1/*
2 *	setup.S		Copyright (C) 1991, 1992 Linus Torvalds
3 *
4 * setup.s is responsible for getting the system data from the BIOS,
5 * and putting them into the appropriate places in system memory.
6 * both setup.s and system has been loaded by the bootblock.
7 *
8 * This code asks the bios for memory/disk/other parameters, and
9 * puts them in a "safe" place: 0x90000-0x901FF, ie where the
10 * boot-block used to be. It is then up to the protected mode
11 * system to read them from there before the area is overwritten
12 * for buffer-blocks.
13 *
14 * Move PS/2 aux init code to psaux.c
15 * (troyer@saifr00.cfsat.Honeywell.COM) 03Oct92
16 *
17 * some changes and additional features by Christoph Niemann,
18 * March 1993/June 1994 (Christoph.Niemann@linux.org)
19 *
20 * add APM BIOS checking by Stephen Rothwell, May 1994
21 * (sfr@canb.auug.org.au)
22 *
23 * High load stuff, initrd support and position independency
24 * by Hans Lermen & Werner Almesberger, February 1996
25 * <lermen@elserv.ffm.fgan.de>, <almesber@lrc.epfl.ch>
26 *
27 * Video handling moved to video.S by Martin Mares, March 1996
28 * <mj@k332.feld.cvut.cz>
29 *
30 * Extended memory detection scheme retwiddled by orc@pell.chi.il.us (david
31 * parsons) to avoid loadlin confusion, July 1997
32 *
33 * Transcribed from Intel (as86) -> AT&T (gas) by Chris Noe, May 1999.
34 * <stiker@northlink.com>
35 *
36 * Fix to work around buggy BIOSes which dont use carry bit correctly
37 * and/or report extended memory in CX/DX for e801h memory size detection
38 * call.  As a result the kernel got wrong figures.  The int15/e801h docs
39 * from Ralf Brown interrupt list seem to indicate AX/BX should be used
40 * anyway.  So to avoid breaking many machines (presumably there was a reason
41 * to orginally use CX/DX instead of AX/BX), we do a kludge to see
42 * if CX/DX have been changed in the e801 call and if so use AX/BX .
43 * Michael Miller, April 2001 <michaelm@mjmm.org>
44 *
45 * New A20 code ported from SYSLINUX by H. Peter Anvin. AMD Elan bugfixes
46 * by Robert Schwebel, December 2001 <robert@schwebel.de>
47 *
48 * BIOS Enhanced Disk Drive support
49 * by Matt Domsch <Matt_Domsch@dell.com> October 2002
50 * conformant to T13 Committee www.t13.org
51 *   projects 1572D, 1484D, 1386D, 1226DT
52 * disk signature read by Matt Domsch <Matt_Domsch@dell.com>
53 *	and Andrew Wilks <Andrew_Wilks@dell.com> September 2003
54 */
55
56#include <linux/config.h>
57#include <asm/segment.h>
58#include <linux/version.h>
59#include <linux/compile.h>
60#include <asm/boot.h>
61#include <asm/e820.h>
62#include <asm/edd.h>
63#include <asm/page.h>
64
65/* Signature words to ensure LILO loaded us right */
66#define SIG1	0xAA55
67#define SIG2	0x5A5A
68
69INITSEG  = DEF_INITSEG		# 0x9000, we move boot here, out of the way
70SYSSEG   = DEF_SYSSEG		# 0x1000, system loaded at 0x10000 (65536).
71SETUPSEG = DEF_SETUPSEG		# 0x9020, this is the current segment
72				# ... and the former contents of CS
73
74DELTA_INITSEG = SETUPSEG - INITSEG	# 0x0020
75
76.code16
77.globl begtext, begdata, begbss, endtext, enddata, endbss
78
79.text
80begtext:
81.data
82begdata:
83.bss
84begbss:
85.text
86
87start:
88	jmp	trampoline
89
90# This is the setup header, and it must start at %cs:2 (old 0x9020:2)
91
92		.ascii	"HdrS"		# header signature
93		.word	0x0203		# header version number (>= 0x0105)
94					# or else old loadlin-1.5 will fail)
95realmode_swtch:	.word	0, 0		# default_switch, SETUPSEG
96start_sys_seg:	.word	SYSSEG
97		.word	kernel_version	# pointing to kernel version string
98					# above section of header is compatible
99					# with loadlin-1.5 (header v1.5). Don't
100					# change it.
101
102type_of_loader:	.byte	0		# = 0, old one (LILO, Loadlin,
103					#      Bootlin, SYSLX, bootsect...)
104					# See Documentation/i386/boot.txt for
105					# assigned ids
106
107# flags, unused bits must be zero (RFU) bit within loadflags
108loadflags:
109LOADED_HIGH	= 1			# If set, the kernel is loaded high
110CAN_USE_HEAP	= 0x80			# If set, the loader also has set
111					# heap_end_ptr to tell how much
112					# space behind setup.S can be used for
113					# heap purposes.
114					# Only the loader knows what is free
115#ifndef __BIG_KERNEL__
116		.byte	0
117#else
118		.byte	LOADED_HIGH
119#endif
120
121setup_move_size: .word  0x8000		# size to move, when setup is not
122					# loaded at 0x90000. We will move setup
123					# to 0x90000 then just before jumping
124					# into the kernel. However, only the
125					# loader knows how much data behind
126					# us also needs to be loaded.
127
128code32_start:				# here loaders can put a different
129					# start address for 32-bit code.
130#ifndef __BIG_KERNEL__
131		.long	0x1000		#   0x1000 = default for zImage
132#else
133		.long	0x100000	# 0x100000 = default for big kernel
134#endif
135
136ramdisk_image:	.long	0		# address of loaded ramdisk image
137					# Here the loader puts the 32-bit
138					# address where it loaded the image.
139					# This only will be read by the kernel.
140
141ramdisk_size:	.long	0		# its size in bytes
142
143bootsect_kludge:
144		.word  bootsect_helper, SETUPSEG
145
146heap_end_ptr:	.word	modelist+1024	# (Header version 0x0201 or later)
147					# space from here (exclusive) down to
148					# end of setup code can be used by setup
149					# for local heap purposes.
150
151pad1:		.word	0
152cmd_line_ptr:	.long 0			# (Header version 0x0202 or later)
153					# If nonzero, a 32-bit pointer
154					# to the kernel command line.
155					# The command line should be
156					# located between the start of
157					# setup and the end of low
158					# memory (0xa0000), or it may
159					# get overwritten before it
160					# gets read.  If this field is
161					# used, there is no longer
162					# anything magical about the
163					# 0x90000 segment; the setup
164					# can be located anywhere in
165					# low memory 0x10000 or higher.
166
167ramdisk_max:	.long __MAXMEM-1	# (Header version 0x0203 or later)
168					# The highest safe address for
169					# the contents of an initrd
170
171trampoline:	call	start_of_setup
172		.space	1024
173# End of setup header #####################################################
174
175start_of_setup:
176# Bootlin depends on this being done early
177	movw	$0x01500, %ax
178	movb	$0x81, %dl
179	int	$0x13
180
181#ifdef SAFE_RESET_DISK_CONTROLLER
182# Reset the disk controller.
183	movw	$0x0000, %ax
184	movb	$0x80, %dl
185	int	$0x13
186#endif
187
188# Set %ds = %cs, we know that SETUPSEG = %cs at this point
189	movw	%cs, %ax		# aka SETUPSEG
190	movw	%ax, %ds
191# Check signature at end of setup
192	cmpw	$SIG1, setup_sig1
193	jne	bad_sig
194
195	cmpw	$SIG2, setup_sig2
196	jne	bad_sig
197
198	jmp	good_sig1
199
200# Routine to print asciiz string at ds:si
201prtstr:
202	lodsb
203	andb	%al, %al
204	jz	fin
205
206	call	prtchr
207	jmp	prtstr
208
209fin:	ret
210
211# Space printing
212prtsp2:	call	prtspc		# Print double space
213prtspc:	movb	$0x20, %al	# Print single space (note: fall-thru)
214
215# Part of above routine, this one just prints ascii al
216prtchr:	pushw	%ax
217	pushw	%cx
218	xorb	%bh, %bh
219	movw	$0x01, %cx
220	movb	$0x0e, %ah
221	int	$0x10
222	popw	%cx
223	popw	%ax
224	ret
225
226beep:	movb	$0x07, %al
227	jmp	prtchr
228
229no_sig_mess: .string	"No setup signature found ..."
230
231good_sig1:
232	jmp	good_sig
233
234# We now have to find the rest of the setup code/data
235bad_sig:
236	movw	%cs, %ax			# SETUPSEG
237	subw	$DELTA_INITSEG, %ax		# INITSEG
238	movw	%ax, %ds
239	xorb	%bh, %bh
240	movb	(497), %bl			# get setup sect from bootsect
241	subw	$4, %bx				# LILO loads 4 sectors of setup
242	shlw	$8, %bx				# convert to words (1sect=2^8 words)
243	movw	%bx, %cx
244	shrw	$3, %bx				# convert to segment
245	addw	$SYSSEG, %bx
246	movw	%bx, %cs:start_sys_seg
247# Move rest of setup code/data to here
248	movw	$2048, %di			# four sectors loaded by LILO
249	subw	%si, %si
250	pushw	%cs
251	popw	%es
252	movw	$SYSSEG, %ax
253	movw	%ax, %ds
254	rep
255	movsw
256	movw	%cs, %ax			# aka SETUPSEG
257	movw	%ax, %ds
258	cmpw	$SIG1, setup_sig1
259	jne	no_sig
260
261	cmpw	$SIG2, setup_sig2
262	jne	no_sig
263
264	jmp	good_sig
265
266no_sig:
267	lea	no_sig_mess, %si
268	call	prtstr
269
270no_sig_loop:
271	hlt
272	jmp	no_sig_loop
273
274good_sig:
275	movw	%cs, %ax			# aka SETUPSEG
276	subw	$DELTA_INITSEG, %ax 		# aka INITSEG
277	movw	%ax, %ds
278# Check if an old loader tries to load a big-kernel
279	testb	$LOADED_HIGH, %cs:loadflags	# Do we have a big kernel?
280	jz	loader_ok			# No, no danger for old loaders.
281
282	cmpb	$0, %cs:type_of_loader 		# Do we have a loader that
283						# can deal with us?
284	jnz	loader_ok			# Yes, continue.
285
286	pushw	%cs				# No, we have an old loader,
287	popw	%ds				# die.
288	lea	loader_panic_mess, %si
289	call	prtstr
290
291	jmp	no_sig_loop
292
293loader_panic_mess: .string "Wrong loader, giving up..."
294
295loader_ok:
296# Get memory size (extended mem, kB)
297
298	xorl	%eax, %eax
299	movl	%eax, (0x1e0)
300#ifndef STANDARD_MEMORY_BIOS_CALL
301	movb	%al, (E820NR)
302# Try three different memory detection schemes.  First, try
303# e820h, which lets us assemble a memory map, then try e801h,
304# which returns a 32-bit memory size, and finally 88h, which
305# returns 0-64m
306
307# method E820H:
308# the memory map from hell.  e820h returns memory classified into
309# a whole bunch of different types, and allows memory holes and
310# everything.  We scan through this memory map and build a list
311# of the first 32 memory areas, which we return at [E820MAP].
312# This is documented at http://www.teleport.com/~acpi/acpihtml/topic245.htm
313
314#define SMAP  0x534d4150
315
316meme820:
317	xorl	%ebx, %ebx			# continuation counter
318	movw	$E820MAP, %di			# point into the whitelist
319						# so we can have the bios
320						# directly write into it.
321
322jmpe820:
323	movl	$0x0000e820, %eax		# e820, upper word zeroed
324	movl	$SMAP, %edx			# ascii 'SMAP'
325	movl	$20, %ecx			# size of the e820rec
326	pushw	%ds				# data record.
327	popw	%es
328	int	$0x15				# make the call
329	jc	bail820				# fall to e801 if it fails
330
331	cmpl	$SMAP, %eax			# check the return is `SMAP'
332	jne	bail820				# fall to e801 if it fails
333
334#	cmpl	$1, 16(%di)			# is this usable memory?
335#	jne	again820
336
337	# If this is usable memory, we save it by simply advancing %di by
338	# sizeof(e820rec).
339	#
340good820:
341	movb	(E820NR), %al			# up to 32 entries
342	cmpb	$E820MAX, %al
343	jnl	bail820
344
345	incb	(E820NR)
346	movw	%di, %ax
347	addw	$20, %ax
348	movw	%ax, %di
349again820:
350	cmpl	$0, %ebx			# check to see if
351	jne	jmpe820				# %ebx is set to EOF
352bail820:
353
354
355# method E801H:
356# memory size is in 1k chunksizes, to avoid confusing loadlin.
357# we store the 0xe801 memory size in a completely different place,
358# because it will most likely be longer than 16 bits.
359# (use 1e0 because that's what Larry Augustine uses in his
360# alternative new memory detection scheme, and it's sensible
361# to write everything into the same place.)
362
363meme801:
364	stc					# fix to work around buggy
365	xorw	%cx,%cx				# BIOSes which dont clear/set
366	xorw	%dx,%dx				# carry on pass/error of
367						# e801h memory size call
368						# or merely pass cx,dx though
369						# without changing them.
370	movw	$0xe801, %ax
371	int	$0x15
372	jc	mem88
373
374	cmpw	$0x0, %cx			# Kludge to handle BIOSes
375	jne	e801usecxdx			# which report their extended
376	cmpw	$0x0, %dx			# memory in AX/BX rather than
377	jne	e801usecxdx			# CX/DX.  The spec I have read
378	movw	%ax, %cx			# seems to indicate AX/BX
379	movw	%bx, %dx			# are more reasonable anyway...
380
381e801usecxdx:
382	andl	$0xffff, %edx			# clear sign extend
383	shll	$6, %edx			# and go from 64k to 1k chunks
384	movl	%edx, (0x1e0)			# store extended memory size
385	andl	$0xffff, %ecx			# clear sign extend
386 	addl	%ecx, (0x1e0)			# and add lower memory into
387						# total size.
388
389# Ye Olde Traditional Methode.  Returns the memory size (up to 16mb or
390# 64mb, depending on the bios) in ax.
391mem88:
392
393#endif
394	movb	$0x88, %ah
395	int	$0x15
396	movw	%ax, (2)
397
398# Set the keyboard repeat rate to the max
399	movw	$0x0305, %ax
400	xorw	%bx, %bx
401	int	$0x16
402
403# Check for video adapter and its parameters and allow the
404# user to browse video modes.
405	call	video				# NOTE: we need %ds pointing
406						# to bootsector
407
408# Get hd0 data...
409	xorw	%ax, %ax
410	movw	%ax, %ds
411	ldsw	(4 * 0x41), %si
412	movw	%cs, %ax			# aka SETUPSEG
413	subw	$DELTA_INITSEG, %ax		# aka INITSEG
414	pushw	%ax
415	movw	%ax, %es
416	movw	$0x0080, %di
417	movw	$0x10, %cx
418	pushw	%cx
419	cld
420	rep
421 	movsb
422# Get hd1 data...
423	xorw	%ax, %ax
424	movw	%ax, %ds
425	ldsw	(4 * 0x46), %si
426	popw	%cx
427	popw	%es
428	movw	$0x0090, %di
429	rep
430	movsb
431# Check that there IS a hd1 :-)
432	movw	$0x01500, %ax
433	movb	$0x81, %dl
434	int	$0x13
435	jc	no_disk1
436
437	cmpb	$3, %ah
438	je	is_disk1
439
440no_disk1:
441	movw	%cs, %ax			# aka SETUPSEG
442	subw	$DELTA_INITSEG, %ax 		# aka INITSEG
443	movw	%ax, %es
444	movw	$0x0090, %di
445	movw	$0x10, %cx
446	xorw	%ax, %ax
447	cld
448	rep
449	stosb
450is_disk1:
451# check for Micro Channel (MCA) bus
452	movw	%cs, %ax			# aka SETUPSEG
453	subw	$DELTA_INITSEG, %ax		# aka INITSEG
454	movw	%ax, %ds
455	xorw	%ax, %ax
456	movw	%ax, (0xa0)			# set table length to 0
457	movb	$0xc0, %ah
458	stc
459	int	$0x15				# moves feature table to es:bx
460	jc	no_mca
461
462	pushw	%ds
463	movw	%es, %ax
464	movw	%ax, %ds
465	movw	%cs, %ax			# aka SETUPSEG
466	subw	$DELTA_INITSEG, %ax		# aka INITSEG
467	movw	%ax, %es
468	movw	%bx, %si
469	movw	$0xa0, %di
470	movw	(%si), %cx
471	addw	$2, %cx				# table length is a short
472	cmpw	$0x10, %cx
473	jc	sysdesc_ok
474
475	movw	$0x10, %cx			# we keep only first 16 bytes
476sysdesc_ok:
477	rep
478	movsb
479	popw	%ds
480no_mca:
481# Check for PS/2 pointing device
482	movw	%cs, %ax			# aka SETUPSEG
483	subw	$DELTA_INITSEG, %ax		# aka INITSEG
484	movw	%ax, %ds
485	movw	$0, (0x1ff)			# default is no pointing device
486	int	$0x11				# int 0x11: equipment list
487	testb	$0x04, %al			# check if mouse installed
488	jz	no_psmouse
489
490	movw	$0xAA, (0x1ff)			# device present
491no_psmouse:
492
493#if defined(CONFIG_APM) || defined(CONFIG_APM_MODULE)
494# Then check for an APM BIOS...
495						# %ds points to the bootsector
496	movw	$0, 0x40			# version = 0 means no APM BIOS
497	movw	$0x05300, %ax			# APM BIOS installation check
498	xorw	%bx, %bx
499	int	$0x15
500	jc	done_apm_bios			# Nope, no APM BIOS
501
502	cmpw	$0x0504d, %bx			# Check for "PM" signature
503	jne	done_apm_bios			# No signature, no APM BIOS
504
505	andw	$0x02, %cx			# Is 32 bit supported?
506	je	done_apm_bios			# No 32-bit, no (good) APM BIOS
507
508	movw	$0x05304, %ax			# Disconnect first just in case
509	xorw	%bx, %bx
510	int	$0x15				# ignore return code
511	movw	$0x05303, %ax			# 32 bit connect
512	xorl	%ebx, %ebx
513	xorw	%cx, %cx			# paranoia :-)
514	xorw	%dx, %dx			#   ...
515	xorl	%esi, %esi			#   ...
516	xorw	%di, %di			#   ...
517	int	$0x15
518	jc	no_32_apm_bios			# Ack, error.
519
520	movw	%ax,  (66)			# BIOS code segment
521	movl	%ebx, (68)			# BIOS entry point offset
522	movw	%cx,  (72)			# BIOS 16 bit code segment
523	movw	%dx,  (74)			# BIOS data segment
524	movl	%esi, (78)			# BIOS code segment lengths
525	movw	%di,  (82)			# BIOS data segment length
526# Redo the installation check as the 32 bit connect
527# modifies the flags returned on some BIOSs
528	movw	$0x05300, %ax			# APM BIOS installation check
529	xorw	%bx, %bx
530	xorw	%cx, %cx			# paranoia
531	int	$0x15
532	jc	apm_disconnect			# error -> shouldn't happen
533
534	cmpw	$0x0504d, %bx			# check for "PM" signature
535	jne	apm_disconnect			# no sig -> shouldn't happen
536
537	movw	%ax, (64)			# record the APM BIOS version
538	movw	%cx, (76)			# and flags
539	jmp	done_apm_bios
540
541apm_disconnect:					# Tidy up
542	movw	$0x05304, %ax			# Disconnect
543	xorw	%bx, %bx
544	int	$0x15				# ignore return code
545
546	jmp	done_apm_bios
547
548no_32_apm_bios:
549	andw	$0xfffd, (76)			# remove 32 bit support bit
550done_apm_bios:
551#endif
552
553#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
554# Read the first sector of device 80h and store the 4-byte signature
555	movl	$0xFFFFFFFF, %eax
556	movl	%eax, (DISK80_SIG_BUFFER)	# assume failure
557	movb	$READ_SECTORS, %ah
558	movb	$1, %al				# read 1 sector
559	movb	$0x80, %dl			# from device 80
560	movb	$0, %dh				# at head 0
561	movw	$1, %cx				# cylinder 0, sector 0
562	pushw	%es
563	pushw	%ds
564	popw	%es
565	movw	$EDDBUF, %bx
566	int	$0x13
567	jc	disk_sig_done
568	movl	(EDDBUF+MBR_SIG_OFFSET), %eax
569	movl	%eax, (DISK80_SIG_BUFFER)	# store success
570disk_sig_done:
571	popw	%es
572
573# Do the BIOS Enhanced Disk Drive calls
574# This consists of two calls:
575#    int 13h ah=41h "Check Extensions Present"
576#    int 13h ah=48h "Get Device Parameters"
577#
578# A buffer of size EDDMAXNR*(EDDEXTSIZE+EDDPARMSIZE) is reserved for our use
579# in the empty_zero_page at EDDBUF.  The first four bytes of which are
580# used to store the device number, interface support map and version
581# results from fn41.  The following 74 bytes are used to store
582# the results from fn48.  Starting from device 80h, fn41, then fn48
583# are called and their results stored in EDDBUF+n*(EDDEXTSIZE+EDDPARMIZE).
584# Then the pointer is incremented to store the data for the next call.
585# This repeats until either a device doesn't exist, or until EDDMAXNR
586# devices have been stored.
587# The one tricky part is that ds:si always points four bytes into
588# the structure, and the fn41 results are stored at offsets
589# from there.  This removes the need to increment the pointer for
590# every store, and leaves it ready for the fn48 call.
591# A second one-byte buffer, EDDNR, in the empty_zero_page stores
592# the number of BIOS devices which exist, up to EDDMAXNR.
593# In setup.c, copy_edd() stores both empty_zero_page buffers away
594# for later use, as they would get overwritten otherwise.
595# This code is sensitive to the size of the structs in edd.h
596edd_start:
597						# %ds points to the bootsector
598       						# result buffer for fn48
599    	movw	$EDDBUF+EDDEXTSIZE, %si		# in ds:si, fn41 results
600						# kept just before that
601	movb	$0, (EDDNR)			# zero value at EDDNR
602    	movb	$0x80, %dl			# BIOS device 0x80
603
604edd_check_ext:
605	movb	$CHECKEXTENSIONSPRESENT, %ah    # Function 41
606	movw	$EDDMAGIC1, %bx			# magic
607	int	$0x13				# make the call
608	jc	edd_done			# no more BIOS devices
609
610    	cmpw	$EDDMAGIC2, %bx			# is magic right?
611	jne	edd_next			# nope, next...
612
613    	movb	%dl, %ds:-4(%si)		# store device number
614    	movb	%ah, %ds:-3(%si)		# store version
615	movw	%cx, %ds:-2(%si)		# store extensions
616	incb	(EDDNR)				# note that we stored something
617
618edd_get_device_params:
619	movw	$EDDPARMSIZE, %ds:(%si)		# put size
620    	movb	$GETDEVICEPARAMETERS, %ah	# Function 48
621	int	$0x13				# make the call
622						# Don't check for fail return
623						# it doesn't matter.
624	movw	%si, %ax			# increment si
625	addw	$EDDPARMSIZE+EDDEXTSIZE, %ax
626	movw	%ax, %si
627
628edd_next:
629        incb	%dl				# increment to next device
630       	cmpb	$EDDMAXNR, (EDDNR) 		# Out of space?
631	jb	edd_check_ext			# keep looping
632
633edd_done:
634#endif
635
636# Now we want to move to protected mode ...
637	cmpw	$0, %cs:realmode_swtch
638	jz	rmodeswtch_normal
639
640	lcall	%cs:realmode_swtch
641
642	jmp	rmodeswtch_end
643
644rmodeswtch_normal:
645        pushw	%cs
646	call	default_switch
647
648rmodeswtch_end:
649# we get the code32 start address and modify the below 'jmpi'
650# (loader may have changed it)
651	movl	%cs:code32_start, %eax
652	movl	%eax, %cs:code32
653
654# Now we move the system to its rightful place ... but we check if we have a
655# big-kernel. In that case we *must* not move it ...
656	testb	$LOADED_HIGH, %cs:loadflags
657	jz	do_move0			# .. then we have a normal low
658						# loaded zImage
659						# .. or else we have a high
660						# loaded bzImage
661	jmp	end_move			# ... and we skip moving
662
663do_move0:
664	movw	$0x100, %ax			# start of destination segment
665	movw	%cs, %bp			# aka SETUPSEG
666	subw	$DELTA_INITSEG, %bp		# aka INITSEG
667	movw	%cs:start_sys_seg, %bx		# start of source segment
668	cld
669do_move:
670	movw	%ax, %es			# destination segment
671	incb	%ah				# instead of add ax,#0x100
672	movw	%bx, %ds			# source segment
673	addw	$0x100, %bx
674	subw	%di, %di
675	subw	%si, %si
676	movw 	$0x800, %cx
677	rep
678	movsw
679	cmpw	%bp, %bx			# assume start_sys_seg > 0x200,
680						# so we will perhaps read one
681						# page more than needed, but
682						# never overwrite INITSEG
683						# because destination is a
684						# minimum one page below source
685	jb	do_move
686
687end_move:
688# then we load the segment descriptors
689	movw	%cs, %ax			# aka SETUPSEG
690	movw	%ax, %ds
691
692# Check whether we need to be downward compatible with version <=201
693	cmpl	$0, cmd_line_ptr
694	jne	end_move_self		# loader uses version >=202 features
695	cmpb	$0x20, type_of_loader
696	je	end_move_self		# bootsect loader, we know of it
697
698# Boot loader doesnt support boot protocol version 2.02.
699# If we have our code not at 0x90000, we need to move it there now.
700# We also then need to move the params behind it (commandline)
701# Because we would overwrite the code on the current IP, we move
702# it in two steps, jumping high after the first one.
703	movw	%cs, %ax
704	cmpw	$SETUPSEG, %ax
705	je	end_move_self
706
707	cli					# make sure we really have
708						# interrupts disabled !
709						# because after this the stack
710						# should not be used
711	subw	$DELTA_INITSEG, %ax		# aka INITSEG
712	movw	%ss, %dx
713	cmpw	%ax, %dx
714	jb	move_self_1
715
716	addw	$INITSEG, %dx
717	subw	%ax, %dx			# this will go into %ss after
718						# the move
719move_self_1:
720	movw	%ax, %ds
721	movw	$INITSEG, %ax			# real INITSEG
722	movw	%ax, %es
723	movw	%cs:setup_move_size, %cx
724	std					# we have to move up, so we use
725						# direction down because the
726						# areas may overlap
727	movw	%cx, %di
728	decw	%di
729	movw	%di, %si
730	subw	$move_self_here+0x200, %cx
731	rep
732	movsb
733	ljmp	$SETUPSEG, $move_self_here
734
735move_self_here:
736	movw	$move_self_here+0x200, %cx
737	rep
738	movsb
739	movw	$SETUPSEG, %ax
740	movw	%ax, %ds
741	movw	%dx, %ss
742end_move_self:					# now we are at the right place
743
744#
745# Enable A20.  This is at the very best an annoying procedure.
746# A20 code ported from SYSLINUX 1.52-1.63 by H. Peter Anvin.
747# AMD Elan bug fix by Robert Schwebel.
748#
749
750#if defined(CONFIG_MELAN)
751	movb $0x02, %al			# alternate A20 gate
752	outb %al, $0x92			# this works on SC410/SC520
753a20_elan_wait:
754        call a20_test
755        jz a20_elan_wait
756	jmp a20_done
757#endif
758
759
760A20_TEST_LOOPS		=  32		# Iterations per wait
761A20_ENABLE_LOOPS	= 255		# Total loops to try
762
763
764a20_try_loop:
765
766	# First, see if we are on a system with no A20 gate.
767a20_none:
768	call	a20_test
769	jnz	a20_done
770
771	# Next, try the BIOS (INT 0x15, AX=0x2401)
772a20_bios:
773	movw	$0x2401, %ax
774	pushfl					# Be paranoid about flags
775	int	$0x15
776	popfl
777
778	call	a20_test
779	jnz	a20_done
780
781	# Try enabling A20 through the keyboard controller
782a20_kbc:
783	call	empty_8042
784
785	call	a20_test			# Just in case the BIOS worked
786	jnz	a20_done			# but had a delayed reaction.
787
788	movb	$0xD1, %al			# command write
789	outb	%al, $0x64
790	call	empty_8042
791
792	movb	$0xDF, %al			# A20 on
793	outb	%al, $0x60
794	call	empty_8042
795
796	# Wait until a20 really *is* enabled; it can take a fair amount of
797	# time on certain systems; Toshiba Tecras are known to have this
798	# problem.
799a20_kbc_wait:
800	xorw	%cx, %cx
801a20_kbc_wait_loop:
802	call	a20_test
803	jnz	a20_done
804	loop	a20_kbc_wait_loop
805
806	# Final attempt: use "configuration port A"
807a20_fast:
808	inb	$0x92, %al			# Configuration Port A
809	orb	$0x02, %al			# "fast A20" version
810	andb	$0xFE, %al			# don't accidentally reset
811	outb	%al, $0x92
812
813	# Wait for configuration port A to take effect
814a20_fast_wait:
815	xorw	%cx, %cx
816a20_fast_wait_loop:
817	call	a20_test
818	jnz	a20_done
819	loop	a20_fast_wait_loop
820
821	# A20 is still not responding.  Try frobbing it again.
822	#
823	decb	(a20_tries)
824	jnz	a20_try_loop
825
826	movw	$a20_err_msg, %si
827	call	prtstr
828
829a20_die:
830	hlt
831	jmp	a20_die
832
833a20_tries:
834	.byte	A20_ENABLE_LOOPS
835
836a20_err_msg:
837	.ascii	"linux: fatal error: A20 gate not responding!"
838	.byte	13, 10, 0
839
840	# If we get here, all is good
841a20_done:
842
843# set up gdt and idt
844	lidt	idt_48				# load idt with 0,0
845	xorl	%eax, %eax			# Compute gdt_base
846	movw	%ds, %ax			# (Convert %ds:gdt to a linear ptr)
847	shll	$4, %eax
848	addl	$gdt, %eax
849	movl	%eax, (gdt_48+2)
850	lgdt	gdt_48				# load gdt with whatever is
851						# appropriate
852
853# make sure any possible coprocessor is properly reset..
854	xorw	%ax, %ax
855	outb	%al, $0xf0
856	call	delay
857
858	outb	%al, $0xf1
859	call	delay
860
861# well, that went ok, I hope. Now we mask all interrupts - the rest
862# is done in init_IRQ().
863	movb	$0xFF, %al			# mask all interrupts for now
864	outb	%al, $0xA1
865	call	delay
866
867	movb	$0xFB, %al			# mask all irq's but irq2 which
868	outb	%al, $0x21			# is cascaded
869
870# Well, that certainly wasn't fun :-(. Hopefully it works, and we don't
871# need no steenking BIOS anyway (except for the initial loading :-).
872# The BIOS-routine wants lots of unnecessary data, and it's less
873# "interesting" anyway. This is how REAL programmers do it.
874#
875# Well, now's the time to actually move into protected mode. To make
876# things as simple as possible, we do no register set-up or anything,
877# we let the gnu-compiled 32-bit programs do that. We just jump to
878# absolute address 0x1000 (or the loader supplied one),
879# in 32-bit protected mode.
880#
881# Note that the short jump isn't strictly needed, although there are
882# reasons why it might be a good idea. It won't hurt in any case.
883	movw	$1, %ax				# protected mode (PE) bit
884	lmsw	%ax				# This is it!
885	jmp	flush_instr
886
887flush_instr:
888	xorw	%bx, %bx			# Flag to indicate a boot
889	xorl	%esi, %esi			# Pointer to real-mode code
890	movw	%cs, %si
891	subw	$DELTA_INITSEG, %si
892	shll	$4, %esi			# Convert to 32-bit pointer
893# NOTE: For high loaded big kernels we need a
894#	jmpi    0x100000,__KERNEL_CS
895#
896#	but we yet haven't reloaded the CS register, so the default size
897#	of the target offset still is 16 bit.
898#       However, using an operand prefix (0x66), the CPU will properly
899#	take our 48 bit far pointer. (INTeL 80386 Programmer's Reference
900#	Manual, Mixing 16-bit and 32-bit code, page 16-6)
901
902	.byte 0x66, 0xea			# prefix + jmpi-opcode
903code32:	.long	0x1000				# will be set to 0x100000
904						# for big kernels
905	.word	__KERNEL_CS
906
907# Here's a bunch of information about your current kernel..
908kernel_version:	.ascii	UTS_RELEASE
909		.ascii	" ("
910		.ascii	LINUX_COMPILE_BY
911		.ascii	"@"
912		.ascii	LINUX_COMPILE_HOST
913		.ascii	") "
914		.ascii	UTS_VERSION
915		.byte	0
916
917# This is the default real mode switch routine.
918# to be called just before protected mode transition
919default_switch:
920	cli					# no interrupts allowed !
921	movb	$0x80, %al			# disable NMI for bootup
922						# sequence
923	outb	%al, $0x70
924	lret
925
926# This routine only gets called, if we get loaded by the simple
927# bootsect loader _and_ have a bzImage to load.
928# Because there is no place left in the 512 bytes of the boot sector,
929# we must emigrate to code space here.
930bootsect_helper:
931	cmpw	$0, %cs:bootsect_es
932	jnz	bootsect_second
933
934	movb	$0x20, %cs:type_of_loader
935	movw	%es, %ax
936	shrw	$4, %ax
937	movb	%ah, %cs:bootsect_src_base+2
938	movw	%es, %ax
939	movw	%ax, %cs:bootsect_es
940	subw	$SYSSEG, %ax
941	lret					# nothing else to do for now
942
943bootsect_second:
944	pushw	%cx
945	pushw	%si
946	pushw	%bx
947	testw	%bx, %bx			# 64K full?
948	jne	bootsect_ex
949
950	movw	$0x8000, %cx			# full 64K, INT15 moves words
951	pushw	%cs
952	popw	%es
953	movw	$bootsect_gdt, %si
954	movw	$0x8700, %ax
955	int	$0x15
956	jc	bootsect_panic			# this, if INT15 fails
957
958	movw	%cs:bootsect_es, %es		# we reset %es to always point
959	incb	%cs:bootsect_dst_base+2		# to 0x10000
960bootsect_ex:
961	movb	%cs:bootsect_dst_base+2, %ah
962	shlb	$4, %ah				# we now have the number of
963						# moved frames in %ax
964	xorb	%al, %al
965	popw	%bx
966	popw	%si
967	popw	%cx
968	lret
969
970bootsect_gdt:
971	.word	0, 0, 0, 0
972	.word	0, 0, 0, 0
973
974bootsect_src:
975	.word	0xffff
976
977bootsect_src_base:
978	.byte	0x00, 0x00, 0x01		# base = 0x010000
979	.byte	0x93				# typbyte
980	.word	0				# limit16,base24 =0
981
982bootsect_dst:
983	.word	0xffff
984
985bootsect_dst_base:
986	.byte	0x00, 0x00, 0x10		# base = 0x100000
987	.byte	0x93				# typbyte
988	.word	0				# limit16,base24 =0
989	.word	0, 0, 0, 0			# BIOS CS
990	.word	0, 0, 0, 0			# BIOS DS
991
992bootsect_es:
993	.word	0
994
995bootsect_panic:
996	pushw	%cs
997	popw	%ds
998	cld
999	leaw	bootsect_panic_mess, %si
1000	call	prtstr
1001
1002bootsect_panic_loop:
1003	jmp	bootsect_panic_loop
1004
1005bootsect_panic_mess:
1006	.string	"INT15 refuses to access high mem, giving up."
1007
1008
1009# This routine tests whether or not A20 is enabled.  If so, it
1010# exits with zf = 0.
1011#
1012# The memory address used, 0x200, is the int $0x80 vector, which
1013# should be safe.
1014
1015A20_TEST_ADDR = 4*0x80
1016
1017a20_test:
1018	pushw	%cx
1019	pushw	%ax
1020	xorw	%cx, %cx
1021	movw	%cx, %fs			# Low memory
1022	decw	%cx
1023	movw	%cx, %gs			# High memory area
1024	movw	$A20_TEST_LOOPS, %cx
1025	movw	%fs:(A20_TEST_ADDR), %ax
1026	pushw	%ax
1027a20_test_wait:
1028	incw	%ax
1029	movw	%ax, %fs:(A20_TEST_ADDR)
1030	call	delay				# Serialize and make delay constant
1031	cmpw	%gs:(A20_TEST_ADDR+0x10), %ax
1032	loope	a20_test_wait
1033
1034	popw	%fs:(A20_TEST_ADDR)
1035	popw	%ax
1036	popw	%cx
1037	ret
1038
1039# This routine checks that the keyboard command queue is empty
1040# (after emptying the output buffers)
1041#
1042# Some machines have delusions that the keyboard buffer is always full
1043# with no keyboard attached...
1044#
1045# If there is no keyboard controller, we will usually get 0xff
1046# to all the reads.  With each IO taking a microsecond and
1047# a timeout of 100,000 iterations, this can take about half a
1048# second ("delay" == outb to port 0x80). That should be ok,
1049# and should also be plenty of time for a real keyboard controller
1050# to empty.
1051#
1052
1053empty_8042:
1054	pushl	%ecx
1055	movl	$100000, %ecx
1056
1057empty_8042_loop:
1058	decl	%ecx
1059	jz	empty_8042_end_loop
1060
1061	call	delay
1062
1063	inb	$0x64, %al			# 8042 status port
1064	testb	$1, %al				# output buffer?
1065	jz	no_output
1066
1067	call	delay
1068	inb	$0x60, %al			# read it
1069	jmp	empty_8042_loop
1070
1071no_output:
1072	testb	$2, %al				# is input buffer full?
1073	jnz	empty_8042_loop			# yes - loop
1074empty_8042_end_loop:
1075	popl	%ecx
1076	ret
1077
1078# Read the cmos clock. Return the seconds in al
1079gettime:
1080	pushw	%cx
1081	movb	$0x02, %ah
1082	int	$0x1a
1083	movb	%dh, %al			# %dh contains the seconds
1084	andb	$0x0f, %al
1085	movb	%dh, %ah
1086	movb	$0x04, %cl
1087	shrb	%cl, %ah
1088	aad
1089	popw	%cx
1090	ret
1091
1092# Delay is needed after doing I/O
1093delay:
1094	outb	%al,$0x80
1095	ret
1096
1097# Descriptor tables
1098gdt:
1099	.word	0, 0, 0, 0			# dummy
1100	.word	0, 0, 0, 0			# unused
1101
1102	.word	0xFFFF				# 4Gb - (0x100000*0x1000 = 4Gb)
1103	.word	0				# base address = 0
1104	.word	0x9A00				# code read/exec
1105	.word	0x00CF				# granularity = 4096, 386
1106						#  (+5th nibble of limit)
1107
1108	.word	0xFFFF				# 4Gb - (0x100000*0x1000 = 4Gb)
1109	.word	0				# base address = 0
1110	.word	0x9200				# data read/write
1111	.word	0x00CF				# granularity = 4096, 386
1112						#  (+5th nibble of limit)
1113idt_48:
1114	.word	0				# idt limit = 0
1115	.word	0, 0				# idt base = 0L
1116gdt_48:
1117	.word	0x8000				# gdt limit=2048,
1118						#  256 GDT entries
1119
1120	.word	0, 0				# gdt base (filled in later)
1121
1122# Include video setup & detection code
1123
1124#include "video.S"
1125
1126# Setup signature -- must be last
1127setup_sig1:	.word	SIG1
1128setup_sig2:	.word	SIG2
1129
1130# After this point, there is some free space which is used by the video mode
1131# handling code to store the temporary mode table (not used by the kernel).
1132
1133modelist:
1134
1135.text
1136endtext:
1137.data
1138enddata:
1139.bss
1140endbss:
1141