1 /*
2  *  linux/arch/arm/mm/mm-armv.c
3  *
4  *  Copyright (C) 1998-2000 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  Page table sludge for ARM v3 and v4 processor architectures.
11  */
12 #include <linux/sched.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/bootmem.h>
16 
17 #include <asm/hardware.h>
18 #include <asm/pgtable.h>
19 #include <asm/pgalloc.h>
20 #include <asm/page.h>
21 #include <asm/setup.h>
22 
23 #include <asm/mach/map.h>
24 
25 /*
26  * These are useful for identifing cache coherency
27  * problems by allowing the cache or the cache and
28  * writebuffer to be turned off.  (Note: the write
29  * buffer should not be on and the cache off).
30  */
nocache_setup(char * __unused)31 static int __init nocache_setup(char *__unused)
32 {
33 	cr_alignment &= ~4;
34 	cr_no_alignment &= ~4;
35 	flush_cache_all();
36 	set_cr(cr_alignment);
37 	return 1;
38 }
39 
nowrite_setup(char * __unused)40 static int __init nowrite_setup(char *__unused)
41 {
42 	cr_alignment &= ~(8|4);
43 	cr_no_alignment &= ~(8|4);
44 	flush_cache_all();
45 	set_cr(cr_alignment);
46 	return 1;
47 }
48 
noalign_setup(char * __unused)49 static int __init noalign_setup(char *__unused)
50 {
51 	cr_alignment &= ~2;
52 	cr_no_alignment &= ~2;
53 	set_cr(cr_alignment);
54 	return 1;
55 }
56 
57 __setup("noalign", noalign_setup);
58 __setup("nocache", nocache_setup);
59 __setup("nowb", nowrite_setup);
60 
61 #define FIRST_KERNEL_PGD_NR	(FIRST_USER_PGD_NR + USER_PTRS_PER_PGD)
62 
63 #define clean_cache_area(start,size) \
64 	cpu_cache_clean_invalidate_range((unsigned long)start, ((unsigned long)start) + size, 0);
65 
66 
67 /*
68  * need to get a 16k page for level 1
69  */
get_pgd_slow(struct mm_struct * mm)70 pgd_t *get_pgd_slow(struct mm_struct *mm)
71 {
72 	pgd_t *new_pgd, *init_pgd;
73 	pmd_t *new_pmd, *init_pmd;
74 	pte_t *new_pte, *init_pte;
75 
76 	new_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 2);
77 	if (!new_pgd)
78 		goto no_pgd;
79 
80 	memzero(new_pgd, FIRST_KERNEL_PGD_NR * sizeof(pgd_t));
81 
82 	init_pgd = pgd_offset_k(0);
83 
84 	if (vectors_base() == 0) {
85 		init_pmd = pmd_offset(init_pgd, 0);
86 		init_pte = pte_offset(init_pmd, 0);
87 
88 		/*
89 		 * This lock is here just to satisfy pmd_alloc and pte_lock
90 		 */
91 		spin_lock(&mm->page_table_lock);
92 
93 		/*
94 		 * On ARM, first page must always be allocated since it
95 		 * contains the machine vectors.
96 		 */
97 		new_pmd = pmd_alloc(mm, new_pgd, 0);
98 		if (!new_pmd)
99 			goto no_pmd;
100 
101 		new_pte = pte_alloc(mm, new_pmd, 0);
102 		if (!new_pte)
103 			goto no_pte;
104 
105 		set_pte(new_pte, *init_pte);
106 
107 		spin_unlock(&mm->page_table_lock);
108 	}
109 
110 	/*
111 	 * Copy over the kernel and IO PGD entries
112 	 */
113 	memcpy(new_pgd + FIRST_KERNEL_PGD_NR, init_pgd + FIRST_KERNEL_PGD_NR,
114 		       (PTRS_PER_PGD - FIRST_KERNEL_PGD_NR) * sizeof(pgd_t));
115 
116 	/*
117 	 * FIXME: this should not be necessary
118 	 */
119 	clean_cache_area(new_pgd, PTRS_PER_PGD * sizeof(pgd_t));
120 
121 	return new_pgd;
122 
123 no_pte:
124 	spin_unlock(&mm->page_table_lock);
125 	pmd_free(new_pmd);
126 	check_pgt_cache();
127 	free_pages((unsigned long)new_pgd, 2);
128 	return NULL;
129 
130 no_pmd:
131 	spin_unlock(&mm->page_table_lock);
132 	free_pages((unsigned long)new_pgd, 2);
133 	return NULL;
134 
135 no_pgd:
136 	return NULL;
137 }
138 
free_pgd_slow(pgd_t * pgd)139 void free_pgd_slow(pgd_t *pgd)
140 {
141 	pmd_t *pmd;
142 	pte_t *pte;
143 
144 	if (!pgd)
145 		return;
146 
147 	/* pgd is always present and good */
148 	pmd = (pmd_t *)pgd;
149 	if (pmd_none(*pmd))
150 		goto free;
151 	if (pmd_bad(*pmd)) {
152 		pmd_ERROR(*pmd);
153 		pmd_clear(pmd);
154 		goto free;
155 	}
156 
157 	pte = pte_offset(pmd, 0);
158 	pmd_clear(pmd);
159 	pte_free(pte);
160 	pmd_free(pmd);
161 	check_pgt_cache();
162 free:
163 	free_pages((unsigned long) pgd, 2);
164 }
165 
166 /*
167  * Create a SECTION PGD between VIRT and PHYS in domain
168  * DOMAIN with protection PROT
169  */
170 static inline void
alloc_init_section(unsigned long virt,unsigned long phys,int prot)171 alloc_init_section(unsigned long virt, unsigned long phys, int prot)
172 {
173 	pmd_t pmd;
174 
175 	pmd_val(pmd) = phys | prot;
176 
177 	set_pmd(pmd_offset(pgd_offset_k(virt), virt), pmd);
178 }
179 
180 /*
181  * Add a PAGE mapping between VIRT and PHYS in domain
182  * DOMAIN with protection PROT.  Note that due to the
183  * way we map the PTEs, we must allocate two PTE_SIZE'd
184  * blocks - one for the Linux pte table, and one for
185  * the hardware pte table.
186  */
187 static inline void
alloc_init_page(unsigned long virt,unsigned long phys,int domain,int prot)188 alloc_init_page(unsigned long virt, unsigned long phys, int domain, int prot)
189 {
190 	pmd_t *pmdp;
191 	pte_t *ptep;
192 
193 	pmdp = pmd_offset(pgd_offset_k(virt), virt);
194 
195 	if (pmd_none(*pmdp)) {
196 		pte_t *ptep = alloc_bootmem_low_pages(2 * PTRS_PER_PTE *
197 						      sizeof(pte_t));
198 
199 		ptep += PTRS_PER_PTE;
200 
201 		set_pmd(pmdp, __mk_pmd(ptep, PMD_TYPE_TABLE | PMD_DOMAIN(domain)));
202 	}
203 	ptep = pte_offset(pmdp, virt);
204 
205 	set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, __pgprot(prot)));
206 }
207 
208 /*
209  * Clear any PGD mapping.  On a two-level page table system,
210  * the clearance is done by the middle-level functions (pmd)
211  * rather than the top-level (pgd) functions.
212  */
clear_mapping(unsigned long virt)213 static inline void clear_mapping(unsigned long virt)
214 {
215 	pmd_clear(pmd_offset(pgd_offset_k(virt), virt));
216 }
217 
218 /*
219  * Create the page directory entries and any necessary
220  * page tables for the mapping specified by `md'.  We
221  * are able to cope here with varying sizes and address
222  * offsets, and we take full advantage of sections.
223  */
create_mapping(struct map_desc * md)224 static void __init create_mapping(struct map_desc *md)
225 {
226 	unsigned long virt, length;
227 	int prot_sect, prot_pte;
228 	long off;
229 
230 	if (md->prot_read && md->prot_write &&
231 	    !md->cacheable && !md->bufferable) {
232 		printk(KERN_WARNING "Security risk: creating user "
233 		       "accessible mapping for 0x%08lx at 0x%08lx\n",
234 		       md->physical, md->virtual);
235 	}
236 
237 	if (md->virtual != vectors_base() && md->virtual < PAGE_OFFSET) {
238 		printk(KERN_WARNING "MM: not creating mapping for "
239 		       "0x%08lx at 0x%08lx in user region\n",
240 		       md->physical, md->virtual);
241 	}
242 
243 	prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244 		   (md->prot_read  ? L_PTE_USER       : 0) |
245 		   (md->prot_write ? L_PTE_WRITE      : 0) |
246 		   (md->cacheable  ? L_PTE_CACHEABLE  : 0) |
247 		   (md->bufferable ? L_PTE_BUFFERABLE : 0);
248 
249 	prot_sect = PMD_TYPE_SECT | PMD_DOMAIN(md->domain) |
250 		    (md->prot_read  ? PMD_SECT_AP_READ    : 0) |
251 		    (md->prot_write ? PMD_SECT_AP_WRITE   : 0) |
252 		    (md->cacheable  ? PMD_SECT_CACHEABLE  : 0) |
253 		    (md->bufferable ? PMD_SECT_BUFFERABLE : 0);
254 
255 	virt   = md->virtual;
256 	off    = md->physical - virt;
257 	length = md->length;
258 
259 	while ((virt & 0xfffff || (virt + off) & 0xfffff) && length >= PAGE_SIZE) {
260 		alloc_init_page(virt, virt + off, md->domain, prot_pte);
261 
262 		virt   += PAGE_SIZE;
263 		length -= PAGE_SIZE;
264 	}
265 
266 	while (length >= PGDIR_SIZE) {
267 		alloc_init_section(virt, virt + off, prot_sect);
268 
269 		virt   += PGDIR_SIZE;
270 		length -= PGDIR_SIZE;
271 	}
272 
273 	while (length >= PAGE_SIZE) {
274 		alloc_init_page(virt, virt + off, md->domain, prot_pte);
275 
276 		virt   += PAGE_SIZE;
277 		length -= PAGE_SIZE;
278 	}
279 }
280 
281 /*
282  * In order to soft-boot, we need to insert a 1:1 mapping in place of
283  * the user-mode pages.  This will then ensure that we have predictable
284  * results when turning the mmu off
285  */
setup_mm_for_reboot(char mode)286 void setup_mm_for_reboot(char mode)
287 {
288 	pgd_t *pgd;
289 	pmd_t pmd;
290 	int i;
291 
292 	if (current->mm && current->mm->pgd)
293 		pgd = current->mm->pgd;
294 	else
295 		pgd = init_mm.pgd;
296 
297 	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++) {
298 		pmd_val(pmd) = (i << PGDIR_SHIFT) |
299 			PMD_SECT_AP_WRITE | PMD_SECT_AP_READ |
300 			PMD_TYPE_SECT;
301 		set_pmd(pmd_offset(pgd + i, i << PGDIR_SHIFT), pmd);
302 	}
303 }
304 
305 /*
306  * Setup initial mappings.  We use the page we allocated for zero page to hold
307  * the mappings, which will get overwritten by the vectors in traps_init().
308  * The mappings must be in virtual address order.
309  */
memtable_init(struct meminfo * mi)310 void __init memtable_init(struct meminfo *mi)
311 {
312 	struct map_desc *init_maps, *p, *q;
313 	unsigned long address = 0;
314 	int i;
315 
316 	init_maps = p = alloc_bootmem_low_pages(PAGE_SIZE);
317 
318 	for (i = 0; i < mi->nr_banks; i++) {
319 		if (mi->bank[i].size == 0)
320 			continue;
321 
322 		p->physical   = mi->bank[i].start;
323 		p->virtual    = __phys_to_virt(p->physical);
324 		p->length     = mi->bank[i].size;
325 		p->domain     = DOMAIN_KERNEL;
326 		p->prot_read  = 0;
327 		p->prot_write = 1;
328 		p->cacheable  = 1;
329 		p->bufferable = 1;
330 
331 		p ++;
332 	}
333 
334 #ifdef FLUSH_BASE
335 	p->physical   = FLUSH_BASE_PHYS;
336 	p->virtual    = FLUSH_BASE;
337 	p->length     = PGDIR_SIZE;
338 	p->domain     = DOMAIN_KERNEL;
339 	p->prot_read  = 1;
340 	p->prot_write = 0;
341 	p->cacheable  = 1;
342 	p->bufferable = 1;
343 
344 	p ++;
345 #endif
346 
347 #ifdef FLUSH_BASE_MINICACHE
348 	p->physical   = FLUSH_BASE_PHYS + PGDIR_SIZE;
349 	p->virtual    = FLUSH_BASE_MINICACHE;
350 	p->length     = PGDIR_SIZE;
351 	p->domain     = DOMAIN_KERNEL;
352 	p->prot_read  = 1;
353 	p->prot_write = 0;
354 	p->cacheable  = 1;
355 	p->bufferable = 0;
356 
357 	p ++;
358 #endif
359 
360 	/*
361 	 * Go through the initial mappings, but clear out any
362 	 * pgdir entries that are not in the description.
363 	 */
364 	q = init_maps;
365 	do {
366 		if (address < q->virtual || q == p) {
367 			clear_mapping(address);
368 			address += PGDIR_SIZE;
369 		} else {
370 			create_mapping(q);
371 
372 			address = q->virtual + q->length;
373 			address = (address + PGDIR_SIZE - 1) & PGDIR_MASK;
374 
375 			q ++;
376 		}
377 	} while (address != 0);
378 
379 	/*
380 	 * Create a mapping for the machine vectors at virtual address 0
381 	 * or 0xffff0000.  We should always try the high mapping.
382 	 */
383 	init_maps->physical   = virt_to_phys(init_maps);
384 	init_maps->virtual    = vectors_base();
385 	init_maps->length     = PAGE_SIZE;
386 	init_maps->domain     = DOMAIN_USER;
387 	init_maps->prot_read  = 0;
388 	init_maps->prot_write = 0;
389 	init_maps->cacheable  = 1;
390 	init_maps->bufferable = 0;
391 
392 	create_mapping(init_maps);
393 }
394 
395 /*
396  * Create the architecture specific mappings
397  */
iotable_init(struct map_desc * io_desc)398 void __init iotable_init(struct map_desc *io_desc)
399 {
400 	int i;
401 
402 	for (i = 0; io_desc[i].last == 0; i++)
403 		create_mapping(io_desc + i);
404 }
405 
free_memmap(int node,unsigned long start,unsigned long end)406 static inline void free_memmap(int node, unsigned long start, unsigned long end)
407 {
408 	unsigned long pg, pgend;
409 
410 	start = __phys_to_virt(start);
411 	end   = __phys_to_virt(end);
412 
413 	pg    = PAGE_ALIGN((unsigned long)(virt_to_page(start)));
414 	pgend = ((unsigned long)(virt_to_page(end))) & PAGE_MASK;
415 
416 	start = __virt_to_phys(pg);
417 	end   = __virt_to_phys(pgend);
418 
419 	free_bootmem_node(NODE_DATA(node), start, end - start);
420 }
421 
free_unused_memmap_node(int node,struct meminfo * mi)422 static inline void free_unused_memmap_node(int node, struct meminfo *mi)
423 {
424 	unsigned long bank_start, prev_bank_end = 0;
425 	unsigned int i;
426 
427 	/*
428 	 * [FIXME] This relies on each bank being in address order.  This
429 	 * may not be the case, especially if the user has provided the
430 	 * information on the command line.
431 	 */
432 	for (i = 0; i < mi->nr_banks; i++) {
433 		if (mi->bank[i].size == 0 || mi->bank[i].node != node)
434 			continue;
435 
436 		bank_start = mi->bank[i].start & PAGE_MASK;
437 
438 		/*
439 		 * If we had a previous bank, and there is a space
440 		 * between the current bank and the previous, free it.
441 		 */
442 		if (prev_bank_end && prev_bank_end != bank_start)
443 			free_memmap(node, prev_bank_end, bank_start);
444 
445 		prev_bank_end = PAGE_ALIGN(mi->bank[i].start +
446 					   mi->bank[i].size);
447 	}
448 }
449 
450 /*
451  * The mem_map array can get very big.  Free
452  * the unused area of the memory map.
453  */
create_memmap_holes(struct meminfo * mi)454 void __init create_memmap_holes(struct meminfo *mi)
455 {
456 	int node;
457 
458 	for (node = 0; node < numnodes; node++)
459 		free_unused_memmap_node(node, mi);
460 }
461 
462 /*
463  * PTE table allocation cache.
464  *
465  * This is a move away from our custom 2K page allocator.  We now use the
466  * slab cache to keep track of these objects.
467  *
468  * With this, it is questionable as to whether the PGT cache gains us
469  * anything.  We may be better off dropping the PTE stuff from our PGT
470  * cache implementation.
471  */
472 kmem_cache_t *pte_cache;
473 
474 /*
475  * The constructor gets called for each object within the cache when the
476  * cache page is created.  Note that if slab tries to misalign the blocks,
477  * we BUG() loudly.
478  */
pte_cache_ctor(void * pte,kmem_cache_t * cache,unsigned long flags)479 static void pte_cache_ctor(void *pte, kmem_cache_t *cache, unsigned long flags)
480 {
481 	unsigned long block = (unsigned long)pte;
482 
483 	if (block & 2047)
484 		BUG();
485 
486 	memzero(pte, 2 * PTRS_PER_PTE * sizeof(pte_t));
487 	cpu_cache_clean_invalidate_range(block, block +
488 			PTRS_PER_PTE * sizeof(pte_t), 0);
489 }
490 
pgtable_cache_init(void)491 void __init pgtable_cache_init(void)
492 {
493 	pte_cache = kmem_cache_create("pte-cache",
494 				2 * PTRS_PER_PTE * sizeof(pte_t), 0, 0,
495 				pte_cache_ctor, NULL);
496 	if (!pte_cache)
497 		BUG();
498 }
499