1 /*!**************************************************************************
2 *!
3 *! FILE NAME  : kgdb.c
4 *!
5 *! DESCRIPTION: Implementation of the gdb stub with respect to ETRAX 100.
6 *!              It is a mix of arch/m68k/kernel/kgdb.c and cris_stub.c.
7 *!
8 *!---------------------------------------------------------------------------
9 *! HISTORY
10 *!
11 *! DATE         NAME            CHANGES
12 *! ----         ----            -------
13 *! Apr 26 1999  Hendrik Ruijter Initial version.
14 *! May  6 1999  Hendrik Ruijter Removed call to strlen in libc and removed
15 *!                              struct assignment as it generates calls to
16 *!                              memcpy in libc.
17 *! Jun 17 1999  Hendrik Ruijter Added gdb 4.18 support. 'X', 'qC' and 'qL'.
18 *! Jul 21 1999  Bjorn Wesen     eLinux port
19 *!
20 *! $Log: kgdb.c,v $
21 *! Revision 1.8  2003/04/09 08:31:15  pkj
22 *! Typo correction (taken from Linux 2.5).
23 *!
24 *! Revision 1.7  2002/07/12 09:14:56  bjornw
25 *! Corrected typo
26 *!
27 *! Revision 1.6  2001/10/09 13:10:03  matsfg
28 *! Added $ on registers and removed some underscores
29 *!
30 *! Revision 1.5  2001/04/17 13:58:39  orjanf
31 *! * Renamed CONFIG_KGDB to CONFIG_ETRAX_KGDB.
32 *!
33 *! Revision 1.4  2001/02/23 13:45:19  bjornw
34 *! config.h check
35 *!
36 *! Revision 1.3  2001/01/31 18:08:23  orjanf
37 *! Removed kgdb_handle_breakpoint from being the break 8 handler.
38 *!
39 *! Revision 1.2  2001/01/12 14:22:25  orjanf
40 *! Updated kernel debugging support to work with ETRAX 100LX.
41 *!
42 *! Revision 1.1  2000/07/10 16:25:21  bjornw
43 *! Initial revision
44 *!
45 *! Revision 1.1.1.1  1999/12/03 14:57:31  bjornw
46 *! * Initial version of arch/cris, the latest CRIS architecture with an MMU.
47 *!   Mostly copied from arch/etrax100 with appropriate renames of files.
48 *!   The mm/ subdir is copied from arch/i386.
49 *!   This does not compile yet at all.
50 *!
51 *!
52 *! Revision 1.4  1999/07/22 17:25:25  bjornw
53 *! Dont wait for + in putpacket if we havent hit the initial breakpoint yet. Added a kgdb_init function which sets up the break and irq vectors.
54 *!
55 *! Revision 1.3  1999/07/21 19:51:18  bjornw
56 *! Check if the interrupting char is a ctrl-C, ignore otherwise.
57 *!
58 *! Revision 1.2  1999/07/21 18:09:39  bjornw
59 *! Ported to eLinux architecture, and added some kgdb documentation.
60 *!
61 *!
62 *!---------------------------------------------------------------------------
63 *!
64 *! $Id: kgdb.c,v 1.8 2003/04/09 08:31:15 pkj Exp $
65 *!
66 *! (C) Copyright 1999, Axis Communications AB, LUND, SWEDEN
67 *!
68 *!**************************************************************************/
69 /* @(#) cris_stub.c 1.3 06/17/99 */
70 
71 /*
72  *  kgdb usage notes:
73  *  -----------------
74  *
75  * If you select CONFIG_ETRAX_KGDB in the configuration, the kernel will be
76  * built with different gcc flags: "-g" is added to get debug infos, and
77  * "-fomit-frame-pointer" is omitted to make debugging easier. Since the
78  * resulting kernel will be quite big (approx. > 7 MB), it will be stripped
79  * before compresion. Such a kernel will behave just as usually, except if
80  * given a "debug=<device>" command line option. (Only serial devices are
81  * allowed for <device>, i.e. no printers or the like; possible values are
82  * machine depedend and are the same as for the usual debug device, the one
83  * for logging kernel messages.) If that option is given and the device can be
84  * initialized, the kernel will connect to the remote gdb in trap_init(). The
85  * serial parameters are fixed to 8N1 and 115200 bps, for easyness of
86  * implementation.
87  *
88  * To start a debugging session, start that gdb with the debugging kernel
89  * image (the one with the symbols, vmlinux.debug) named on the command line.
90  * This file will be used by gdb to get symbol and debugging infos about the
91  * kernel. Next, select remote debug mode by
92  *    target remote <device>
93  * where <device> is the name of the serial device over which the debugged
94  * machine is connected. Maybe you have to adjust the baud rate by
95  *    set remotebaud <rate>
96  * or also other parameters with stty:
97  *    shell stty ... </dev/...
98  * If the kernel to debug has already booted, it waited for gdb and now
99  * connects, and you'll see a breakpoint being reported. If the kernel isn't
100  * running yet, start it now. The order of gdb and the kernel doesn't matter.
101  * Another thing worth knowing about in the getting-started phase is how to
102  * debug the remote protocol itself. This is activated with
103  *    set remotedebug 1
104  * gdb will then print out each packet sent or received. You'll also get some
105  * messages about the gdb stub on the console of the debugged machine.
106  *
107  * If all that works, you can use lots of the usual debugging techniques on
108  * the kernel, e.g. inspecting and changing variables/memory, setting
109  * breakpoints, single stepping and so on. It's also possible to interrupt the
110  * debugged kernel by pressing C-c in gdb. Have fun! :-)
111  *
112  * The gdb stub is entered (and thus the remote gdb gets control) in the
113  * following situations:
114  *
115  *  - If breakpoint() is called. This is just after kgdb initialization, or if
116  *    a breakpoint() call has been put somewhere into the kernel source.
117  *    (Breakpoints can of course also be set the usual way in gdb.)
118  *    In eLinux, we call breakpoint() in init/main.c after IRQ initialization.
119  *
120  *  - If there is a kernel exception, i.e. bad_super_trap() or die_if_kernel()
121  *    are entered. All the CPU exceptions are mapped to (more or less..., see
122  *    the hard_trap_info array below) appropriate signal, which are reported
123  *    to gdb. die_if_kernel() is usually called after some kind of access
124  *    error and thus is reported as SIGSEGV.
125  *
126  *  - When panic() is called. This is reported as SIGABRT.
127  *
128  *  - If C-c is received over the serial line, which is treated as
129  *    SIGINT.
130  *
131  * Of course, all these signals are just faked for gdb, since there is no
132  * signal concept as such for the kernel. It also isn't possible --obviously--
133  * to set signal handlers from inside gdb, or restart the kernel with a
134  * signal.
135  *
136  * Current limitations:
137  *
138  *  - While the kernel is stopped, interrupts are disabled for safety reasons
139  *    (i.e., variables not changing magically or the like). But this also
140  *    means that the clock isn't running anymore, and that interrupts from the
141  *    hardware may get lost/not be served in time. This can cause some device
142  *    errors...
143  *
144  *  - When single-stepping, only one instruction of the current thread is
145  *    executed, but interrupts are allowed for that time and will be serviced
146  *    if pending. Be prepared for that.
147  *
148  *  - All debugging happens in kernel virtual address space. There's no way to
149  *    access physical memory not mapped in kernel space, or to access user
150  *    space. A way to work around this is using get_user_long & Co. in gdb
151  *    expressions, but only for the current process.
152  *
153  *  - Interrupting the kernel only works if interrupts are currently allowed,
154  *    and the interrupt of the serial line isn't blocked by some other means
155  *    (IPL too high, disabled, ...)
156  *
157  *  - The gdb stub is currently not reentrant, i.e. errors that happen therein
158  *    (e.g. accessing invalid memory) may not be caught correctly. This could
159  *    be removed in future by introducing a stack of struct registers.
160  *
161  */
162 
163 /*
164  *  To enable debugger support, two things need to happen.  One, a
165  *  call to kgdb_init() is necessary in order to allow any breakpoints
166  *  or error conditions to be properly intercepted and reported to gdb.
167  *  Two, a breakpoint needs to be generated to begin communication.  This
168  *  is most easily accomplished by a call to breakpoint().
169  *
170  *    The following gdb commands are supported:
171  *
172  * command          function                               Return value
173  *
174  *    g             return the value of the CPU registers  hex data or ENN
175  *    G             set the value of the CPU registers     OK or ENN
176  *
177  *    mAA..AA,LLLL  Read LLLL bytes at address AA..AA      hex data or ENN
178  *    MAA..AA,LLLL: Write LLLL bytes at address AA.AA      OK or ENN
179  *
180  *    c             Resume at current address              SNN   ( signal NN)
181  *    cAA..AA       Continue at address AA..AA             SNN
182  *
183  *    s             Step one instruction                   SNN
184  *    sAA..AA       Step one instruction from AA..AA       SNN
185  *
186  *    k             kill
187  *
188  *    ?             What was the last sigval ?             SNN   (signal NN)
189  *
190  *    bBB..BB	    Set baud rate to BB..BB		   OK or BNN, then sets
191  *							   baud rate
192  *
193  * All commands and responses are sent with a packet which includes a
194  * checksum.  A packet consists of
195  *
196  * $<packet info>#<checksum>.
197  *
198  * where
199  * <packet info> :: <characters representing the command or response>
200  * <checksum>    :: < two hex digits computed as modulo 256 sum of <packetinfo>>
201  *
202  * When a packet is received, it is first acknowledged with either '+' or '-'.
203  * '+' indicates a successful transfer.  '-' indicates a failed transfer.
204  *
205  * Example:
206  *
207  * Host:                  Reply:
208  * $m0,10#2a               +$00010203040506070809101112131415#42
209  *
210  */
211 
212 
213 #include <linux/string.h>
214 #include <linux/signal.h>
215 #include <linux/kernel.h>
216 #include <linux/delay.h>
217 #include <linux/linkage.h>
218 
219 #include <asm/setup.h>
220 #include <asm/ptrace.h>
221 
222 #include <asm/svinto.h>
223 #include <asm/irq.h>
224 
225 static int kgdb_started = 0;
226 
227 /********************************* Register image ****************************/
228 /* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
229    Reference", p. 1-1, with the additional register definitions of the
230    ETRAX 100LX in cris-opc.h.
231    There are 16 general 32-bit registers, R0-R15, where R14 is the stack
232    pointer, SP, and R15 is the program counter, PC.
233    There are 16 special registers, P0-P15, where three of the unimplemented
234    registers, P0, P4 and P8, are reserved as zero-registers. A read from
235    any of these registers returns zero and a write has no effect. */
236 
237 typedef
238 struct register_image
239 {
240 	/* Offset */
241 	unsigned int     r0;   /* 0x00 */
242 	unsigned int     r1;   /* 0x04 */
243 	unsigned int     r2;   /* 0x08 */
244 	unsigned int     r3;   /* 0x0C */
245 	unsigned int     r4;   /* 0x10 */
246 	unsigned int     r5;   /* 0x14 */
247 	unsigned int     r6;   /* 0x18 */
248 	unsigned int     r7;   /* 0x1C */
249 	unsigned int     r8;   /* 0x20 Frame pointer */
250 	unsigned int     r9;   /* 0x24 */
251 	unsigned int    r10;   /* 0x28 */
252 	unsigned int    r11;   /* 0x2C */
253 	unsigned int    r12;   /* 0x30 */
254 	unsigned int    r13;   /* 0x34 */
255 	unsigned int     sp;   /* 0x38 Stack pointer */
256 	unsigned int     pc;   /* 0x3C Program counter */
257 
258         unsigned char    p0;   /* 0x40 8-bit zero-register */
259 	unsigned char    vr;   /* 0x41 Version register */
260 
261         unsigned short   p4;   /* 0x42 16-bit zero-register */
262 	unsigned short  ccr;   /* 0x44 Condition code register */
263 
264 	unsigned int    mof;   /* 0x46 Multiply overflow register */
265 
266         unsigned int     p8;   /* 0x4A 32-bit zero-register */
267 	unsigned int    ibr;   /* 0x4E Interrupt base register */
268 	unsigned int    irp;   /* 0x52 Interrupt return pointer */
269 	unsigned int    srp;   /* 0x56 Subroutine return pointer */
270 	unsigned int    bar;   /* 0x5A Breakpoint address register */
271 	unsigned int   dccr;   /* 0x5E Double condition code register */
272 	unsigned int    brp;   /* 0x62 Breakpoint return pointer (pc in caller) */
273 	unsigned int    usp;   /* 0x66 User mode stack pointer */
274 } registers;
275 
276 /************** Prototypes for local library functions ***********************/
277 
278 /* Copy of strcpy from libc. */
279 static char *gdb_cris_strcpy (char *s1, const char *s2);
280 
281 /* Copy of strlen from libc. */
282 static int gdb_cris_strlen (const char *s);
283 
284 /* Copy of memchr from libc. */
285 static void *gdb_cris_memchr (const void *s, int c, int n);
286 
287 /* Copy of strtol from libc. Does only support base 16. */
288 static int gdb_cris_strtol (const char *s, char **endptr, int base);
289 
290 /********************** Prototypes for local functions. **********************/
291 /* Copy the content of a register image into another. The size n is
292    the size of the register image. Due to struct assignment generation of
293    memcpy in libc. */
294 static void copy_registers (registers *dptr, registers *sptr, int n);
295 
296 /* Copy the stored registers from the stack. Put the register contents
297    of thread thread_id in the struct reg. */
298 static void copy_registers_from_stack (int thread_id, registers *reg);
299 
300 /* Copy the registers to the stack. Put the register contents of thread
301    thread_id from struct reg to the stack. */
302 static void copy_registers_to_stack (int thread_id, registers *reg);
303 
304 /* Write a value to a specified register regno in the register image
305    of the current thread. */
306 static int write_register (int regno, char *val);
307 
308 /* Write a value to a specified register in the stack of a thread other
309    than the current thread. */
310 static write_stack_register (int thread_id, int regno, char *valptr);
311 
312 /* Read a value from a specified register in the register image. Returns the
313    status of the read operation. The register value is returned in valptr. */
314 static int read_register (char regno, unsigned int *valptr);
315 
316 /* Serial port, reads one character. ETRAX 100 specific. from debugport.c */
317 int getDebugChar (void);
318 
319 /* Serial port, writes one character. ETRAX 100 specific. from debugport.c */
320 void putDebugChar (int val);
321 
322 void enableDebugIRQ (void);
323 
324 /* Returns the character equivalent of a nibble, bit 7, 6, 5, and 4 of a byte,
325    represented by int x. */
326 static char highhex (int x);
327 
328 /* Returns the character equivalent of a nibble, bit 3, 2, 1, and 0 of a byte,
329    represented by int x. */
330 static char lowhex (int x);
331 
332 /* Returns the integer equivalent of a hexadecimal character. */
333 static int hex (char ch);
334 
335 /* Convert the memory, pointed to by mem into hexadecimal representation.
336    Put the result in buf, and return a pointer to the last character
337    in buf (null). */
338 static char *mem2hex (char *buf, unsigned char *mem, int count);
339 
340 /* Convert the array, in hexadecimal representation, pointed to by buf into
341    binary representation. Put the result in mem, and return a pointer to
342    the character after the last byte written. */
343 static unsigned char *hex2mem (unsigned char *mem, char *buf, int count);
344 
345 /* Put the content of the array, in binary representation, pointed to by buf
346    into memory pointed to by mem, and return a pointer to
347    the character after the last byte written. */
348 static unsigned char *bin2mem (unsigned char *mem, unsigned char *buf, int count);
349 
350 /* Await the sequence $<data>#<checksum> and store <data> in the array buffer
351    returned. */
352 static void getpacket (char *buffer);
353 
354 /* Send $<data>#<checksum> from the <data> in the array buffer. */
355 static void putpacket (char *buffer);
356 
357 /* Build and send a response packet in order to inform the host the
358    stub is stopped. */
359 static void stub_is_stopped (int sigval);
360 
361 /* All expected commands are sent from remote.c. Send a response according
362    to the description in remote.c. */
363 static void handle_exception (int sigval);
364 
365 /* Performs a complete re-start from scratch. ETRAX specific. */
366 static void kill_restart (void);
367 
368 /******************** Prototypes for global functions. ***********************/
369 
370 /* The string str is prepended with the GDB printout token and sent. */
371 void putDebugString (const unsigned char *str, int length); /* used by etrax100ser.c */
372 
373 /* The hook for both static (compiled) and dynamic breakpoints set by GDB.
374    ETRAX 100 specific. */
375 void handle_breakpoint (void);                          /* used by irq.c */
376 
377 /* The hook for an interrupt generated by GDB. ETRAX 100 specific. */
378 void handle_interrupt (void);                           /* used by irq.c */
379 
380 /* A static breakpoint to be used at startup. */
381 void breakpoint (void);                                 /* called by init/main.c */
382 
383 /* From osys_int.c, executing_task contains the number of the current
384    executing task in osys. Does not know of object-oriented threads. */
385 extern unsigned char executing_task;
386 
387 /* The number of characters used for a 64 bit thread identifier. */
388 #define HEXCHARS_IN_THREAD_ID 16
389 
390 /* Avoid warning as the internal_stack is not used in the C-code. */
391 #define USEDVAR(name)    { if (name) { ; } }
392 #define USEDFUN(name) { void (*pf)(void) = (void *)name; USEDVAR(pf) }
393 
394 /********************************** Packet I/O ******************************/
395 /* BUFMAX defines the maximum number of characters in
396    inbound/outbound buffers */
397 #define BUFMAX 512
398 
399 /* Run-length encoding maximum length. Send 64 at most. */
400 #define RUNLENMAX 64
401 
402 /* Definition of all valid hexadecimal characters */
403 static const char hexchars[] = "0123456789abcdef";
404 
405 /* The inbound/outbound buffers used in packet I/O */
406 static char remcomInBuffer[BUFMAX];
407 static char remcomOutBuffer[BUFMAX];
408 
409 /* Error and warning messages. */
410 enum error_type
411 {
412 	SUCCESS, E01, E02, E03, E04, E05, E06, E07
413 };
414 static char *error_message[] =
415 {
416 	"",
417 	"E01 Set current or general thread - H[c,g] - internal error.",
418 	"E02 Change register content - P - cannot change read-only register.",
419 	"E03 Thread is not alive.", /* T, not used. */
420 	"E04 The command is not supported - [s,C,S,!,R,d,r] - internal error.",
421 	"E05 Change register content - P - the register is not implemented..",
422 	"E06 Change memory content - M - internal error.",
423 	"E07 Change register content - P - the register is not stored on the stack"
424 };
425 /********************************* Register image ****************************/
426 /* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
427    Reference", p. 1-1, with the additional register definitions of the
428    ETRAX 100LX in cris-opc.h.
429    There are 16 general 32-bit registers, R0-R15, where R14 is the stack
430    pointer, SP, and R15 is the program counter, PC.
431    There are 16 special registers, P0-P15, where three of the unimplemented
432    registers, P0, P4 and P8, are reserved as zero-registers. A read from
433    any of these registers returns zero and a write has no effect. */
434 enum register_name
435 {
436 	R0,  R1,   R2,  R3,
437 	R4,  R5,   R6,  R7,
438 	R8,  R9,   R10, R11,
439 	R12, R13,  SP,  PC,
440 	P0,  VR,   P2,  P3,
441 	P4,  CCR,  P6,  MOF,
442 	P8,  IBR,  IRP, SRP,
443 	BAR, DCCR, BRP, USP
444 };
445 
446 /* The register sizes of the registers in register_name. An unimplemented register
447    is designated by size 0 in this array. */
448 static int register_size[] =
449 {
450 	4, 4, 4, 4,
451 	4, 4, 4, 4,
452 	4, 4, 4, 4,
453 	4, 4, 4, 4,
454 	1, 1, 0, 0,
455 	2, 2, 0, 4,
456 	4, 4, 4, 4,
457 	4, 4, 4, 4
458 };
459 
460 /* Contains the register image of the executing thread in the assembler
461    part of the code in order to avoid horrible addressing modes. */
462 static registers reg;
463 
464 /* FIXME: Should this be used? Delete otherwise. */
465 /* Contains the assumed consistency state of the register image. Uses the
466    enum error_type for state information. */
467 static int consistency_status = SUCCESS;
468 
469 /********************************** Handle exceptions ************************/
470 /* The variable reg contains the register image associated with the
471    current_thread_c variable. It is a complete register image created at
472    entry. The reg_g contains a register image of a task where the general
473    registers are taken from the stack and all special registers are taken
474    from the executing task. It is associated with current_thread_g and used
475    in order to provide access mainly for 'g', 'G' and 'P'.
476 */
477 
478 /* Need two task id pointers in order to handle Hct and Hgt commands. */
479 static int current_thread_c = 0;
480 static int current_thread_g = 0;
481 
482 /* Need two register images in order to handle Hct and Hgt commands. The
483    variable reg_g is in addition to reg above. */
484 static registers reg_g;
485 
486 /********************************** Breakpoint *******************************/
487 /* Use an internal stack in the breakpoint and interrupt response routines */
488 #define INTERNAL_STACK_SIZE 1024
489 static char internal_stack[INTERNAL_STACK_SIZE];
490 
491 /* Due to the breakpoint return pointer, a state variable is needed to keep
492    track of whether it is a static (compiled) or dynamic (gdb-invoked)
493    breakpoint to be handled. A static breakpoint uses the content of register
494    BRP as it is whereas a dynamic breakpoint requires subtraction with 2
495    in order to execute the instruction. The first breakpoint is static. */
496 static unsigned char is_dyn_brkp = 0;
497 
498 /********************************* String library ****************************/
499 /* Single-step over library functions creates trap loops. */
500 
501 /* Copy char s2[] to s1[]. */
502 static char*
gdb_cris_strcpy(char * s1,const char * s2)503 gdb_cris_strcpy (char *s1, const char *s2)
504 {
505 	char *s = s1;
506 
507 	for (s = s1; (*s++ = *s2++) != '\0'; )
508 		;
509 	return (s1);
510 }
511 
512 /* Find length of s[]. */
513 static int
gdb_cris_strlen(const char * s)514 gdb_cris_strlen (const char *s)
515 {
516 	const char *sc;
517 
518 	for (sc = s; *sc != '\0'; sc++)
519 		;
520 	return (sc - s);
521 }
522 
523 /* Find first occurrence of c in s[n]. */
524 static void*
gdb_cris_memchr(const void * s,int c,int n)525 gdb_cris_memchr (const void *s, int c, int n)
526 {
527 	const unsigned char uc = c;
528 	const unsigned char *su;
529 
530 	for (su = s; 0 < n; ++su, --n)
531 		if (*su == uc)
532 			return ((void *)su);
533 	return (NULL);
534 }
535 /******************************* Standard library ****************************/
536 /* Single-step over library functions creates trap loops. */
537 /* Convert string to long. */
538 static int
gdb_cris_strtol(const char * s,char ** endptr,int base)539 gdb_cris_strtol (const char *s, char **endptr, int base)
540 {
541 	char *s1;
542 	char *sd;
543 	int x = 0;
544 
545 	for (s1 = (char*)s; (sd = gdb_cris_memchr(hexchars, *s1, base)) != NULL; ++s1)
546 		x = x * base + (sd - hexchars);
547 
548         if (endptr)
549         {
550                 /* Unconverted suffix is stored in endptr unless endptr is NULL. */
551                 *endptr = s1;
552         }
553 
554 	return x;
555 }
556 
557 int
double_this(int x)558 double_this(int x)
559 {
560         return 2 * x;
561 }
562 
563 /********************************* Register image ****************************/
564 /* Copy the content of a register image into another. The size n is
565    the size of the register image. Due to struct assignment generation of
566    memcpy in libc. */
567 static void
copy_registers(registers * dptr,registers * sptr,int n)568 copy_registers (registers *dptr, registers *sptr, int n)
569 {
570 	unsigned char *dreg;
571 	unsigned char *sreg;
572 
573 	for (dreg = (unsigned char*)dptr, sreg = (unsigned char*)sptr; n > 0; n--)
574 		*dreg++ = *sreg++;
575 }
576 
577 #ifdef PROCESS_SUPPORT
578 /* Copy the stored registers from the stack. Put the register contents
579    of thread thread_id in the struct reg. */
580 static void
copy_registers_from_stack(int thread_id,registers * regptr)581 copy_registers_from_stack (int thread_id, registers *regptr)
582 {
583 	int j;
584 	stack_registers *s = (stack_registers *)stack_list[thread_id];
585 	unsigned int *d = (unsigned int *)regptr;
586 
587 	for (j = 13; j >= 0; j--)
588 		*d++ = s->r[j];
589 	regptr->sp = (unsigned int)stack_list[thread_id];
590 	regptr->pc = s->pc;
591 	regptr->dccr = s->dccr;
592 	regptr->srp = s->srp;
593 }
594 
595 /* Copy the registers to the stack. Put the register contents of thread
596    thread_id from struct reg to the stack. */
597 static void
copy_registers_to_stack(int thread_id,registers * regptr)598 copy_registers_to_stack (int thread_id, registers *regptr)
599 {
600 	int i;
601 	stack_registers *d = (stack_registers *)stack_list[thread_id];
602 	unsigned int *s = (unsigned int *)regptr;
603 
604 	for (i = 0; i < 14; i++) {
605 		d->r[i] = *s++;
606 	}
607 	d->pc = regptr->pc;
608 	d->dccr = regptr->dccr;
609 	d->srp = regptr->srp;
610 }
611 #endif
612 
613 /* Write a value to a specified register in the register image of the current
614    thread. Returns status code SUCCESS, E02 or E05. */
615 static int
write_register(int regno,char * val)616 write_register (int regno, char *val)
617 {
618 	int status = SUCCESS;
619 	registers *current_reg = &reg;
620 
621         if (regno >= R0 && regno <= PC) {
622 		/* 32-bit register with simple offset. */
623 		hex2mem ((unsigned char *)current_reg + regno * sizeof(unsigned int),
624 			 val, sizeof(unsigned int));
625 	}
626         else if (regno == P0 || regno == VR || regno == P4 || regno == P8) {
627 		/* Do not support read-only registers. */
628 		status = E02;
629 	}
630         else if (regno == CCR) {
631 		/* 16 bit register with complex offset. (P4 is read-only, P6 is not implemented,
632                    and P7 (MOF) is 32 bits in ETRAX 100LX. */
633 		hex2mem ((unsigned char *)&(current_reg->ccr) + (regno-CCR) * sizeof(unsigned short),
634 			 val, sizeof(unsigned short));
635 	}
636 	else if (regno >= MOF && regno <= USP) {
637 		/* 32 bit register with complex offset.  (P8 has been taken care of.) */
638 		hex2mem ((unsigned char *)&(current_reg->ibr) + (regno-IBR) * sizeof(unsigned int),
639 			 val, sizeof(unsigned int));
640 	}
641         else {
642 		/* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
643 		status = E05;
644 	}
645 	return status;
646 }
647 
648 #ifdef PROCESS_SUPPORT
649 /* Write a value to a specified register in the stack of a thread other
650    than the current thread. Returns status code SUCCESS or E07. */
651 static int
write_stack_register(int thread_id,int regno,char * valptr)652 write_stack_register (int thread_id, int regno, char *valptr)
653 {
654 	int status = SUCCESS;
655 	stack_registers *d = (stack_registers *)stack_list[thread_id];
656 	unsigned int val;
657 
658 	hex2mem ((unsigned char *)&val, valptr, sizeof(unsigned int));
659 	if (regno >= R0 && regno < SP) {
660 		d->r[regno] = val;
661 	}
662 	else if (regno == SP) {
663 		stack_list[thread_id] = val;
664 	}
665 	else if (regno == PC) {
666 		d->pc = val;
667 	}
668 	else if (regno == SRP) {
669 		d->srp = val;
670 	}
671 	else if (regno == DCCR) {
672 		d->dccr = val;
673 	}
674 	else {
675 		/* Do not support registers in the current thread. */
676 		status = E07;
677 	}
678 	return status;
679 }
680 #endif
681 
682 /* Read a value from a specified register in the register image. Returns the
683    value in the register or -1 for non-implemented registers.
684    Should check consistency_status after a call which may be E05 after changes
685    in the implementation. */
686 static int
read_register(char regno,unsigned int * valptr)687 read_register (char regno, unsigned int *valptr)
688 {
689 	registers *current_reg = &reg;
690 
691 	if (regno >= R0 && regno <= PC) {
692 		/* 32-bit register with simple offset. */
693 		*valptr = *(unsigned int *)((char *)current_reg + regno * sizeof(unsigned int));
694                 return SUCCESS;
695 	}
696 	else if (regno == P0 || regno == VR) {
697 		/* 8 bit register with complex offset. */
698 		*valptr = (unsigned int)(*(unsigned char *)
699                                          ((char *)&(current_reg->p0) + (regno-P0) * sizeof(char)));
700                 return SUCCESS;
701 	}
702 	else if (regno == P4 || regno == CCR) {
703 		/* 16 bit register with complex offset. */
704 		*valptr = (unsigned int)(*(unsigned short *)
705                                          ((char *)&(current_reg->p4) + (regno-P4) * sizeof(unsigned short)));
706                 return SUCCESS;
707 	}
708 	else if (regno >= MOF && regno <= USP) {
709 		/* 32 bit register with complex offset. */
710 		*valptr = *(unsigned int *)((char *)&(current_reg->p8)
711                                             + (regno-P8) * sizeof(unsigned int));
712                 return SUCCESS;
713 	}
714 	else {
715 		/* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
716 		consistency_status = E05;
717 		return E05;
718 	}
719 }
720 
721 /********************************** Packet I/O ******************************/
722 /* Returns the character equivalent of a nibble, bit 7, 6, 5, and 4 of a byte,
723    represented by int x. */
724 static inline char
highhex(int x)725 highhex(int x)
726 {
727 	return hexchars[(x >> 4) & 0xf];
728 }
729 
730 /* Returns the character equivalent of a nibble, bit 3, 2, 1, and 0 of a byte,
731    represented by int x. */
732 static inline char
lowhex(int x)733 lowhex(int x)
734 {
735 	return hexchars[x & 0xf];
736 }
737 
738 /* Returns the integer equivalent of a hexadecimal character. */
739 static int
hex(char ch)740 hex (char ch)
741 {
742 	if ((ch >= 'a') && (ch <= 'f'))
743 		return (ch - 'a' + 10);
744 	if ((ch >= '0') && (ch <= '9'))
745 		return (ch - '0');
746 	if ((ch >= 'A') && (ch <= 'F'))
747 		return (ch - 'A' + 10);
748 	return (-1);
749 }
750 
751 /* Convert the memory, pointed to by mem into hexadecimal representation.
752    Put the result in buf, and return a pointer to the last character
753    in buf (null). */
754 
755 static int do_printk = 0;
756 
757 static char *
mem2hex(char * buf,unsigned char * mem,int count)758 mem2hex(char *buf, unsigned char *mem, int count)
759 {
760 	int i;
761 	int ch;
762 
763         if (mem == NULL) {
764                 /* Bogus read from m0. FIXME: What constitutes a valid address? */
765                 for (i = 0; i < count; i++) {
766                         *buf++ = '0';
767                         *buf++ = '0';
768                 }
769         } else {
770                 /* Valid mem address. */
771                 for (i = 0; i < count; i++) {
772                         ch = *mem++;
773                         *buf++ = highhex (ch);
774                         *buf++ = lowhex (ch);
775                 }
776         }
777 
778         /* Terminate properly. */
779 	*buf = '\0';
780 	return (buf);
781 }
782 
783 /* Convert the array, in hexadecimal representation, pointed to by buf into
784    binary representation. Put the result in mem, and return a pointer to
785    the character after the last byte written. */
786 static unsigned char*
hex2mem(unsigned char * mem,char * buf,int count)787 hex2mem (unsigned char *mem, char *buf, int count)
788 {
789 	int i;
790 	unsigned char ch;
791 	for (i = 0; i < count; i++) {
792 		ch = hex (*buf++) << 4;
793 		ch = ch + hex (*buf++);
794 		*mem++ = ch;
795 	}
796 	return (mem);
797 }
798 
799 /* Put the content of the array, in binary representation, pointed to by buf
800    into memory pointed to by mem, and return a pointer to the character after
801    the last byte written.
802    Gdb will escape $, #, and the escape char (0x7d). */
803 static unsigned char*
bin2mem(unsigned char * mem,unsigned char * buf,int count)804 bin2mem (unsigned char *mem, unsigned char *buf, int count)
805 {
806 	int i;
807 	unsigned char *next;
808 	for (i = 0; i < count; i++) {
809 		/* Check for any escaped characters. Be paranoid and
810 		   only unescape chars that should be escaped. */
811 		if (*buf == 0x7d) {
812 			next = buf + 1;
813 			if (*next == 0x3 || *next == 0x4 || *next == 0x5D) /* #, $, ESC */
814 				{
815 					buf++;
816 					*buf += 0x20;
817 				}
818 		}
819 		*mem++ = *buf++;
820 	}
821 	return (mem);
822 }
823 
824 /* Await the sequence $<data>#<checksum> and store <data> in the array buffer
825    returned. */
826 static void
getpacket(char * buffer)827 getpacket (char *buffer)
828 {
829 	unsigned char checksum;
830 	unsigned char xmitcsum;
831 	int i;
832 	int count;
833 	char ch;
834 	do {
835 		while ((ch = getDebugChar ()) != '$')
836 			/* Wait for the start character $ and ignore all other characters */;
837 		checksum = 0;
838 		xmitcsum = -1;
839 		count = 0;
840 		/* Read until a # or the end of the buffer is reached */
841 		while (count < BUFMAX) {
842 			ch = getDebugChar ();
843 			if (ch == '#')
844 				break;
845 			checksum = checksum + ch;
846 			buffer[count] = ch;
847 			count = count + 1;
848 		}
849 		buffer[count] = '\0';
850 
851 		if (ch == '#') {
852 			xmitcsum = hex (getDebugChar ()) << 4;
853 			xmitcsum += hex (getDebugChar ());
854 			if (checksum != xmitcsum) {
855 				/* Wrong checksum */
856 				putDebugChar ('-');
857 			}
858 			else {
859 				/* Correct checksum */
860 				putDebugChar ('+');
861 				/* If sequence characters are received, reply with them */
862 				if (buffer[2] == ':') {
863 					putDebugChar (buffer[0]);
864 					putDebugChar (buffer[1]);
865 					/* Remove the sequence characters from the buffer */
866 					count = gdb_cris_strlen (buffer);
867 					for (i = 3; i <= count; i++)
868 						buffer[i - 3] = buffer[i];
869 				}
870 			}
871 		}
872 	} while (checksum != xmitcsum);
873 }
874 
875 /* Send $<data>#<checksum> from the <data> in the array buffer. */
876 
877 static void
putpacket(char * buffer)878 putpacket(char *buffer)
879 {
880 	int checksum;
881 	int runlen;
882 	int encode;
883 
884 	do {
885 		char *src = buffer;
886 		putDebugChar ('$');
887 		checksum = 0;
888 		while (*src) {
889 			/* Do run length encoding */
890 			putDebugChar (*src);
891 			checksum += *src;
892 			runlen = 0;
893 			while (runlen < RUNLENMAX && *src == src[runlen]) {
894 				runlen++;
895 			}
896 			if (runlen > 3) {
897 				/* Got a useful amount */
898 				putDebugChar ('*');
899 				checksum += '*';
900 				encode = runlen + ' ' - 4;
901 				putDebugChar (encode);
902 				checksum += encode;
903 				src += runlen;
904 			}
905 			else {
906 				src++;
907 			}
908 		}
909 		putDebugChar ('#');
910 		putDebugChar (highhex (checksum));
911 		putDebugChar (lowhex (checksum));
912 	} while(kgdb_started && (getDebugChar() != '+'));
913 }
914 
915 /* The string str is prepended with the GDB printout token and sent. Required
916    in traditional implementations. */
917 void
putDebugString(const unsigned char * str,int length)918 putDebugString (const unsigned char *str, int length)
919 {
920         remcomOutBuffer[0] = 'O';
921         mem2hex(&remcomOutBuffer[1], (unsigned char *)str, length);
922         putpacket(remcomOutBuffer);
923 }
924 
925 /********************************** Handle exceptions ************************/
926 /* Build and send a response packet in order to inform the host the
927    stub is stopped. TAAn...:r...;n...:r...;n...:r...;
928                     AA = signal number
929                     n... = register number (hex)
930                     r... = register contents
931                     n... = `thread'
932                     r... = thread process ID.  This is a hex integer.
933                     n... = other string not starting with valid hex digit.
934                     gdb should ignore this n,r pair and go on to the next.
935                     This way we can extend the protocol. */
936 static void
stub_is_stopped(int sigval)937 stub_is_stopped(int sigval)
938 {
939 	char *ptr = remcomOutBuffer;
940 	int regno;
941 
942 	unsigned int reg_cont;
943 	int status;
944 
945 	/* Send trap type (converted to signal) */
946 
947 	*ptr++ = 'T';
948 	*ptr++ = highhex (sigval);
949 	*ptr++ = lowhex (sigval);
950 
951 	/* Send register contents. We probably only need to send the
952 	 * PC, frame pointer and stack pointer here. Other registers will be
953 	 * explicitely asked for. But for now, send all.
954 	 */
955 
956 	for (regno = R0; regno <= USP; regno++) {
957 		/* Store n...:r...; for the registers in the buffer. */
958 
959                 status = read_register (regno, &reg_cont);
960 
961 		if (status == SUCCESS) {
962 
963                         *ptr++ = highhex (regno);
964                         *ptr++ = lowhex (regno);
965                         *ptr++ = ':';
966 
967                         ptr = mem2hex(ptr, (unsigned char *)&reg_cont,
968                                       register_size[regno]);
969                         *ptr++ = ';';
970                 }
971 
972 	}
973 
974 #ifdef PROCESS_SUPPORT
975 	/* Store the registers of the executing thread. Assume that both step,
976 	   continue, and register content requests are with respect to this
977 	   thread. The executing task is from the operating system scheduler. */
978 
979 	current_thread_c = executing_task;
980 	current_thread_g = executing_task;
981 
982 	/* A struct assignment translates into a libc memcpy call. Avoid
983 	   all libc functions in order to prevent recursive break points. */
984 	copy_registers (&reg_g, &reg, sizeof(registers));
985 
986 	/* Store thread:r...; with the executing task TID. */
987 	gdb_cris_strcpy (&remcomOutBuffer[pos], "thread:");
988 	pos += gdb_cris_strlen ("thread:");
989 	remcomOutBuffer[pos++] = highhex (executing_task);
990 	remcomOutBuffer[pos++] = lowhex (executing_task);
991 	gdb_cris_strcpy (&remcomOutBuffer[pos], ";");
992 #endif
993 
994 	/* null-terminate and send it off */
995 
996 	*ptr = 0;
997 
998 	putpacket (remcomOutBuffer);
999 }
1000 
1001 /* All expected commands are sent from remote.c. Send a response according
1002    to the description in remote.c. */
1003 static void
handle_exception(int sigval)1004 handle_exception (int sigval)
1005 {
1006 	/* Avoid warning of not used. */
1007 
1008 	USEDFUN(handle_exception);
1009 	USEDVAR(internal_stack[0]);
1010 
1011 	/* Send response. */
1012 
1013 	stub_is_stopped (sigval);
1014 
1015 	for (;;) {
1016 		remcomOutBuffer[0] = '\0';
1017 		getpacket (remcomInBuffer);
1018 		switch (remcomInBuffer[0]) {
1019 			case 'g':
1020 				/* Read registers: g
1021 				   Success: Each byte of register data is described by two hex digits.
1022 				   Registers are in the internal order for GDB, and the bytes
1023 				   in a register  are in the same order the machine uses.
1024 				   Failure: void. */
1025 
1026 				{
1027 #ifdef PROCESS_SUPPORT
1028 					/* Use the special register content in the executing thread. */
1029 					copy_registers (&reg_g, &reg, sizeof(registers));
1030 					/* Replace the content available on the stack. */
1031 					if (current_thread_g != executing_task) {
1032 						copy_registers_from_stack (current_thread_g, &reg_g);
1033 					}
1034 					mem2hex ((unsigned char *)remcomOutBuffer, (unsigned char *)&reg_g, sizeof(registers));
1035 #else
1036 					mem2hex(remcomOutBuffer, (char *)&reg, sizeof(registers));
1037 #endif
1038 				}
1039 				break;
1040 
1041 			case 'G':
1042 				/* Write registers. GXX..XX
1043 				   Each byte of register data  is described by two hex digits.
1044 				   Success: OK
1045 				   Failure: void. */
1046 #ifdef PROCESS_SUPPORT
1047 				hex2mem ((unsigned char *)&reg_g, &remcomInBuffer[1], sizeof(registers));
1048 				if (current_thread_g == executing_task) {
1049 					copy_registers (&reg, &reg_g, sizeof(registers));
1050 				}
1051 				else {
1052 					copy_registers_to_stack(current_thread_g, &reg_g);
1053 				}
1054 #else
1055 				hex2mem((char *)&reg, &remcomInBuffer[1], sizeof(registers));
1056 #endif
1057 				gdb_cris_strcpy (remcomOutBuffer, "OK");
1058 				break;
1059 
1060 			case 'P':
1061 				/* Write register. Pn...=r...
1062 				   Write register n..., hex value without 0x, with value r...,
1063 				   which contains a hex value without 0x and two hex digits
1064 				   for each byte in the register (target byte order). P1f=11223344 means
1065 				   set register 31 to 44332211.
1066 				   Success: OK
1067 				   Failure: E02, E05 */
1068 				{
1069 					char *suffix;
1070 					int regno = gdb_cris_strtol (&remcomInBuffer[1], &suffix, 16);
1071 					int status;
1072 #ifdef PROCESS_SUPPORT
1073 					if (current_thread_g != executing_task)
1074 						status = write_stack_register (current_thread_g, regno, suffix+1);
1075 					else
1076 #endif
1077 						status = write_register (regno, suffix+1);
1078 
1079 					switch (status) {
1080 						case E02:
1081 							/* Do not support read-only registers. */
1082 							gdb_cris_strcpy (remcomOutBuffer, error_message[E02]);
1083 							break;
1084 						case E05:
1085 							/* Do not support non-existing registers. */
1086 							gdb_cris_strcpy (remcomOutBuffer, error_message[E05]);
1087 							break;
1088 						case E07:
1089 							/* Do not support non-existing registers on the stack. */
1090 							gdb_cris_strcpy (remcomOutBuffer, error_message[E07]);
1091 							break;
1092 						default:
1093 							/* Valid register number. */
1094 							gdb_cris_strcpy (remcomOutBuffer, "OK");
1095 							break;
1096 					}
1097 				}
1098 				break;
1099 
1100 			case 'm':
1101 				/* Read from memory. mAA..AA,LLLL
1102 				   AA..AA is the address and LLLL is the length.
1103 				   Success: XX..XX is the memory content.  Can be fewer bytes than
1104 				   requested if only part of the data may be read. m6000120a,6c means
1105 				   retrieve 108 byte from base address 6000120a.
1106 				   Failure: void. */
1107 				{
1108                                         char *suffix;
1109 					unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
1110                                                                                                &suffix, 16);                                        int length = gdb_cris_strtol(suffix+1, 0, 16);
1111 
1112                                         mem2hex(remcomOutBuffer, addr, length);
1113                                 }
1114 				break;
1115 
1116 			case 'X':
1117 				/* Write to memory. XAA..AA,LLLL:XX..XX
1118 				   AA..AA is the start address,  LLLL is the number of bytes, and
1119 				   XX..XX is the binary data.
1120 				   Success: OK
1121 				   Failure: void. */
1122 			case 'M':
1123 				/* Write to memory. MAA..AA,LLLL:XX..XX
1124 				   AA..AA is the start address,  LLLL is the number of bytes, and
1125 				   XX..XX is the hexadecimal data.
1126 				   Success: OK
1127 				   Failure: void. */
1128 				{
1129 					char *lenptr;
1130 					char *dataptr;
1131 					unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
1132 										      &lenptr, 16);
1133 					int length = gdb_cris_strtol(lenptr+1, &dataptr, 16);
1134 					if (*lenptr == ',' && *dataptr == ':') {
1135 						if (remcomInBuffer[0] == 'M') {
1136 							hex2mem(addr, dataptr + 1, length);
1137 						}
1138 						else /* X */ {
1139 							bin2mem(addr, dataptr + 1, length);
1140 						}
1141 						gdb_cris_strcpy (remcomOutBuffer, "OK");
1142 					}
1143 					else {
1144 						gdb_cris_strcpy (remcomOutBuffer, error_message[E06]);
1145 					}
1146 				}
1147 				break;
1148 
1149 			case 'c':
1150 				/* Continue execution. cAA..AA
1151 				   AA..AA is the address where execution is resumed. If AA..AA is
1152 				   omitted, resume at the present address.
1153 				   Success: return to the executing thread.
1154 				   Failure: will never know. */
1155 				if (remcomInBuffer[1] != '\0') {
1156 					reg.pc = gdb_cris_strtol (&remcomInBuffer[1], 0, 16);
1157 				}
1158 				enableDebugIRQ();
1159 				return;
1160 
1161 			case 's':
1162 				/* Step. sAA..AA
1163 				   AA..AA is the address where execution is resumed. If AA..AA is
1164 				   omitted, resume at the present address. Success: return to the
1165 				   executing thread. Failure: will never know.
1166 
1167 				   Should never be invoked. The single-step is implemented on
1168 				   the host side. If ever invoked, it is an internal error E04. */
1169 				gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
1170 				putpacket (remcomOutBuffer);
1171 				return;
1172 
1173 			case '?':
1174 				/* The last signal which caused a stop. ?
1175 				   Success: SAA, where AA is the signal number.
1176 				   Failure: void. */
1177 				remcomOutBuffer[0] = 'S';
1178 				remcomOutBuffer[1] = highhex (sigval);
1179 				remcomOutBuffer[2] = lowhex (sigval);
1180 				remcomOutBuffer[3] = 0;
1181 				break;
1182 
1183 			case 'D':
1184 				/* Detach from host. D
1185 				   Success: OK, and return to the executing thread.
1186 				   Failure: will never know */
1187 				putpacket ("OK");
1188 				return;
1189 
1190 			case 'k':
1191 			case 'r':
1192 				/* kill request or reset request.
1193 				   Success: restart of target.
1194 				   Failure: will never know. */
1195 				kill_restart ();
1196 				break;
1197 
1198 			case 'C':
1199 			case 'S':
1200 			case '!':
1201 			case 'R':
1202 			case 'd':
1203 				/* Continue with signal sig. Csig;AA..AA
1204 				   Step with signal sig. Ssig;AA..AA
1205 				   Use the extended remote protocol. !
1206 				   Restart the target system. R0
1207 				   Toggle debug flag. d
1208 				   Search backwards. tAA:PP,MM
1209 				   Not supported: E04 */
1210 				gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
1211 				break;
1212 #ifdef PROCESS_SUPPORT
1213 
1214 			case 'T':
1215 				/* Thread alive. TXX
1216 				   Is thread XX alive?
1217 				   Success: OK, thread XX is alive.
1218 				   Failure: E03, thread XX is dead. */
1219 				{
1220 					int thread_id = (int)gdb_cris_strtol (&remcomInBuffer[1], 0, 16);
1221 					/* Cannot tell whether it is alive or not. */
1222 					if (thread_id >= 0 && thread_id < number_of_tasks)
1223 						gdb_cris_strcpy (remcomOutBuffer, "OK");
1224 				}
1225 				break;
1226 
1227 			case 'H':
1228 				/* Set thread for subsequent operations: Hct
1229 				   c = 'c' for thread used in step and continue;
1230 				   t can be -1 for all threads.
1231 				   c = 'g' for thread used in other  operations.
1232 				   t = 0 means pick any thread.
1233 				   Success: OK
1234 				   Failure: E01 */
1235 				{
1236 					int thread_id = gdb_cris_strtol (&remcomInBuffer[2], 0, 16);
1237 					if (remcomInBuffer[1] == 'c') {
1238 						/* c = 'c' for thread used in step and continue */
1239 						/* Do not change current_thread_c here. It would create a mess in
1240 						   the scheduler. */
1241 						gdb_cris_strcpy (remcomOutBuffer, "OK");
1242 					}
1243 					else if (remcomInBuffer[1] == 'g') {
1244 						/* c = 'g' for thread used in other  operations.
1245 						   t = 0 means pick any thread. Impossible since the scheduler does
1246 						   not allow that. */
1247 						if (thread_id >= 0 && thread_id < number_of_tasks) {
1248 							current_thread_g = thread_id;
1249 							gdb_cris_strcpy (remcomOutBuffer, "OK");
1250 						}
1251 						else {
1252 							/* Not expected - send an error message. */
1253 							gdb_cris_strcpy (remcomOutBuffer, error_message[E01]);
1254 						}
1255 					}
1256 					else {
1257 						/* Not expected - send an error message. */
1258 						gdb_cris_strcpy (remcomOutBuffer, error_message[E01]);
1259 					}
1260 				}
1261 				break;
1262 
1263 			case 'q':
1264 			case 'Q':
1265 				/* Query of general interest. qXXXX
1266 				   Set general value XXXX. QXXXX=yyyy */
1267 				{
1268 					int pos;
1269 					int nextpos;
1270 					int thread_id;
1271 
1272 					switch (remcomInBuffer[1]) {
1273 						case 'C':
1274 							/* Identify the remote current thread. */
1275 							gdb_cris_strcpy (&remcomOutBuffer[0], "QC");
1276 							remcomOutBuffer[2] = highhex (current_thread_c);
1277 							remcomOutBuffer[3] = lowhex (current_thread_c);
1278 							remcomOutBuffer[4] = '\0';
1279 							break;
1280 						case 'L':
1281 							gdb_cris_strcpy (&remcomOutBuffer[0], "QM");
1282 							/* Reply with number of threads. */
1283 							if (os_is_started()) {
1284 								remcomOutBuffer[2] = highhex (number_of_tasks);
1285 								remcomOutBuffer[3] = lowhex (number_of_tasks);
1286 							}
1287 							else {
1288 								remcomOutBuffer[2] = highhex (0);
1289 								remcomOutBuffer[3] = lowhex (1);
1290 							}
1291 							/* Done with the reply. */
1292 							remcomOutBuffer[4] = lowhex (1);
1293 							pos = 5;
1294 							/* Expects the argument thread id. */
1295 							for (; pos < (5 + HEXCHARS_IN_THREAD_ID); pos++)
1296 								remcomOutBuffer[pos] = remcomInBuffer[pos];
1297 							/* Reply with the thread identifiers. */
1298 							if (os_is_started()) {
1299 								/* Store the thread identifiers of all tasks. */
1300 								for (thread_id = 0; thread_id < number_of_tasks; thread_id++) {
1301 									nextpos = pos + HEXCHARS_IN_THREAD_ID - 1;
1302 									for (; pos < nextpos; pos ++)
1303 										remcomOutBuffer[pos] = lowhex (0);
1304 									remcomOutBuffer[pos++] = lowhex (thread_id);
1305 								}
1306 							}
1307 							else {
1308 								/* Store the thread identifier of the boot task. */
1309 								nextpos = pos + HEXCHARS_IN_THREAD_ID - 1;
1310 								for (; pos < nextpos; pos ++)
1311 									remcomOutBuffer[pos] = lowhex (0);
1312 								remcomOutBuffer[pos++] = lowhex (current_thread_c);
1313 							}
1314 							remcomOutBuffer[pos] = '\0';
1315 							break;
1316 						default:
1317 							/* Not supported: "" */
1318 							/* Request information about section offsets: qOffsets. */
1319 							remcomOutBuffer[0] = 0;
1320 							break;
1321 					}
1322 				}
1323 				break;
1324 #endif /* PROCESS_SUPPORT */
1325 
1326 			default:
1327 				/* The stub should ignore other request and send an empty
1328 				   response ($#<checksum>). This way we can extend the protocol and GDB
1329 				   can tell whether the stub it is talking to uses the old or the new. */
1330 				remcomOutBuffer[0] = 0;
1331 				break;
1332 		}
1333 		putpacket(remcomOutBuffer);
1334 	}
1335 }
1336 
1337 /* The jump is to the address 0x00000002. Performs a complete re-start
1338    from scratch. */
1339 static void
kill_restart()1340 kill_restart ()
1341 {
1342 	__asm__ volatile ("jump 2");
1343 }
1344 
1345 /********************************** Breakpoint *******************************/
1346 /* The hook for both a static (compiled) and a dynamic breakpoint set by GDB.
1347    An internal stack is used by the stub. The register image of the caller is
1348    stored in the structure register_image.
1349    Interactive communication with the host is handled by handle_exception and
1350    finally the register image is restored. */
1351 
1352 void kgdb_handle_breakpoint(void);
1353 
1354 asm ("
1355   .global kgdb_handle_breakpoint
1356 kgdb_handle_breakpoint:
1357 ;;
1358 ;; Response to the break-instruction
1359 ;;
1360 ;; Create a register image of the caller
1361 ;;
1362   move     $dccr,[reg+0x5E] ; Save the flags in DCCR before disable interrupts
1363   di                        ; Disable interrupts
1364   move.d   $r0,[reg]        ; Save R0
1365   move.d   $r1,[reg+0x04]   ; Save R1
1366   move.d   $r2,[reg+0x08]   ; Save R2
1367   move.d   $r3,[reg+0x0C]   ; Save R3
1368   move.d   $r4,[reg+0x10]   ; Save R4
1369   move.d   $r5,[reg+0x14]   ; Save R5
1370   move.d   $r6,[reg+0x18]   ; Save R6
1371   move.d   $r7,[reg+0x1C]   ; Save R7
1372   move.d   $r8,[reg+0x20]   ; Save R8
1373   move.d   $r9,[reg+0x24]   ; Save R9
1374   move.d   $r10,[reg+0x28]  ; Save R10
1375   move.d   $r11,[reg+0x2C]  ; Save R11
1376   move.d   $r12,[reg+0x30]  ; Save R12
1377   move.d   $r13,[reg+0x34]  ; Save R13
1378   move.d   $sp,[reg+0x38]   ; Save SP (R14)
1379 ;; Due to the old assembler-versions BRP might not be recognized
1380   .word 0xE670              ; move brp,$r0
1381   subq     2,$r0             ; Set to address of previous instruction.
1382   move.d   $r0,[reg+0x3c]   ; Save the address in PC (R15)
1383   clear.b  [reg+0x40]      ; Clear P0
1384   move     $vr,[reg+0x41]   ; Save special register P1
1385   clear.w  [reg+0x42]      ; Clear P4
1386   move     $ccr,[reg+0x44]  ; Save special register CCR
1387   move     $mof,[reg+0x46]  ; P7
1388   clear.d  [reg+0x4A]      ; Clear P8
1389   move     $ibr,[reg+0x4E]  ; P9,
1390   move     $irp,[reg+0x52]  ; P10,
1391   move     $srp,[reg+0x56]  ; P11,
1392   move     $dtp0,[reg+0x5A] ; P12, register BAR, assembler might not know BAR
1393                             ; P13, register DCCR already saved
1394 ;; Due to the old assembler-versions BRP might not be recognized
1395   .word 0xE670              ; move brp,r0
1396 ;; Static (compiled) breakpoints must return to the next instruction in order
1397 ;; to avoid infinite loops. Dynamic (gdb-invoked) must restore the instruction
1398 ;; in order to execute it when execution is continued.
1399   test.b   [is_dyn_brkp]    ; Is this a dynamic breakpoint?
1400   beq      is_static         ; No, a static breakpoint
1401   nop
1402   subq     2,$r0              ; rerun the instruction the break replaced
1403 is_static:
1404   moveq    1,$r1
1405   move.b   $r1,[is_dyn_brkp] ; Set the state variable to dynamic breakpoint
1406   move.d   $r0,[reg+0x62]    ; Save the return address in BRP
1407   move     $usp,[reg+0x66]   ; USP
1408 ;;
1409 ;; Handle the communication
1410 ;;
1411   move.d   internal_stack+1020,$sp ; Use the internal stack which grows upward
1412   moveq    5,$r10                   ; SIGTRAP
1413   jsr      handle_exception       ; Interactive routine
1414 ;;
1415 ;; Return to the caller
1416 ;;
1417    move.d  [reg],$r0         ; Restore R0
1418    move.d  [reg+0x04],$r1    ; Restore R1
1419    move.d  [reg+0x08],$r2    ; Restore R2
1420    move.d  [reg+0x0C],$r3    ; Restore R3
1421    move.d  [reg+0x10],$r4    ; Restore R4
1422    move.d  [reg+0x14],$r5    ; Restore R5
1423    move.d  [reg+0x18],$r6    ; Restore R6
1424    move.d  [reg+0x1C],$r7    ; Restore R7
1425    move.d  [reg+0x20],$r8    ; Restore R8
1426    move.d  [reg+0x24],$r9    ; Restore R9
1427    move.d  [reg+0x28],$r10   ; Restore R10
1428    move.d  [reg+0x2C],$r11   ; Restore R11
1429    move.d  [reg+0x30],$r12   ; Restore R12
1430    move.d  [reg+0x34],$r13   ; Restore R13
1431 ;;
1432 ;; FIXME: Which registers should be restored?
1433 ;;
1434    move.d  [reg+0x38],$sp    ; Restore SP (R14)
1435    move    [reg+0x56],$srp   ; Restore the subroutine return pointer.
1436    move    [reg+0x5E],$dccr  ; Restore DCCR
1437    move    [reg+0x66],$usp   ; Restore USP
1438    jump    [reg+0x62]       ; A jump to the content in register BRP works.
1439    nop                       ;
1440 ");
1441 
1442 /* The hook for an interrupt generated by GDB. An internal stack is used
1443    by the stub. The register image of the caller is stored in the structure
1444    register_image. Interactive communication with the host is handled by
1445    handle_exception and finally the register image is restored. Due to the
1446    old assembler which does not recognise the break instruction and the
1447    breakpoint return pointer hex-code is used. */
1448 
1449 void kgdb_handle_serial(void);
1450 
1451 asm ("
1452   .global kgdb_handle_serial
1453 kgdb_handle_serial:
1454 ;;
1455 ;; Response to a serial interrupt
1456 ;;
1457 
1458   move     $dccr,[reg+0x5E] ; Save the flags in DCCR
1459   di                        ; Disable interrupts
1460   move.d   $r0,[reg]        ; Save R0
1461   move.d   $r1,[reg+0x04]   ; Save R1
1462   move.d   $r2,[reg+0x08]   ; Save R2
1463   move.d   $r3,[reg+0x0C]   ; Save R3
1464   move.d   $r4,[reg+0x10]   ; Save R4
1465   move.d   $r5,[reg+0x14]   ; Save R5
1466   move.d   $r6,[reg+0x18]   ; Save R6
1467   move.d   $r7,[reg+0x1C]   ; Save R7
1468   move.d   $r8,[reg+0x20]   ; Save R8
1469   move.d   $r9,[reg+0x24]   ; Save R9
1470   move.d   $r10,[reg+0x28]  ; Save R10
1471   move.d   $r11,[reg+0x2C]  ; Save R11
1472   move.d   $r12,[reg+0x30]  ; Save R12
1473   move.d   $r13,[reg+0x34]  ; Save R13
1474   move.d   $sp,[reg+0x38]   ; Save SP (R14)
1475   move     $irp,[reg+0x3c]  ; Save the address in PC (R15)
1476   clear.b  [reg+0x40]      ; Clear P0
1477   move     $vr,[reg+0x41]   ; Save special register P1,
1478   clear.w  [reg+0x42]      ; Clear P4
1479   move     $ccr,[reg+0x44]  ; Save special register CCR
1480   move     $mof,[reg+0x46]  ; P7
1481   clear.d  [reg+0x4A]      ; Clear P8
1482   move     $ibr,[reg+0x4E]  ; P9,
1483   move     $irp,[reg+0x52]  ; P10,
1484   move     $srp,[reg+0x56]  ; P11,
1485   move     $dtp0,[reg+0x5A] ; P12, register BAR, assembler might not know BAR
1486                             ; P13, register DCCR already saved
1487 ;; Due to the old assembler-versions BRP might not be recognized
1488   .word 0xE670              ; move brp,r0
1489   move.d   $r0,[reg+0x62]   ; Save the return address in BRP
1490   move     $usp,[reg+0x66]  ; USP
1491 
1492 ;; get the serial character (from debugport.c) and check if it is a ctrl-c
1493 
1494   jsr getDebugChar
1495   cmp.b 3, $r10
1496   bne goback
1497   nop
1498 
1499 ;;
1500 ;; Handle the communication
1501 ;;
1502   move.d   internal_stack+1020,$sp ; Use the internal stack
1503   moveq    2,$r10                   ; SIGINT
1504   jsr      handle_exception       ; Interactive routine
1505 
1506 goback:
1507 ;;
1508 ;; Return to the caller
1509 ;;
1510    move.d  [reg],$r0         ; Restore R0
1511    move.d  [reg+0x04],$r1    ; Restore R1
1512    move.d  [reg+0x08],$r2    ; Restore R2
1513    move.d  [reg+0x0C],$r3    ; Restore R3
1514    move.d  [reg+0x10],$r4    ; Restore R4
1515    move.d  [reg+0x14],$r5    ; Restore R5
1516    move.d  [reg+0x18],$r6    ; Restore R6
1517    move.d  [reg+0x1C],$r7    ; Restore R7
1518    move.d  [reg+0x20],$r8    ; Restore R8
1519    move.d  [reg+0x24],$r9    ; Restore R9
1520    move.d  [reg+0x28],$r10   ; Restore R10
1521    move.d  [reg+0x2C],$r11   ; Restore R11
1522    move.d  [reg+0x30],$r12   ; Restore R12
1523    move.d  [reg+0x34],$r13   ; Restore R13
1524 ;;
1525 ;; FIXME: Which registers should be restored?
1526 ;;
1527    move.d  [reg+0x38],$sp    ; Restore SP (R14)
1528    move    [reg+0x56],$srp   ; Restore the subroutine return pointer.
1529    move    [reg+0x5E],$dccr  ; Restore DCCR
1530    move    [reg+0x66],$usp   ; Restore USP
1531    reti                      ; Return from the interrupt routine
1532    nop
1533 ");
1534 
1535 /* Use this static breakpoint in the start-up only. */
1536 
1537 void
breakpoint(void)1538 breakpoint(void)
1539 {
1540 	kgdb_started = 1;
1541 	is_dyn_brkp = 0;     /* This is a static, not a dynamic breakpoint. */
1542 	__asm__ volatile ("break 8"); /* Jump to handle_breakpoint. */
1543 }
1544 
1545 /* initialize kgdb. doesn't break into the debugger, but sets up irq and ports */
1546 
1547 void
kgdb_init(void)1548 kgdb_init(void)
1549 {
1550 	/* could initialize debug port as well but it's done in head.S already... */
1551 
1552         /* breakpoint handler is now set in irq.c */
1553 	set_int_vector(8, kgdb_handle_serial, 0);
1554 
1555 	enableDebugIRQ();
1556 }
1557 
1558 /****************************** End of file **********************************/
1559