1 /*!**************************************************************************
2 *!
3 *! FILE NAME : kgdb.c
4 *!
5 *! DESCRIPTION: Implementation of the gdb stub with respect to ETRAX 100.
6 *! It is a mix of arch/m68k/kernel/kgdb.c and cris_stub.c.
7 *!
8 *!---------------------------------------------------------------------------
9 *! HISTORY
10 *!
11 *! DATE NAME CHANGES
12 *! ---- ---- -------
13 *! Apr 26 1999 Hendrik Ruijter Initial version.
14 *! May 6 1999 Hendrik Ruijter Removed call to strlen in libc and removed
15 *! struct assignment as it generates calls to
16 *! memcpy in libc.
17 *! Jun 17 1999 Hendrik Ruijter Added gdb 4.18 support. 'X', 'qC' and 'qL'.
18 *! Jul 21 1999 Bjorn Wesen eLinux port
19 *!
20 *! $Log: kgdb.c,v $
21 *! Revision 1.8 2003/04/09 08:31:15 pkj
22 *! Typo correction (taken from Linux 2.5).
23 *!
24 *! Revision 1.7 2002/07/12 09:14:56 bjornw
25 *! Corrected typo
26 *!
27 *! Revision 1.6 2001/10/09 13:10:03 matsfg
28 *! Added $ on registers and removed some underscores
29 *!
30 *! Revision 1.5 2001/04/17 13:58:39 orjanf
31 *! * Renamed CONFIG_KGDB to CONFIG_ETRAX_KGDB.
32 *!
33 *! Revision 1.4 2001/02/23 13:45:19 bjornw
34 *! config.h check
35 *!
36 *! Revision 1.3 2001/01/31 18:08:23 orjanf
37 *! Removed kgdb_handle_breakpoint from being the break 8 handler.
38 *!
39 *! Revision 1.2 2001/01/12 14:22:25 orjanf
40 *! Updated kernel debugging support to work with ETRAX 100LX.
41 *!
42 *! Revision 1.1 2000/07/10 16:25:21 bjornw
43 *! Initial revision
44 *!
45 *! Revision 1.1.1.1 1999/12/03 14:57:31 bjornw
46 *! * Initial version of arch/cris, the latest CRIS architecture with an MMU.
47 *! Mostly copied from arch/etrax100 with appropriate renames of files.
48 *! The mm/ subdir is copied from arch/i386.
49 *! This does not compile yet at all.
50 *!
51 *!
52 *! Revision 1.4 1999/07/22 17:25:25 bjornw
53 *! Dont wait for + in putpacket if we havent hit the initial breakpoint yet. Added a kgdb_init function which sets up the break and irq vectors.
54 *!
55 *! Revision 1.3 1999/07/21 19:51:18 bjornw
56 *! Check if the interrupting char is a ctrl-C, ignore otherwise.
57 *!
58 *! Revision 1.2 1999/07/21 18:09:39 bjornw
59 *! Ported to eLinux architecture, and added some kgdb documentation.
60 *!
61 *!
62 *!---------------------------------------------------------------------------
63 *!
64 *! $Id: kgdb.c,v 1.8 2003/04/09 08:31:15 pkj Exp $
65 *!
66 *! (C) Copyright 1999, Axis Communications AB, LUND, SWEDEN
67 *!
68 *!**************************************************************************/
69 /* @(#) cris_stub.c 1.3 06/17/99 */
70
71 /*
72 * kgdb usage notes:
73 * -----------------
74 *
75 * If you select CONFIG_ETRAX_KGDB in the configuration, the kernel will be
76 * built with different gcc flags: "-g" is added to get debug infos, and
77 * "-fomit-frame-pointer" is omitted to make debugging easier. Since the
78 * resulting kernel will be quite big (approx. > 7 MB), it will be stripped
79 * before compresion. Such a kernel will behave just as usually, except if
80 * given a "debug=<device>" command line option. (Only serial devices are
81 * allowed for <device>, i.e. no printers or the like; possible values are
82 * machine depedend and are the same as for the usual debug device, the one
83 * for logging kernel messages.) If that option is given and the device can be
84 * initialized, the kernel will connect to the remote gdb in trap_init(). The
85 * serial parameters are fixed to 8N1 and 115200 bps, for easyness of
86 * implementation.
87 *
88 * To start a debugging session, start that gdb with the debugging kernel
89 * image (the one with the symbols, vmlinux.debug) named on the command line.
90 * This file will be used by gdb to get symbol and debugging infos about the
91 * kernel. Next, select remote debug mode by
92 * target remote <device>
93 * where <device> is the name of the serial device over which the debugged
94 * machine is connected. Maybe you have to adjust the baud rate by
95 * set remotebaud <rate>
96 * or also other parameters with stty:
97 * shell stty ... </dev/...
98 * If the kernel to debug has already booted, it waited for gdb and now
99 * connects, and you'll see a breakpoint being reported. If the kernel isn't
100 * running yet, start it now. The order of gdb and the kernel doesn't matter.
101 * Another thing worth knowing about in the getting-started phase is how to
102 * debug the remote protocol itself. This is activated with
103 * set remotedebug 1
104 * gdb will then print out each packet sent or received. You'll also get some
105 * messages about the gdb stub on the console of the debugged machine.
106 *
107 * If all that works, you can use lots of the usual debugging techniques on
108 * the kernel, e.g. inspecting and changing variables/memory, setting
109 * breakpoints, single stepping and so on. It's also possible to interrupt the
110 * debugged kernel by pressing C-c in gdb. Have fun! :-)
111 *
112 * The gdb stub is entered (and thus the remote gdb gets control) in the
113 * following situations:
114 *
115 * - If breakpoint() is called. This is just after kgdb initialization, or if
116 * a breakpoint() call has been put somewhere into the kernel source.
117 * (Breakpoints can of course also be set the usual way in gdb.)
118 * In eLinux, we call breakpoint() in init/main.c after IRQ initialization.
119 *
120 * - If there is a kernel exception, i.e. bad_super_trap() or die_if_kernel()
121 * are entered. All the CPU exceptions are mapped to (more or less..., see
122 * the hard_trap_info array below) appropriate signal, which are reported
123 * to gdb. die_if_kernel() is usually called after some kind of access
124 * error and thus is reported as SIGSEGV.
125 *
126 * - When panic() is called. This is reported as SIGABRT.
127 *
128 * - If C-c is received over the serial line, which is treated as
129 * SIGINT.
130 *
131 * Of course, all these signals are just faked for gdb, since there is no
132 * signal concept as such for the kernel. It also isn't possible --obviously--
133 * to set signal handlers from inside gdb, or restart the kernel with a
134 * signal.
135 *
136 * Current limitations:
137 *
138 * - While the kernel is stopped, interrupts are disabled for safety reasons
139 * (i.e., variables not changing magically or the like). But this also
140 * means that the clock isn't running anymore, and that interrupts from the
141 * hardware may get lost/not be served in time. This can cause some device
142 * errors...
143 *
144 * - When single-stepping, only one instruction of the current thread is
145 * executed, but interrupts are allowed for that time and will be serviced
146 * if pending. Be prepared for that.
147 *
148 * - All debugging happens in kernel virtual address space. There's no way to
149 * access physical memory not mapped in kernel space, or to access user
150 * space. A way to work around this is using get_user_long & Co. in gdb
151 * expressions, but only for the current process.
152 *
153 * - Interrupting the kernel only works if interrupts are currently allowed,
154 * and the interrupt of the serial line isn't blocked by some other means
155 * (IPL too high, disabled, ...)
156 *
157 * - The gdb stub is currently not reentrant, i.e. errors that happen therein
158 * (e.g. accessing invalid memory) may not be caught correctly. This could
159 * be removed in future by introducing a stack of struct registers.
160 *
161 */
162
163 /*
164 * To enable debugger support, two things need to happen. One, a
165 * call to kgdb_init() is necessary in order to allow any breakpoints
166 * or error conditions to be properly intercepted and reported to gdb.
167 * Two, a breakpoint needs to be generated to begin communication. This
168 * is most easily accomplished by a call to breakpoint().
169 *
170 * The following gdb commands are supported:
171 *
172 * command function Return value
173 *
174 * g return the value of the CPU registers hex data or ENN
175 * G set the value of the CPU registers OK or ENN
176 *
177 * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
178 * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
179 *
180 * c Resume at current address SNN ( signal NN)
181 * cAA..AA Continue at address AA..AA SNN
182 *
183 * s Step one instruction SNN
184 * sAA..AA Step one instruction from AA..AA SNN
185 *
186 * k kill
187 *
188 * ? What was the last sigval ? SNN (signal NN)
189 *
190 * bBB..BB Set baud rate to BB..BB OK or BNN, then sets
191 * baud rate
192 *
193 * All commands and responses are sent with a packet which includes a
194 * checksum. A packet consists of
195 *
196 * $<packet info>#<checksum>.
197 *
198 * where
199 * <packet info> :: <characters representing the command or response>
200 * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>>
201 *
202 * When a packet is received, it is first acknowledged with either '+' or '-'.
203 * '+' indicates a successful transfer. '-' indicates a failed transfer.
204 *
205 * Example:
206 *
207 * Host: Reply:
208 * $m0,10#2a +$00010203040506070809101112131415#42
209 *
210 */
211
212
213 #include <linux/string.h>
214 #include <linux/signal.h>
215 #include <linux/kernel.h>
216 #include <linux/delay.h>
217 #include <linux/linkage.h>
218
219 #include <asm/setup.h>
220 #include <asm/ptrace.h>
221
222 #include <asm/svinto.h>
223 #include <asm/irq.h>
224
225 static int kgdb_started = 0;
226
227 /********************************* Register image ****************************/
228 /* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
229 Reference", p. 1-1, with the additional register definitions of the
230 ETRAX 100LX in cris-opc.h.
231 There are 16 general 32-bit registers, R0-R15, where R14 is the stack
232 pointer, SP, and R15 is the program counter, PC.
233 There are 16 special registers, P0-P15, where three of the unimplemented
234 registers, P0, P4 and P8, are reserved as zero-registers. A read from
235 any of these registers returns zero and a write has no effect. */
236
237 typedef
238 struct register_image
239 {
240 /* Offset */
241 unsigned int r0; /* 0x00 */
242 unsigned int r1; /* 0x04 */
243 unsigned int r2; /* 0x08 */
244 unsigned int r3; /* 0x0C */
245 unsigned int r4; /* 0x10 */
246 unsigned int r5; /* 0x14 */
247 unsigned int r6; /* 0x18 */
248 unsigned int r7; /* 0x1C */
249 unsigned int r8; /* 0x20 Frame pointer */
250 unsigned int r9; /* 0x24 */
251 unsigned int r10; /* 0x28 */
252 unsigned int r11; /* 0x2C */
253 unsigned int r12; /* 0x30 */
254 unsigned int r13; /* 0x34 */
255 unsigned int sp; /* 0x38 Stack pointer */
256 unsigned int pc; /* 0x3C Program counter */
257
258 unsigned char p0; /* 0x40 8-bit zero-register */
259 unsigned char vr; /* 0x41 Version register */
260
261 unsigned short p4; /* 0x42 16-bit zero-register */
262 unsigned short ccr; /* 0x44 Condition code register */
263
264 unsigned int mof; /* 0x46 Multiply overflow register */
265
266 unsigned int p8; /* 0x4A 32-bit zero-register */
267 unsigned int ibr; /* 0x4E Interrupt base register */
268 unsigned int irp; /* 0x52 Interrupt return pointer */
269 unsigned int srp; /* 0x56 Subroutine return pointer */
270 unsigned int bar; /* 0x5A Breakpoint address register */
271 unsigned int dccr; /* 0x5E Double condition code register */
272 unsigned int brp; /* 0x62 Breakpoint return pointer (pc in caller) */
273 unsigned int usp; /* 0x66 User mode stack pointer */
274 } registers;
275
276 /************** Prototypes for local library functions ***********************/
277
278 /* Copy of strcpy from libc. */
279 static char *gdb_cris_strcpy (char *s1, const char *s2);
280
281 /* Copy of strlen from libc. */
282 static int gdb_cris_strlen (const char *s);
283
284 /* Copy of memchr from libc. */
285 static void *gdb_cris_memchr (const void *s, int c, int n);
286
287 /* Copy of strtol from libc. Does only support base 16. */
288 static int gdb_cris_strtol (const char *s, char **endptr, int base);
289
290 /********************** Prototypes for local functions. **********************/
291 /* Copy the content of a register image into another. The size n is
292 the size of the register image. Due to struct assignment generation of
293 memcpy in libc. */
294 static void copy_registers (registers *dptr, registers *sptr, int n);
295
296 /* Copy the stored registers from the stack. Put the register contents
297 of thread thread_id in the struct reg. */
298 static void copy_registers_from_stack (int thread_id, registers *reg);
299
300 /* Copy the registers to the stack. Put the register contents of thread
301 thread_id from struct reg to the stack. */
302 static void copy_registers_to_stack (int thread_id, registers *reg);
303
304 /* Write a value to a specified register regno in the register image
305 of the current thread. */
306 static int write_register (int regno, char *val);
307
308 /* Write a value to a specified register in the stack of a thread other
309 than the current thread. */
310 static write_stack_register (int thread_id, int regno, char *valptr);
311
312 /* Read a value from a specified register in the register image. Returns the
313 status of the read operation. The register value is returned in valptr. */
314 static int read_register (char regno, unsigned int *valptr);
315
316 /* Serial port, reads one character. ETRAX 100 specific. from debugport.c */
317 int getDebugChar (void);
318
319 /* Serial port, writes one character. ETRAX 100 specific. from debugport.c */
320 void putDebugChar (int val);
321
322 void enableDebugIRQ (void);
323
324 /* Returns the character equivalent of a nibble, bit 7, 6, 5, and 4 of a byte,
325 represented by int x. */
326 static char highhex (int x);
327
328 /* Returns the character equivalent of a nibble, bit 3, 2, 1, and 0 of a byte,
329 represented by int x. */
330 static char lowhex (int x);
331
332 /* Returns the integer equivalent of a hexadecimal character. */
333 static int hex (char ch);
334
335 /* Convert the memory, pointed to by mem into hexadecimal representation.
336 Put the result in buf, and return a pointer to the last character
337 in buf (null). */
338 static char *mem2hex (char *buf, unsigned char *mem, int count);
339
340 /* Convert the array, in hexadecimal representation, pointed to by buf into
341 binary representation. Put the result in mem, and return a pointer to
342 the character after the last byte written. */
343 static unsigned char *hex2mem (unsigned char *mem, char *buf, int count);
344
345 /* Put the content of the array, in binary representation, pointed to by buf
346 into memory pointed to by mem, and return a pointer to
347 the character after the last byte written. */
348 static unsigned char *bin2mem (unsigned char *mem, unsigned char *buf, int count);
349
350 /* Await the sequence $<data>#<checksum> and store <data> in the array buffer
351 returned. */
352 static void getpacket (char *buffer);
353
354 /* Send $<data>#<checksum> from the <data> in the array buffer. */
355 static void putpacket (char *buffer);
356
357 /* Build and send a response packet in order to inform the host the
358 stub is stopped. */
359 static void stub_is_stopped (int sigval);
360
361 /* All expected commands are sent from remote.c. Send a response according
362 to the description in remote.c. */
363 static void handle_exception (int sigval);
364
365 /* Performs a complete re-start from scratch. ETRAX specific. */
366 static void kill_restart (void);
367
368 /******************** Prototypes for global functions. ***********************/
369
370 /* The string str is prepended with the GDB printout token and sent. */
371 void putDebugString (const unsigned char *str, int length); /* used by etrax100ser.c */
372
373 /* The hook for both static (compiled) and dynamic breakpoints set by GDB.
374 ETRAX 100 specific. */
375 void handle_breakpoint (void); /* used by irq.c */
376
377 /* The hook for an interrupt generated by GDB. ETRAX 100 specific. */
378 void handle_interrupt (void); /* used by irq.c */
379
380 /* A static breakpoint to be used at startup. */
381 void breakpoint (void); /* called by init/main.c */
382
383 /* From osys_int.c, executing_task contains the number of the current
384 executing task in osys. Does not know of object-oriented threads. */
385 extern unsigned char executing_task;
386
387 /* The number of characters used for a 64 bit thread identifier. */
388 #define HEXCHARS_IN_THREAD_ID 16
389
390 /* Avoid warning as the internal_stack is not used in the C-code. */
391 #define USEDVAR(name) { if (name) { ; } }
392 #define USEDFUN(name) { void (*pf)(void) = (void *)name; USEDVAR(pf) }
393
394 /********************************** Packet I/O ******************************/
395 /* BUFMAX defines the maximum number of characters in
396 inbound/outbound buffers */
397 #define BUFMAX 512
398
399 /* Run-length encoding maximum length. Send 64 at most. */
400 #define RUNLENMAX 64
401
402 /* Definition of all valid hexadecimal characters */
403 static const char hexchars[] = "0123456789abcdef";
404
405 /* The inbound/outbound buffers used in packet I/O */
406 static char remcomInBuffer[BUFMAX];
407 static char remcomOutBuffer[BUFMAX];
408
409 /* Error and warning messages. */
410 enum error_type
411 {
412 SUCCESS, E01, E02, E03, E04, E05, E06, E07
413 };
414 static char *error_message[] =
415 {
416 "",
417 "E01 Set current or general thread - H[c,g] - internal error.",
418 "E02 Change register content - P - cannot change read-only register.",
419 "E03 Thread is not alive.", /* T, not used. */
420 "E04 The command is not supported - [s,C,S,!,R,d,r] - internal error.",
421 "E05 Change register content - P - the register is not implemented..",
422 "E06 Change memory content - M - internal error.",
423 "E07 Change register content - P - the register is not stored on the stack"
424 };
425 /********************************* Register image ****************************/
426 /* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
427 Reference", p. 1-1, with the additional register definitions of the
428 ETRAX 100LX in cris-opc.h.
429 There are 16 general 32-bit registers, R0-R15, where R14 is the stack
430 pointer, SP, and R15 is the program counter, PC.
431 There are 16 special registers, P0-P15, where three of the unimplemented
432 registers, P0, P4 and P8, are reserved as zero-registers. A read from
433 any of these registers returns zero and a write has no effect. */
434 enum register_name
435 {
436 R0, R1, R2, R3,
437 R4, R5, R6, R7,
438 R8, R9, R10, R11,
439 R12, R13, SP, PC,
440 P0, VR, P2, P3,
441 P4, CCR, P6, MOF,
442 P8, IBR, IRP, SRP,
443 BAR, DCCR, BRP, USP
444 };
445
446 /* The register sizes of the registers in register_name. An unimplemented register
447 is designated by size 0 in this array. */
448 static int register_size[] =
449 {
450 4, 4, 4, 4,
451 4, 4, 4, 4,
452 4, 4, 4, 4,
453 4, 4, 4, 4,
454 1, 1, 0, 0,
455 2, 2, 0, 4,
456 4, 4, 4, 4,
457 4, 4, 4, 4
458 };
459
460 /* Contains the register image of the executing thread in the assembler
461 part of the code in order to avoid horrible addressing modes. */
462 static registers reg;
463
464 /* FIXME: Should this be used? Delete otherwise. */
465 /* Contains the assumed consistency state of the register image. Uses the
466 enum error_type for state information. */
467 static int consistency_status = SUCCESS;
468
469 /********************************** Handle exceptions ************************/
470 /* The variable reg contains the register image associated with the
471 current_thread_c variable. It is a complete register image created at
472 entry. The reg_g contains a register image of a task where the general
473 registers are taken from the stack and all special registers are taken
474 from the executing task. It is associated with current_thread_g and used
475 in order to provide access mainly for 'g', 'G' and 'P'.
476 */
477
478 /* Need two task id pointers in order to handle Hct and Hgt commands. */
479 static int current_thread_c = 0;
480 static int current_thread_g = 0;
481
482 /* Need two register images in order to handle Hct and Hgt commands. The
483 variable reg_g is in addition to reg above. */
484 static registers reg_g;
485
486 /********************************** Breakpoint *******************************/
487 /* Use an internal stack in the breakpoint and interrupt response routines */
488 #define INTERNAL_STACK_SIZE 1024
489 static char internal_stack[INTERNAL_STACK_SIZE];
490
491 /* Due to the breakpoint return pointer, a state variable is needed to keep
492 track of whether it is a static (compiled) or dynamic (gdb-invoked)
493 breakpoint to be handled. A static breakpoint uses the content of register
494 BRP as it is whereas a dynamic breakpoint requires subtraction with 2
495 in order to execute the instruction. The first breakpoint is static. */
496 static unsigned char is_dyn_brkp = 0;
497
498 /********************************* String library ****************************/
499 /* Single-step over library functions creates trap loops. */
500
501 /* Copy char s2[] to s1[]. */
502 static char*
gdb_cris_strcpy(char * s1,const char * s2)503 gdb_cris_strcpy (char *s1, const char *s2)
504 {
505 char *s = s1;
506
507 for (s = s1; (*s++ = *s2++) != '\0'; )
508 ;
509 return (s1);
510 }
511
512 /* Find length of s[]. */
513 static int
gdb_cris_strlen(const char * s)514 gdb_cris_strlen (const char *s)
515 {
516 const char *sc;
517
518 for (sc = s; *sc != '\0'; sc++)
519 ;
520 return (sc - s);
521 }
522
523 /* Find first occurrence of c in s[n]. */
524 static void*
gdb_cris_memchr(const void * s,int c,int n)525 gdb_cris_memchr (const void *s, int c, int n)
526 {
527 const unsigned char uc = c;
528 const unsigned char *su;
529
530 for (su = s; 0 < n; ++su, --n)
531 if (*su == uc)
532 return ((void *)su);
533 return (NULL);
534 }
535 /******************************* Standard library ****************************/
536 /* Single-step over library functions creates trap loops. */
537 /* Convert string to long. */
538 static int
gdb_cris_strtol(const char * s,char ** endptr,int base)539 gdb_cris_strtol (const char *s, char **endptr, int base)
540 {
541 char *s1;
542 char *sd;
543 int x = 0;
544
545 for (s1 = (char*)s; (sd = gdb_cris_memchr(hexchars, *s1, base)) != NULL; ++s1)
546 x = x * base + (sd - hexchars);
547
548 if (endptr)
549 {
550 /* Unconverted suffix is stored in endptr unless endptr is NULL. */
551 *endptr = s1;
552 }
553
554 return x;
555 }
556
557 int
double_this(int x)558 double_this(int x)
559 {
560 return 2 * x;
561 }
562
563 /********************************* Register image ****************************/
564 /* Copy the content of a register image into another. The size n is
565 the size of the register image. Due to struct assignment generation of
566 memcpy in libc. */
567 static void
copy_registers(registers * dptr,registers * sptr,int n)568 copy_registers (registers *dptr, registers *sptr, int n)
569 {
570 unsigned char *dreg;
571 unsigned char *sreg;
572
573 for (dreg = (unsigned char*)dptr, sreg = (unsigned char*)sptr; n > 0; n--)
574 *dreg++ = *sreg++;
575 }
576
577 #ifdef PROCESS_SUPPORT
578 /* Copy the stored registers from the stack. Put the register contents
579 of thread thread_id in the struct reg. */
580 static void
copy_registers_from_stack(int thread_id,registers * regptr)581 copy_registers_from_stack (int thread_id, registers *regptr)
582 {
583 int j;
584 stack_registers *s = (stack_registers *)stack_list[thread_id];
585 unsigned int *d = (unsigned int *)regptr;
586
587 for (j = 13; j >= 0; j--)
588 *d++ = s->r[j];
589 regptr->sp = (unsigned int)stack_list[thread_id];
590 regptr->pc = s->pc;
591 regptr->dccr = s->dccr;
592 regptr->srp = s->srp;
593 }
594
595 /* Copy the registers to the stack. Put the register contents of thread
596 thread_id from struct reg to the stack. */
597 static void
copy_registers_to_stack(int thread_id,registers * regptr)598 copy_registers_to_stack (int thread_id, registers *regptr)
599 {
600 int i;
601 stack_registers *d = (stack_registers *)stack_list[thread_id];
602 unsigned int *s = (unsigned int *)regptr;
603
604 for (i = 0; i < 14; i++) {
605 d->r[i] = *s++;
606 }
607 d->pc = regptr->pc;
608 d->dccr = regptr->dccr;
609 d->srp = regptr->srp;
610 }
611 #endif
612
613 /* Write a value to a specified register in the register image of the current
614 thread. Returns status code SUCCESS, E02 or E05. */
615 static int
write_register(int regno,char * val)616 write_register (int regno, char *val)
617 {
618 int status = SUCCESS;
619 registers *current_reg = ®
620
621 if (regno >= R0 && regno <= PC) {
622 /* 32-bit register with simple offset. */
623 hex2mem ((unsigned char *)current_reg + regno * sizeof(unsigned int),
624 val, sizeof(unsigned int));
625 }
626 else if (regno == P0 || regno == VR || regno == P4 || regno == P8) {
627 /* Do not support read-only registers. */
628 status = E02;
629 }
630 else if (regno == CCR) {
631 /* 16 bit register with complex offset. (P4 is read-only, P6 is not implemented,
632 and P7 (MOF) is 32 bits in ETRAX 100LX. */
633 hex2mem ((unsigned char *)&(current_reg->ccr) + (regno-CCR) * sizeof(unsigned short),
634 val, sizeof(unsigned short));
635 }
636 else if (regno >= MOF && regno <= USP) {
637 /* 32 bit register with complex offset. (P8 has been taken care of.) */
638 hex2mem ((unsigned char *)&(current_reg->ibr) + (regno-IBR) * sizeof(unsigned int),
639 val, sizeof(unsigned int));
640 }
641 else {
642 /* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
643 status = E05;
644 }
645 return status;
646 }
647
648 #ifdef PROCESS_SUPPORT
649 /* Write a value to a specified register in the stack of a thread other
650 than the current thread. Returns status code SUCCESS or E07. */
651 static int
write_stack_register(int thread_id,int regno,char * valptr)652 write_stack_register (int thread_id, int regno, char *valptr)
653 {
654 int status = SUCCESS;
655 stack_registers *d = (stack_registers *)stack_list[thread_id];
656 unsigned int val;
657
658 hex2mem ((unsigned char *)&val, valptr, sizeof(unsigned int));
659 if (regno >= R0 && regno < SP) {
660 d->r[regno] = val;
661 }
662 else if (regno == SP) {
663 stack_list[thread_id] = val;
664 }
665 else if (regno == PC) {
666 d->pc = val;
667 }
668 else if (regno == SRP) {
669 d->srp = val;
670 }
671 else if (regno == DCCR) {
672 d->dccr = val;
673 }
674 else {
675 /* Do not support registers in the current thread. */
676 status = E07;
677 }
678 return status;
679 }
680 #endif
681
682 /* Read a value from a specified register in the register image. Returns the
683 value in the register or -1 for non-implemented registers.
684 Should check consistency_status after a call which may be E05 after changes
685 in the implementation. */
686 static int
read_register(char regno,unsigned int * valptr)687 read_register (char regno, unsigned int *valptr)
688 {
689 registers *current_reg = ®
690
691 if (regno >= R0 && regno <= PC) {
692 /* 32-bit register with simple offset. */
693 *valptr = *(unsigned int *)((char *)current_reg + regno * sizeof(unsigned int));
694 return SUCCESS;
695 }
696 else if (regno == P0 || regno == VR) {
697 /* 8 bit register with complex offset. */
698 *valptr = (unsigned int)(*(unsigned char *)
699 ((char *)&(current_reg->p0) + (regno-P0) * sizeof(char)));
700 return SUCCESS;
701 }
702 else if (regno == P4 || regno == CCR) {
703 /* 16 bit register with complex offset. */
704 *valptr = (unsigned int)(*(unsigned short *)
705 ((char *)&(current_reg->p4) + (regno-P4) * sizeof(unsigned short)));
706 return SUCCESS;
707 }
708 else if (regno >= MOF && regno <= USP) {
709 /* 32 bit register with complex offset. */
710 *valptr = *(unsigned int *)((char *)&(current_reg->p8)
711 + (regno-P8) * sizeof(unsigned int));
712 return SUCCESS;
713 }
714 else {
715 /* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
716 consistency_status = E05;
717 return E05;
718 }
719 }
720
721 /********************************** Packet I/O ******************************/
722 /* Returns the character equivalent of a nibble, bit 7, 6, 5, and 4 of a byte,
723 represented by int x. */
724 static inline char
highhex(int x)725 highhex(int x)
726 {
727 return hexchars[(x >> 4) & 0xf];
728 }
729
730 /* Returns the character equivalent of a nibble, bit 3, 2, 1, and 0 of a byte,
731 represented by int x. */
732 static inline char
lowhex(int x)733 lowhex(int x)
734 {
735 return hexchars[x & 0xf];
736 }
737
738 /* Returns the integer equivalent of a hexadecimal character. */
739 static int
hex(char ch)740 hex (char ch)
741 {
742 if ((ch >= 'a') && (ch <= 'f'))
743 return (ch - 'a' + 10);
744 if ((ch >= '0') && (ch <= '9'))
745 return (ch - '0');
746 if ((ch >= 'A') && (ch <= 'F'))
747 return (ch - 'A' + 10);
748 return (-1);
749 }
750
751 /* Convert the memory, pointed to by mem into hexadecimal representation.
752 Put the result in buf, and return a pointer to the last character
753 in buf (null). */
754
755 static int do_printk = 0;
756
757 static char *
mem2hex(char * buf,unsigned char * mem,int count)758 mem2hex(char *buf, unsigned char *mem, int count)
759 {
760 int i;
761 int ch;
762
763 if (mem == NULL) {
764 /* Bogus read from m0. FIXME: What constitutes a valid address? */
765 for (i = 0; i < count; i++) {
766 *buf++ = '0';
767 *buf++ = '0';
768 }
769 } else {
770 /* Valid mem address. */
771 for (i = 0; i < count; i++) {
772 ch = *mem++;
773 *buf++ = highhex (ch);
774 *buf++ = lowhex (ch);
775 }
776 }
777
778 /* Terminate properly. */
779 *buf = '\0';
780 return (buf);
781 }
782
783 /* Convert the array, in hexadecimal representation, pointed to by buf into
784 binary representation. Put the result in mem, and return a pointer to
785 the character after the last byte written. */
786 static unsigned char*
hex2mem(unsigned char * mem,char * buf,int count)787 hex2mem (unsigned char *mem, char *buf, int count)
788 {
789 int i;
790 unsigned char ch;
791 for (i = 0; i < count; i++) {
792 ch = hex (*buf++) << 4;
793 ch = ch + hex (*buf++);
794 *mem++ = ch;
795 }
796 return (mem);
797 }
798
799 /* Put the content of the array, in binary representation, pointed to by buf
800 into memory pointed to by mem, and return a pointer to the character after
801 the last byte written.
802 Gdb will escape $, #, and the escape char (0x7d). */
803 static unsigned char*
bin2mem(unsigned char * mem,unsigned char * buf,int count)804 bin2mem (unsigned char *mem, unsigned char *buf, int count)
805 {
806 int i;
807 unsigned char *next;
808 for (i = 0; i < count; i++) {
809 /* Check for any escaped characters. Be paranoid and
810 only unescape chars that should be escaped. */
811 if (*buf == 0x7d) {
812 next = buf + 1;
813 if (*next == 0x3 || *next == 0x4 || *next == 0x5D) /* #, $, ESC */
814 {
815 buf++;
816 *buf += 0x20;
817 }
818 }
819 *mem++ = *buf++;
820 }
821 return (mem);
822 }
823
824 /* Await the sequence $<data>#<checksum> and store <data> in the array buffer
825 returned. */
826 static void
getpacket(char * buffer)827 getpacket (char *buffer)
828 {
829 unsigned char checksum;
830 unsigned char xmitcsum;
831 int i;
832 int count;
833 char ch;
834 do {
835 while ((ch = getDebugChar ()) != '$')
836 /* Wait for the start character $ and ignore all other characters */;
837 checksum = 0;
838 xmitcsum = -1;
839 count = 0;
840 /* Read until a # or the end of the buffer is reached */
841 while (count < BUFMAX) {
842 ch = getDebugChar ();
843 if (ch == '#')
844 break;
845 checksum = checksum + ch;
846 buffer[count] = ch;
847 count = count + 1;
848 }
849 buffer[count] = '\0';
850
851 if (ch == '#') {
852 xmitcsum = hex (getDebugChar ()) << 4;
853 xmitcsum += hex (getDebugChar ());
854 if (checksum != xmitcsum) {
855 /* Wrong checksum */
856 putDebugChar ('-');
857 }
858 else {
859 /* Correct checksum */
860 putDebugChar ('+');
861 /* If sequence characters are received, reply with them */
862 if (buffer[2] == ':') {
863 putDebugChar (buffer[0]);
864 putDebugChar (buffer[1]);
865 /* Remove the sequence characters from the buffer */
866 count = gdb_cris_strlen (buffer);
867 for (i = 3; i <= count; i++)
868 buffer[i - 3] = buffer[i];
869 }
870 }
871 }
872 } while (checksum != xmitcsum);
873 }
874
875 /* Send $<data>#<checksum> from the <data> in the array buffer. */
876
877 static void
putpacket(char * buffer)878 putpacket(char *buffer)
879 {
880 int checksum;
881 int runlen;
882 int encode;
883
884 do {
885 char *src = buffer;
886 putDebugChar ('$');
887 checksum = 0;
888 while (*src) {
889 /* Do run length encoding */
890 putDebugChar (*src);
891 checksum += *src;
892 runlen = 0;
893 while (runlen < RUNLENMAX && *src == src[runlen]) {
894 runlen++;
895 }
896 if (runlen > 3) {
897 /* Got a useful amount */
898 putDebugChar ('*');
899 checksum += '*';
900 encode = runlen + ' ' - 4;
901 putDebugChar (encode);
902 checksum += encode;
903 src += runlen;
904 }
905 else {
906 src++;
907 }
908 }
909 putDebugChar ('#');
910 putDebugChar (highhex (checksum));
911 putDebugChar (lowhex (checksum));
912 } while(kgdb_started && (getDebugChar() != '+'));
913 }
914
915 /* The string str is prepended with the GDB printout token and sent. Required
916 in traditional implementations. */
917 void
putDebugString(const unsigned char * str,int length)918 putDebugString (const unsigned char *str, int length)
919 {
920 remcomOutBuffer[0] = 'O';
921 mem2hex(&remcomOutBuffer[1], (unsigned char *)str, length);
922 putpacket(remcomOutBuffer);
923 }
924
925 /********************************** Handle exceptions ************************/
926 /* Build and send a response packet in order to inform the host the
927 stub is stopped. TAAn...:r...;n...:r...;n...:r...;
928 AA = signal number
929 n... = register number (hex)
930 r... = register contents
931 n... = `thread'
932 r... = thread process ID. This is a hex integer.
933 n... = other string not starting with valid hex digit.
934 gdb should ignore this n,r pair and go on to the next.
935 This way we can extend the protocol. */
936 static void
stub_is_stopped(int sigval)937 stub_is_stopped(int sigval)
938 {
939 char *ptr = remcomOutBuffer;
940 int regno;
941
942 unsigned int reg_cont;
943 int status;
944
945 /* Send trap type (converted to signal) */
946
947 *ptr++ = 'T';
948 *ptr++ = highhex (sigval);
949 *ptr++ = lowhex (sigval);
950
951 /* Send register contents. We probably only need to send the
952 * PC, frame pointer and stack pointer here. Other registers will be
953 * explicitely asked for. But for now, send all.
954 */
955
956 for (regno = R0; regno <= USP; regno++) {
957 /* Store n...:r...; for the registers in the buffer. */
958
959 status = read_register (regno, ®_cont);
960
961 if (status == SUCCESS) {
962
963 *ptr++ = highhex (regno);
964 *ptr++ = lowhex (regno);
965 *ptr++ = ':';
966
967 ptr = mem2hex(ptr, (unsigned char *)®_cont,
968 register_size[regno]);
969 *ptr++ = ';';
970 }
971
972 }
973
974 #ifdef PROCESS_SUPPORT
975 /* Store the registers of the executing thread. Assume that both step,
976 continue, and register content requests are with respect to this
977 thread. The executing task is from the operating system scheduler. */
978
979 current_thread_c = executing_task;
980 current_thread_g = executing_task;
981
982 /* A struct assignment translates into a libc memcpy call. Avoid
983 all libc functions in order to prevent recursive break points. */
984 copy_registers (®_g, ®, sizeof(registers));
985
986 /* Store thread:r...; with the executing task TID. */
987 gdb_cris_strcpy (&remcomOutBuffer[pos], "thread:");
988 pos += gdb_cris_strlen ("thread:");
989 remcomOutBuffer[pos++] = highhex (executing_task);
990 remcomOutBuffer[pos++] = lowhex (executing_task);
991 gdb_cris_strcpy (&remcomOutBuffer[pos], ";");
992 #endif
993
994 /* null-terminate and send it off */
995
996 *ptr = 0;
997
998 putpacket (remcomOutBuffer);
999 }
1000
1001 /* All expected commands are sent from remote.c. Send a response according
1002 to the description in remote.c. */
1003 static void
handle_exception(int sigval)1004 handle_exception (int sigval)
1005 {
1006 /* Avoid warning of not used. */
1007
1008 USEDFUN(handle_exception);
1009 USEDVAR(internal_stack[0]);
1010
1011 /* Send response. */
1012
1013 stub_is_stopped (sigval);
1014
1015 for (;;) {
1016 remcomOutBuffer[0] = '\0';
1017 getpacket (remcomInBuffer);
1018 switch (remcomInBuffer[0]) {
1019 case 'g':
1020 /* Read registers: g
1021 Success: Each byte of register data is described by two hex digits.
1022 Registers are in the internal order for GDB, and the bytes
1023 in a register are in the same order the machine uses.
1024 Failure: void. */
1025
1026 {
1027 #ifdef PROCESS_SUPPORT
1028 /* Use the special register content in the executing thread. */
1029 copy_registers (®_g, ®, sizeof(registers));
1030 /* Replace the content available on the stack. */
1031 if (current_thread_g != executing_task) {
1032 copy_registers_from_stack (current_thread_g, ®_g);
1033 }
1034 mem2hex ((unsigned char *)remcomOutBuffer, (unsigned char *)®_g, sizeof(registers));
1035 #else
1036 mem2hex(remcomOutBuffer, (char *)®, sizeof(registers));
1037 #endif
1038 }
1039 break;
1040
1041 case 'G':
1042 /* Write registers. GXX..XX
1043 Each byte of register data is described by two hex digits.
1044 Success: OK
1045 Failure: void. */
1046 #ifdef PROCESS_SUPPORT
1047 hex2mem ((unsigned char *)®_g, &remcomInBuffer[1], sizeof(registers));
1048 if (current_thread_g == executing_task) {
1049 copy_registers (®, ®_g, sizeof(registers));
1050 }
1051 else {
1052 copy_registers_to_stack(current_thread_g, ®_g);
1053 }
1054 #else
1055 hex2mem((char *)®, &remcomInBuffer[1], sizeof(registers));
1056 #endif
1057 gdb_cris_strcpy (remcomOutBuffer, "OK");
1058 break;
1059
1060 case 'P':
1061 /* Write register. Pn...=r...
1062 Write register n..., hex value without 0x, with value r...,
1063 which contains a hex value without 0x and two hex digits
1064 for each byte in the register (target byte order). P1f=11223344 means
1065 set register 31 to 44332211.
1066 Success: OK
1067 Failure: E02, E05 */
1068 {
1069 char *suffix;
1070 int regno = gdb_cris_strtol (&remcomInBuffer[1], &suffix, 16);
1071 int status;
1072 #ifdef PROCESS_SUPPORT
1073 if (current_thread_g != executing_task)
1074 status = write_stack_register (current_thread_g, regno, suffix+1);
1075 else
1076 #endif
1077 status = write_register (regno, suffix+1);
1078
1079 switch (status) {
1080 case E02:
1081 /* Do not support read-only registers. */
1082 gdb_cris_strcpy (remcomOutBuffer, error_message[E02]);
1083 break;
1084 case E05:
1085 /* Do not support non-existing registers. */
1086 gdb_cris_strcpy (remcomOutBuffer, error_message[E05]);
1087 break;
1088 case E07:
1089 /* Do not support non-existing registers on the stack. */
1090 gdb_cris_strcpy (remcomOutBuffer, error_message[E07]);
1091 break;
1092 default:
1093 /* Valid register number. */
1094 gdb_cris_strcpy (remcomOutBuffer, "OK");
1095 break;
1096 }
1097 }
1098 break;
1099
1100 case 'm':
1101 /* Read from memory. mAA..AA,LLLL
1102 AA..AA is the address and LLLL is the length.
1103 Success: XX..XX is the memory content. Can be fewer bytes than
1104 requested if only part of the data may be read. m6000120a,6c means
1105 retrieve 108 byte from base address 6000120a.
1106 Failure: void. */
1107 {
1108 char *suffix;
1109 unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
1110 &suffix, 16); int length = gdb_cris_strtol(suffix+1, 0, 16);
1111
1112 mem2hex(remcomOutBuffer, addr, length);
1113 }
1114 break;
1115
1116 case 'X':
1117 /* Write to memory. XAA..AA,LLLL:XX..XX
1118 AA..AA is the start address, LLLL is the number of bytes, and
1119 XX..XX is the binary data.
1120 Success: OK
1121 Failure: void. */
1122 case 'M':
1123 /* Write to memory. MAA..AA,LLLL:XX..XX
1124 AA..AA is the start address, LLLL is the number of bytes, and
1125 XX..XX is the hexadecimal data.
1126 Success: OK
1127 Failure: void. */
1128 {
1129 char *lenptr;
1130 char *dataptr;
1131 unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
1132 &lenptr, 16);
1133 int length = gdb_cris_strtol(lenptr+1, &dataptr, 16);
1134 if (*lenptr == ',' && *dataptr == ':') {
1135 if (remcomInBuffer[0] == 'M') {
1136 hex2mem(addr, dataptr + 1, length);
1137 }
1138 else /* X */ {
1139 bin2mem(addr, dataptr + 1, length);
1140 }
1141 gdb_cris_strcpy (remcomOutBuffer, "OK");
1142 }
1143 else {
1144 gdb_cris_strcpy (remcomOutBuffer, error_message[E06]);
1145 }
1146 }
1147 break;
1148
1149 case 'c':
1150 /* Continue execution. cAA..AA
1151 AA..AA is the address where execution is resumed. If AA..AA is
1152 omitted, resume at the present address.
1153 Success: return to the executing thread.
1154 Failure: will never know. */
1155 if (remcomInBuffer[1] != '\0') {
1156 reg.pc = gdb_cris_strtol (&remcomInBuffer[1], 0, 16);
1157 }
1158 enableDebugIRQ();
1159 return;
1160
1161 case 's':
1162 /* Step. sAA..AA
1163 AA..AA is the address where execution is resumed. If AA..AA is
1164 omitted, resume at the present address. Success: return to the
1165 executing thread. Failure: will never know.
1166
1167 Should never be invoked. The single-step is implemented on
1168 the host side. If ever invoked, it is an internal error E04. */
1169 gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
1170 putpacket (remcomOutBuffer);
1171 return;
1172
1173 case '?':
1174 /* The last signal which caused a stop. ?
1175 Success: SAA, where AA is the signal number.
1176 Failure: void. */
1177 remcomOutBuffer[0] = 'S';
1178 remcomOutBuffer[1] = highhex (sigval);
1179 remcomOutBuffer[2] = lowhex (sigval);
1180 remcomOutBuffer[3] = 0;
1181 break;
1182
1183 case 'D':
1184 /* Detach from host. D
1185 Success: OK, and return to the executing thread.
1186 Failure: will never know */
1187 putpacket ("OK");
1188 return;
1189
1190 case 'k':
1191 case 'r':
1192 /* kill request or reset request.
1193 Success: restart of target.
1194 Failure: will never know. */
1195 kill_restart ();
1196 break;
1197
1198 case 'C':
1199 case 'S':
1200 case '!':
1201 case 'R':
1202 case 'd':
1203 /* Continue with signal sig. Csig;AA..AA
1204 Step with signal sig. Ssig;AA..AA
1205 Use the extended remote protocol. !
1206 Restart the target system. R0
1207 Toggle debug flag. d
1208 Search backwards. tAA:PP,MM
1209 Not supported: E04 */
1210 gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
1211 break;
1212 #ifdef PROCESS_SUPPORT
1213
1214 case 'T':
1215 /* Thread alive. TXX
1216 Is thread XX alive?
1217 Success: OK, thread XX is alive.
1218 Failure: E03, thread XX is dead. */
1219 {
1220 int thread_id = (int)gdb_cris_strtol (&remcomInBuffer[1], 0, 16);
1221 /* Cannot tell whether it is alive or not. */
1222 if (thread_id >= 0 && thread_id < number_of_tasks)
1223 gdb_cris_strcpy (remcomOutBuffer, "OK");
1224 }
1225 break;
1226
1227 case 'H':
1228 /* Set thread for subsequent operations: Hct
1229 c = 'c' for thread used in step and continue;
1230 t can be -1 for all threads.
1231 c = 'g' for thread used in other operations.
1232 t = 0 means pick any thread.
1233 Success: OK
1234 Failure: E01 */
1235 {
1236 int thread_id = gdb_cris_strtol (&remcomInBuffer[2], 0, 16);
1237 if (remcomInBuffer[1] == 'c') {
1238 /* c = 'c' for thread used in step and continue */
1239 /* Do not change current_thread_c here. It would create a mess in
1240 the scheduler. */
1241 gdb_cris_strcpy (remcomOutBuffer, "OK");
1242 }
1243 else if (remcomInBuffer[1] == 'g') {
1244 /* c = 'g' for thread used in other operations.
1245 t = 0 means pick any thread. Impossible since the scheduler does
1246 not allow that. */
1247 if (thread_id >= 0 && thread_id < number_of_tasks) {
1248 current_thread_g = thread_id;
1249 gdb_cris_strcpy (remcomOutBuffer, "OK");
1250 }
1251 else {
1252 /* Not expected - send an error message. */
1253 gdb_cris_strcpy (remcomOutBuffer, error_message[E01]);
1254 }
1255 }
1256 else {
1257 /* Not expected - send an error message. */
1258 gdb_cris_strcpy (remcomOutBuffer, error_message[E01]);
1259 }
1260 }
1261 break;
1262
1263 case 'q':
1264 case 'Q':
1265 /* Query of general interest. qXXXX
1266 Set general value XXXX. QXXXX=yyyy */
1267 {
1268 int pos;
1269 int nextpos;
1270 int thread_id;
1271
1272 switch (remcomInBuffer[1]) {
1273 case 'C':
1274 /* Identify the remote current thread. */
1275 gdb_cris_strcpy (&remcomOutBuffer[0], "QC");
1276 remcomOutBuffer[2] = highhex (current_thread_c);
1277 remcomOutBuffer[3] = lowhex (current_thread_c);
1278 remcomOutBuffer[4] = '\0';
1279 break;
1280 case 'L':
1281 gdb_cris_strcpy (&remcomOutBuffer[0], "QM");
1282 /* Reply with number of threads. */
1283 if (os_is_started()) {
1284 remcomOutBuffer[2] = highhex (number_of_tasks);
1285 remcomOutBuffer[3] = lowhex (number_of_tasks);
1286 }
1287 else {
1288 remcomOutBuffer[2] = highhex (0);
1289 remcomOutBuffer[3] = lowhex (1);
1290 }
1291 /* Done with the reply. */
1292 remcomOutBuffer[4] = lowhex (1);
1293 pos = 5;
1294 /* Expects the argument thread id. */
1295 for (; pos < (5 + HEXCHARS_IN_THREAD_ID); pos++)
1296 remcomOutBuffer[pos] = remcomInBuffer[pos];
1297 /* Reply with the thread identifiers. */
1298 if (os_is_started()) {
1299 /* Store the thread identifiers of all tasks. */
1300 for (thread_id = 0; thread_id < number_of_tasks; thread_id++) {
1301 nextpos = pos + HEXCHARS_IN_THREAD_ID - 1;
1302 for (; pos < nextpos; pos ++)
1303 remcomOutBuffer[pos] = lowhex (0);
1304 remcomOutBuffer[pos++] = lowhex (thread_id);
1305 }
1306 }
1307 else {
1308 /* Store the thread identifier of the boot task. */
1309 nextpos = pos + HEXCHARS_IN_THREAD_ID - 1;
1310 for (; pos < nextpos; pos ++)
1311 remcomOutBuffer[pos] = lowhex (0);
1312 remcomOutBuffer[pos++] = lowhex (current_thread_c);
1313 }
1314 remcomOutBuffer[pos] = '\0';
1315 break;
1316 default:
1317 /* Not supported: "" */
1318 /* Request information about section offsets: qOffsets. */
1319 remcomOutBuffer[0] = 0;
1320 break;
1321 }
1322 }
1323 break;
1324 #endif /* PROCESS_SUPPORT */
1325
1326 default:
1327 /* The stub should ignore other request and send an empty
1328 response ($#<checksum>). This way we can extend the protocol and GDB
1329 can tell whether the stub it is talking to uses the old or the new. */
1330 remcomOutBuffer[0] = 0;
1331 break;
1332 }
1333 putpacket(remcomOutBuffer);
1334 }
1335 }
1336
1337 /* The jump is to the address 0x00000002. Performs a complete re-start
1338 from scratch. */
1339 static void
kill_restart()1340 kill_restart ()
1341 {
1342 __asm__ volatile ("jump 2");
1343 }
1344
1345 /********************************** Breakpoint *******************************/
1346 /* The hook for both a static (compiled) and a dynamic breakpoint set by GDB.
1347 An internal stack is used by the stub. The register image of the caller is
1348 stored in the structure register_image.
1349 Interactive communication with the host is handled by handle_exception and
1350 finally the register image is restored. */
1351
1352 void kgdb_handle_breakpoint(void);
1353
1354 asm ("
1355 .global kgdb_handle_breakpoint
1356 kgdb_handle_breakpoint:
1357 ;;
1358 ;; Response to the break-instruction
1359 ;;
1360 ;; Create a register image of the caller
1361 ;;
1362 move $dccr,[reg+0x5E] ; Save the flags in DCCR before disable interrupts
1363 di ; Disable interrupts
1364 move.d $r0,[reg] ; Save R0
1365 move.d $r1,[reg+0x04] ; Save R1
1366 move.d $r2,[reg+0x08] ; Save R2
1367 move.d $r3,[reg+0x0C] ; Save R3
1368 move.d $r4,[reg+0x10] ; Save R4
1369 move.d $r5,[reg+0x14] ; Save R5
1370 move.d $r6,[reg+0x18] ; Save R6
1371 move.d $r7,[reg+0x1C] ; Save R7
1372 move.d $r8,[reg+0x20] ; Save R8
1373 move.d $r9,[reg+0x24] ; Save R9
1374 move.d $r10,[reg+0x28] ; Save R10
1375 move.d $r11,[reg+0x2C] ; Save R11
1376 move.d $r12,[reg+0x30] ; Save R12
1377 move.d $r13,[reg+0x34] ; Save R13
1378 move.d $sp,[reg+0x38] ; Save SP (R14)
1379 ;; Due to the old assembler-versions BRP might not be recognized
1380 .word 0xE670 ; move brp,$r0
1381 subq 2,$r0 ; Set to address of previous instruction.
1382 move.d $r0,[reg+0x3c] ; Save the address in PC (R15)
1383 clear.b [reg+0x40] ; Clear P0
1384 move $vr,[reg+0x41] ; Save special register P1
1385 clear.w [reg+0x42] ; Clear P4
1386 move $ccr,[reg+0x44] ; Save special register CCR
1387 move $mof,[reg+0x46] ; P7
1388 clear.d [reg+0x4A] ; Clear P8
1389 move $ibr,[reg+0x4E] ; P9,
1390 move $irp,[reg+0x52] ; P10,
1391 move $srp,[reg+0x56] ; P11,
1392 move $dtp0,[reg+0x5A] ; P12, register BAR, assembler might not know BAR
1393 ; P13, register DCCR already saved
1394 ;; Due to the old assembler-versions BRP might not be recognized
1395 .word 0xE670 ; move brp,r0
1396 ;; Static (compiled) breakpoints must return to the next instruction in order
1397 ;; to avoid infinite loops. Dynamic (gdb-invoked) must restore the instruction
1398 ;; in order to execute it when execution is continued.
1399 test.b [is_dyn_brkp] ; Is this a dynamic breakpoint?
1400 beq is_static ; No, a static breakpoint
1401 nop
1402 subq 2,$r0 ; rerun the instruction the break replaced
1403 is_static:
1404 moveq 1,$r1
1405 move.b $r1,[is_dyn_brkp] ; Set the state variable to dynamic breakpoint
1406 move.d $r0,[reg+0x62] ; Save the return address in BRP
1407 move $usp,[reg+0x66] ; USP
1408 ;;
1409 ;; Handle the communication
1410 ;;
1411 move.d internal_stack+1020,$sp ; Use the internal stack which grows upward
1412 moveq 5,$r10 ; SIGTRAP
1413 jsr handle_exception ; Interactive routine
1414 ;;
1415 ;; Return to the caller
1416 ;;
1417 move.d [reg],$r0 ; Restore R0
1418 move.d [reg+0x04],$r1 ; Restore R1
1419 move.d [reg+0x08],$r2 ; Restore R2
1420 move.d [reg+0x0C],$r3 ; Restore R3
1421 move.d [reg+0x10],$r4 ; Restore R4
1422 move.d [reg+0x14],$r5 ; Restore R5
1423 move.d [reg+0x18],$r6 ; Restore R6
1424 move.d [reg+0x1C],$r7 ; Restore R7
1425 move.d [reg+0x20],$r8 ; Restore R8
1426 move.d [reg+0x24],$r9 ; Restore R9
1427 move.d [reg+0x28],$r10 ; Restore R10
1428 move.d [reg+0x2C],$r11 ; Restore R11
1429 move.d [reg+0x30],$r12 ; Restore R12
1430 move.d [reg+0x34],$r13 ; Restore R13
1431 ;;
1432 ;; FIXME: Which registers should be restored?
1433 ;;
1434 move.d [reg+0x38],$sp ; Restore SP (R14)
1435 move [reg+0x56],$srp ; Restore the subroutine return pointer.
1436 move [reg+0x5E],$dccr ; Restore DCCR
1437 move [reg+0x66],$usp ; Restore USP
1438 jump [reg+0x62] ; A jump to the content in register BRP works.
1439 nop ;
1440 ");
1441
1442 /* The hook for an interrupt generated by GDB. An internal stack is used
1443 by the stub. The register image of the caller is stored in the structure
1444 register_image. Interactive communication with the host is handled by
1445 handle_exception and finally the register image is restored. Due to the
1446 old assembler which does not recognise the break instruction and the
1447 breakpoint return pointer hex-code is used. */
1448
1449 void kgdb_handle_serial(void);
1450
1451 asm ("
1452 .global kgdb_handle_serial
1453 kgdb_handle_serial:
1454 ;;
1455 ;; Response to a serial interrupt
1456 ;;
1457
1458 move $dccr,[reg+0x5E] ; Save the flags in DCCR
1459 di ; Disable interrupts
1460 move.d $r0,[reg] ; Save R0
1461 move.d $r1,[reg+0x04] ; Save R1
1462 move.d $r2,[reg+0x08] ; Save R2
1463 move.d $r3,[reg+0x0C] ; Save R3
1464 move.d $r4,[reg+0x10] ; Save R4
1465 move.d $r5,[reg+0x14] ; Save R5
1466 move.d $r6,[reg+0x18] ; Save R6
1467 move.d $r7,[reg+0x1C] ; Save R7
1468 move.d $r8,[reg+0x20] ; Save R8
1469 move.d $r9,[reg+0x24] ; Save R9
1470 move.d $r10,[reg+0x28] ; Save R10
1471 move.d $r11,[reg+0x2C] ; Save R11
1472 move.d $r12,[reg+0x30] ; Save R12
1473 move.d $r13,[reg+0x34] ; Save R13
1474 move.d $sp,[reg+0x38] ; Save SP (R14)
1475 move $irp,[reg+0x3c] ; Save the address in PC (R15)
1476 clear.b [reg+0x40] ; Clear P0
1477 move $vr,[reg+0x41] ; Save special register P1,
1478 clear.w [reg+0x42] ; Clear P4
1479 move $ccr,[reg+0x44] ; Save special register CCR
1480 move $mof,[reg+0x46] ; P7
1481 clear.d [reg+0x4A] ; Clear P8
1482 move $ibr,[reg+0x4E] ; P9,
1483 move $irp,[reg+0x52] ; P10,
1484 move $srp,[reg+0x56] ; P11,
1485 move $dtp0,[reg+0x5A] ; P12, register BAR, assembler might not know BAR
1486 ; P13, register DCCR already saved
1487 ;; Due to the old assembler-versions BRP might not be recognized
1488 .word 0xE670 ; move brp,r0
1489 move.d $r0,[reg+0x62] ; Save the return address in BRP
1490 move $usp,[reg+0x66] ; USP
1491
1492 ;; get the serial character (from debugport.c) and check if it is a ctrl-c
1493
1494 jsr getDebugChar
1495 cmp.b 3, $r10
1496 bne goback
1497 nop
1498
1499 ;;
1500 ;; Handle the communication
1501 ;;
1502 move.d internal_stack+1020,$sp ; Use the internal stack
1503 moveq 2,$r10 ; SIGINT
1504 jsr handle_exception ; Interactive routine
1505
1506 goback:
1507 ;;
1508 ;; Return to the caller
1509 ;;
1510 move.d [reg],$r0 ; Restore R0
1511 move.d [reg+0x04],$r1 ; Restore R1
1512 move.d [reg+0x08],$r2 ; Restore R2
1513 move.d [reg+0x0C],$r3 ; Restore R3
1514 move.d [reg+0x10],$r4 ; Restore R4
1515 move.d [reg+0x14],$r5 ; Restore R5
1516 move.d [reg+0x18],$r6 ; Restore R6
1517 move.d [reg+0x1C],$r7 ; Restore R7
1518 move.d [reg+0x20],$r8 ; Restore R8
1519 move.d [reg+0x24],$r9 ; Restore R9
1520 move.d [reg+0x28],$r10 ; Restore R10
1521 move.d [reg+0x2C],$r11 ; Restore R11
1522 move.d [reg+0x30],$r12 ; Restore R12
1523 move.d [reg+0x34],$r13 ; Restore R13
1524 ;;
1525 ;; FIXME: Which registers should be restored?
1526 ;;
1527 move.d [reg+0x38],$sp ; Restore SP (R14)
1528 move [reg+0x56],$srp ; Restore the subroutine return pointer.
1529 move [reg+0x5E],$dccr ; Restore DCCR
1530 move [reg+0x66],$usp ; Restore USP
1531 reti ; Return from the interrupt routine
1532 nop
1533 ");
1534
1535 /* Use this static breakpoint in the start-up only. */
1536
1537 void
breakpoint(void)1538 breakpoint(void)
1539 {
1540 kgdb_started = 1;
1541 is_dyn_brkp = 0; /* This is a static, not a dynamic breakpoint. */
1542 __asm__ volatile ("break 8"); /* Jump to handle_breakpoint. */
1543 }
1544
1545 /* initialize kgdb. doesn't break into the debugger, but sets up irq and ports */
1546
1547 void
kgdb_init(void)1548 kgdb_init(void)
1549 {
1550 /* could initialize debug port as well but it's done in head.S already... */
1551
1552 /* breakpoint handler is now set in irq.c */
1553 set_int_vector(8, kgdb_handle_serial, 0);
1554
1555 enableDebugIRQ();
1556 }
1557
1558 /****************************** End of file **********************************/
1559