
511 		setup_irq(13, &irq13);
512 }
513