1 /*
2  *  linux/arch/arm/mm/init.c
3  *
4  *  Copyright (C) 1995-2002 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/config.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/errno.h>
15 #include <linux/string.h>
16 #include <linux/types.h>
17 #include <linux/ptrace.h>
18 #include <linux/mman.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/swapctl.h>
22 #include <linux/smp.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/blk.h>
26 
27 #include <asm/segment.h>
28 #include <asm/mach-types.h>
29 #include <asm/pgalloc.h>
30 #include <asm/dma.h>
31 #include <asm/hardware.h>
32 #include <asm/setup.h>
33 
34 #include <asm/mach/arch.h>
35 #include <asm/mach/map.h>
36 
37 #ifndef CONFIG_DISCONTIGMEM
38 #define NR_NODES	1
39 #else
40 #define NR_NODES	4
41 #endif
42 
43 #ifdef CONFIG_CPU_32
44 #define TABLE_OFFSET	(PTRS_PER_PTE)
45 #else
46 #define TABLE_OFFSET	0
47 #endif
48 
49 #define TABLE_SIZE	((TABLE_OFFSET + PTRS_PER_PTE) * sizeof(pte_t))
50 
51 static unsigned long totalram_pages;
52 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
53 extern char _stext, _text, _etext, _end, __init_begin, __init_end;
54 extern unsigned long phys_initrd_start;
55 extern unsigned long phys_initrd_size;
56 
57 /*
58  * The sole use of this is to pass memory configuration
59  * data from paging_init to mem_init.
60  */
61 static struct meminfo meminfo __initdata = { 0, };
62 
63 /*
64  * empty_zero_page is a special page that is used for
65  * zero-initialized data and COW.
66  */
67 struct page *empty_zero_page;
68 
69 #ifndef CONFIG_NO_PGT_CACHE
70 struct pgtable_cache_struct quicklists;
71 
do_check_pgt_cache(int low,int high)72 int do_check_pgt_cache(int low, int high)
73 {
74 	int freed = 0;
75 
76 	if(pgtable_cache_size > high) {
77 		do {
78 			if(pgd_quicklist) {
79 				free_pgd_slow(get_pgd_fast());
80 				freed++;
81 			}
82 			if(pmd_quicklist) {
83 				pmd_free_slow(pmd_alloc_one_fast(NULL, 0));
84 				freed++;
85 			}
86 			if(pte_quicklist) {
87 				pte_free_slow(pte_alloc_one_fast(NULL, 0));
88 				freed++;
89 			}
90 		} while(pgtable_cache_size > low);
91 	}
92 	return freed;
93 }
94 #else
do_check_pgt_cache(int low,int high)95 int do_check_pgt_cache(int low, int high)
96 {
97 	return 0;
98 }
99 #endif
100 
101 /* This is currently broken
102  * PG_skip is used on sparc/sparc64 architectures to "skip" certain
103  * parts of the address space.
104  *
105  * #define PG_skip	10
106  * #define PageSkip(page) (machine_is_riscpc() && test_bit(PG_skip, &(page)->flags))
107  *			if (PageSkip(page)) {
108  *				page = page->next_hash;
109  *				if (page == NULL)
110  *					break;
111  *			}
112  */
show_mem(void)113 void show_mem(void)
114 {
115 	int free = 0, total = 0, reserved = 0;
116 	int shared = 0, cached = 0, slab = 0, node;
117 
118 	printk("Mem-info:\n");
119 	show_free_areas();
120 	printk("Free swap:       %6dkB\n",nr_swap_pages<<(PAGE_SHIFT-10));
121 
122 	for (node = 0; node < numnodes; node++) {
123 		struct page *page, *end;
124 
125 		page = NODE_MEM_MAP(node);
126 		end  = page + NODE_DATA(node)->node_size;
127 
128 		do {
129 			total++;
130 			if (PageReserved(page))
131 				reserved++;
132 			else if (PageSwapCache(page))
133 				cached++;
134 			else if (PageSlab(page))
135 				slab++;
136 			else if (!page_count(page))
137 				free++;
138 			else
139 				shared += atomic_read(&page->count) - 1;
140 			page++;
141 		} while (page < end);
142 	}
143 
144 	printk("%d pages of RAM\n", total);
145 	printk("%d free pages\n", free);
146 	printk("%d reserved pages\n", reserved);
147 	printk("%d slab pages\n", slab);
148 	printk("%d pages shared\n", shared);
149 	printk("%d pages swap cached\n", cached);
150 #ifndef CONFIG_NO_PGT_CACHE
151 	printk("%ld page tables cached\n", pgtable_cache_size);
152 #endif
153 	show_buffers();
154 }
155 
156 struct node_info {
157 	unsigned int start;
158 	unsigned int end;
159 	int bootmap_pages;
160 };
161 
162 #define O_PFN_DOWN(x)	((x) >> PAGE_SHIFT)
163 #define V_PFN_DOWN(x)	O_PFN_DOWN(__pa(x))
164 
165 #define O_PFN_UP(x)	(PAGE_ALIGN(x) >> PAGE_SHIFT)
166 #define V_PFN_UP(x)	O_PFN_UP(__pa(x))
167 
168 #define PFN_SIZE(x)	((x) >> PAGE_SHIFT)
169 #define PFN_RANGE(s,e)	PFN_SIZE(PAGE_ALIGN((unsigned long)(e)) - \
170 				(((unsigned long)(s)) & PAGE_MASK))
171 
172 /*
173  * FIXME: We really want to avoid allocating the bootmap bitmap
174  * over the top of the initrd.  Hopefully, this is located towards
175  * the start of a bank, so if we allocate the bootmap bitmap at
176  * the end, we won't clash.
177  */
178 static unsigned int __init
find_bootmap_pfn(int node,struct meminfo * mi,unsigned int bootmap_pages)179 find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages)
180 {
181 	unsigned int start_pfn, bank, bootmap_pfn;
182 
183 	start_pfn   = V_PFN_UP(&_end);
184 	bootmap_pfn = 0;
185 
186 	for (bank = 0; bank < mi->nr_banks; bank ++) {
187 		unsigned int start, end;
188 
189 		if (mi->bank[bank].node != node)
190 			continue;
191 
192 		start = O_PFN_UP(mi->bank[bank].start);
193 		end   = O_PFN_DOWN(mi->bank[bank].size +
194 				   mi->bank[bank].start);
195 
196 		if (end < start_pfn)
197 			continue;
198 
199 		if (start < start_pfn)
200 			start = start_pfn;
201 
202 		if (end <= start)
203 			continue;
204 
205 		if (end - start >= bootmap_pages) {
206 			bootmap_pfn = start;
207 			break;
208 		}
209 	}
210 
211 	if (bootmap_pfn == 0)
212 		BUG();
213 
214 	return bootmap_pfn;
215 }
216 
217 /*
218  * Scan the memory info structure and pull out:
219  *  - the end of memory
220  *  - the number of nodes
221  *  - the pfn range of each node
222  *  - the number of bootmem bitmap pages
223  */
224 static unsigned int __init
find_memend_and_nodes(struct meminfo * mi,struct node_info * np)225 find_memend_and_nodes(struct meminfo *mi, struct node_info *np)
226 {
227 	unsigned int i, bootmem_pages = 0, memend_pfn = 0;
228 
229 	for (i = 0; i < NR_NODES; i++) {
230 		np[i].start = -1U;
231 		np[i].end = 0;
232 		np[i].bootmap_pages = 0;
233 	}
234 
235 	for (i = 0; i < mi->nr_banks; i++) {
236 		unsigned long start, end;
237 		int node;
238 
239 		if (mi->bank[i].size == 0) {
240 			/*
241 			 * Mark this bank with an invalid node number
242 			 */
243 			mi->bank[i].node = -1;
244 			continue;
245 		}
246 
247 		node = mi->bank[i].node;
248 
249 		if (node >= numnodes) {
250 			numnodes = node + 1;
251 
252 			/*
253 			 * Make sure we haven't exceeded the maximum number
254 			 * of nodes that we have in this configuration.  If
255 			 * we have, we're in trouble.  (maybe we ought to
256 			 * limit, instead of bugging?)
257 			 */
258 			if (numnodes > NR_NODES)
259 				BUG();
260 		}
261 
262 		/*
263 		 * Get the start and end pfns for this bank
264 		 */
265 		start = O_PFN_UP(mi->bank[i].start);
266 		end   = O_PFN_DOWN(mi->bank[i].start + mi->bank[i].size);
267 
268 		if (np[node].start > start)
269 			np[node].start = start;
270 
271 		if (np[node].end < end)
272 			np[node].end = end;
273 
274 		if (memend_pfn < end)
275 			memend_pfn = end;
276 	}
277 
278 	/*
279 	 * Calculate the number of pages we require to
280 	 * store the bootmem bitmaps.
281 	 */
282 	for (i = 0; i < numnodes; i++) {
283 		if (np[i].end == 0)
284 			continue;
285 
286 		np[i].bootmap_pages = bootmem_bootmap_pages(np[i].end -
287 							    np[i].start);
288 		bootmem_pages += np[i].bootmap_pages;
289 	}
290 
291 	/*
292 	 * This doesn't seem to be used by the Linux memory
293 	 * manager any more.  If we can get rid of it, we
294 	 * also get rid of some of the stuff above as well.
295 	 */
296 	max_low_pfn = memend_pfn - O_PFN_DOWN(PHYS_OFFSET);
297 //	max_pfn = memend_pfn - O_PFN_DOWN(PHYS_OFFSET);
298 	mi->end = memend_pfn << PAGE_SHIFT;
299 
300 	return bootmem_pages;
301 }
302 
check_initrd(struct meminfo * mi)303 static int __init check_initrd(struct meminfo *mi)
304 {
305 	int initrd_node = -2;
306 
307 #ifdef CONFIG_BLK_DEV_INITRD
308 	unsigned long end = phys_initrd_start + phys_initrd_size;
309 
310 	/*
311 	 * Make sure that the initrd is within a valid area of
312 	 * memory.
313 	 */
314 	if (phys_initrd_size) {
315 		unsigned int i;
316 
317 		initrd_node = -1;
318 
319 		for (i = 0; i < mi->nr_banks; i++) {
320 			unsigned long bank_end;
321 
322 			bank_end = mi->bank[i].start + mi->bank[i].size;
323 
324 			if (mi->bank[i].start <= phys_initrd_start &&
325 			    end <= bank_end)
326 				initrd_node = mi->bank[i].node;
327 		}
328 	}
329 
330 	if (initrd_node == -1) {
331 		printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond "
332 		       "physical memory - disabling initrd\n",
333 		       phys_initrd_start, end);
334 		phys_initrd_start = phys_initrd_size = 0;
335 	}
336 #endif
337 
338 	return initrd_node;
339 }
340 
341 /*
342  * Reserve the various regions of node 0
343  */
reserve_node_zero(unsigned int bootmap_pfn,unsigned int bootmap_pages)344 static __init void reserve_node_zero(unsigned int bootmap_pfn, unsigned int bootmap_pages)
345 {
346 	pg_data_t *pgdat = NODE_DATA(0);
347 
348 	/*
349 	 * Register the kernel text and data with bootmem.
350 	 * Note that this can only be in node 0.
351 	 */
352 	reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext);
353 
354 #ifdef CONFIG_CPU_32
355 	/*
356 	 * Reserve the page tables.  These are already in use,
357 	 * and can only be in node 0.
358 	 */
359 	reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
360 			     PTRS_PER_PGD * sizeof(pgd_t));
361 #endif
362 	/*
363 	 * And don't forget to reserve the allocator bitmap,
364 	 * which will be freed later.
365 	 */
366 	reserve_bootmem_node(pgdat, bootmap_pfn << PAGE_SHIFT,
367 			     bootmap_pages << PAGE_SHIFT);
368 
369 	/*
370 	 * Hmm... This should go elsewhere, but we really really
371 	 * need to stop things allocating the low memory; we need
372 	 * a better implementation of GFP_DMA which does not assume
373 	 * that DMA-able memory starts at zero.
374 	 */
375 	if (machine_is_integrator())
376 		reserve_bootmem_node(pgdat, 0, __pa(swapper_pg_dir));
377 	/*
378 	 * These should likewise go elsewhere.  They pre-reserve
379 	 * the screen memory region at the start of main system
380 	 * memory.
381 	 */
382 	if (machine_is_archimedes() || machine_is_a5k())
383 		reserve_bootmem_node(pgdat, 0x02000000, 0x00080000);
384 	if (machine_is_edb7211() || machine_is_fortunet())
385 		reserve_bootmem_node(pgdat, 0xc0000000, 0x00020000);
386 	if (machine_is_p720t())
387 		reserve_bootmem_node(pgdat, PHYS_OFFSET, 0x00014000);
388 #ifdef CONFIG_SA1111
389 	/*
390 	 * Because of the SA1111 DMA bug, we want to preserve
391 	 * our precious DMA-able memory...
392 	 */
393 	reserve_bootmem_node(pgdat, PHYS_OFFSET, __pa(swapper_pg_dir)-PHYS_OFFSET);
394 #endif
395 }
396 
397 /*
398  * Register all available RAM in this node with the bootmem allocator.
399  */
free_bootmem_node_bank(int node,struct meminfo * mi)400 static inline void free_bootmem_node_bank(int node, struct meminfo *mi)
401 {
402 	pg_data_t *pgdat = NODE_DATA(node);
403 	int bank;
404 
405 	for (bank = 0; bank < mi->nr_banks; bank++)
406 		if (mi->bank[bank].node == node)
407 			free_bootmem_node(pgdat, mi->bank[bank].start,
408 					  mi->bank[bank].size);
409 }
410 
411 /*
412  * Initialise the bootmem allocator for all nodes.  This is called
413  * early during the architecture specific initialisation.
414  */
bootmem_init(struct meminfo * mi)415 void __init bootmem_init(struct meminfo *mi)
416 {
417 	struct node_info node_info[NR_NODES], *np = node_info;
418 	unsigned int bootmap_pages, bootmap_pfn, map_pg;
419 	int node, initrd_node;
420 
421 	bootmap_pages = find_memend_and_nodes(mi, np);
422 	bootmap_pfn   = find_bootmap_pfn(0, mi, bootmap_pages);
423 	initrd_node   = check_initrd(mi);
424 
425 	map_pg = bootmap_pfn;
426 
427 	/*
428 	 * Initialise the bootmem nodes.
429 	 *
430 	 * What we really want to do is:
431 	 *
432 	 *   unmap_all_regions_except_kernel();
433 	 *   for_each_node_in_reverse_order(node) {
434 	 *     map_node(node);
435 	 *     allocate_bootmem_map(node);
436 	 *     init_bootmem_node(node);
437 	 *     free_bootmem_node(node);
438 	 *   }
439 	 *
440 	 * but this is a 2.5-type change.  For now, we just set
441 	 * the nodes up in reverse order.
442 	 *
443 	 * (we could also do with rolling bootmem_init and paging_init
444 	 * into one generic "memory_init" type function).
445 	 */
446 	np += numnodes - 1;
447 	for (node = numnodes - 1; node >= 0; node--, np--) {
448 		/*
449 		 * If there are no pages in this node, ignore it.
450 		 * Note that node 0 must always have some pages.
451 		 */
452 		if (np->end == 0) {
453 			if (node == 0)
454 				BUG();
455 			continue;
456 		}
457 
458 		/*
459 		 * Initialise the bootmem allocator.
460 		 */
461 		init_bootmem_node(NODE_DATA(node), map_pg, np->start, np->end);
462 		free_bootmem_node_bank(node, mi);
463 		map_pg += np->bootmap_pages;
464 
465 		/*
466 		 * If this is node 0, we need to reserve some areas ASAP -
467 		 * we may use bootmem on node 0 to setup the other nodes.
468 		 */
469 		if (node == 0)
470 			reserve_node_zero(bootmap_pfn, bootmap_pages);
471 	}
472 
473 
474 #ifdef CONFIG_BLK_DEV_INITRD
475 	if (phys_initrd_size && initrd_node >= 0) {
476 		reserve_bootmem_node(NODE_DATA(initrd_node), phys_initrd_start,
477 				     phys_initrd_size);
478 		initrd_start = __phys_to_virt(phys_initrd_start);
479 		initrd_end = initrd_start + phys_initrd_size;
480 	}
481 #endif
482 
483 	if (map_pg != bootmap_pfn + bootmap_pages)
484 		BUG();
485 
486 }
487 
488 /*
489  * paging_init() sets up the page tables, initialises the zone memory
490  * maps, and sets up the zero page, bad page and bad page tables.
491  */
paging_init(struct meminfo * mi,struct machine_desc * mdesc)492 void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
493 {
494 	void *zero_page;
495 	int node;
496 
497 	memcpy(&meminfo, mi, sizeof(meminfo));
498 
499 	/*
500 	 * allocate the zero page.  Note that we count on this going ok.
501 	 */
502 	zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
503 
504 	/*
505 	 * initialise the page tables.
506 	 */
507 	memtable_init(mi);
508 	if (mdesc->map_io)
509 		mdesc->map_io();
510 	flush_cache_all();
511 	flush_tlb_all();
512 
513 	/*
514 	 * initialise the zones within each node
515 	 */
516 	for (node = 0; node < numnodes; node++) {
517 		unsigned long zone_size[MAX_NR_ZONES];
518 		unsigned long zhole_size[MAX_NR_ZONES];
519 		struct bootmem_data *bdata;
520 		pg_data_t *pgdat;
521 		int i;
522 
523 		/*
524 		 * Initialise the zone size information.
525 		 */
526 		for (i = 0; i < MAX_NR_ZONES; i++) {
527 			zone_size[i]  = 0;
528 			zhole_size[i] = 0;
529 		}
530 
531 		pgdat = NODE_DATA(node);
532 		bdata = pgdat->bdata;
533 
534 		/*
535 		 * The size of this node has already been determined.
536 		 * If we need to do anything fancy with the allocation
537 		 * of this memory to the zones, now is the time to do
538 		 * it.
539 		 */
540 		zone_size[0] = bdata->node_low_pfn -
541 				(bdata->node_boot_start >> PAGE_SHIFT);
542 
543 		/*
544 		 * If this zone has zero size, skip it.
545 		 */
546 		if (!zone_size[0])
547 			continue;
548 
549 		/*
550 		 * For each bank in this node, calculate the size of the
551 		 * holes.  holes = node_size - sum(bank_sizes_in_node)
552 		 */
553 		zhole_size[0] = zone_size[0];
554 		for (i = 0; i < mi->nr_banks; i++) {
555 			if (mi->bank[i].node != node)
556 				continue;
557 
558 			zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT;
559 		}
560 
561 		/*
562 		 * Adjust the sizes according to any special
563 		 * requirements for this machine type.
564 		 */
565 		arch_adjust_zones(node, zone_size, zhole_size);
566 
567 		free_area_init_node(node, pgdat, 0, zone_size,
568 				bdata->node_boot_start, zhole_size);
569 	}
570 
571 	/*
572 	 * finish off the bad pages once
573 	 * the mem_map is initialised
574 	 */
575 	memzero(zero_page, PAGE_SIZE);
576 	empty_zero_page = virt_to_page(zero_page);
577 	flush_dcache_page(empty_zero_page);
578 }
579 
free_area(unsigned long addr,unsigned long end,char * s)580 static inline void free_area(unsigned long addr, unsigned long end, char *s)
581 {
582 	unsigned int size = (end - addr) >> 10;
583 
584 	for (; addr < end; addr += PAGE_SIZE) {
585 		struct page *page = virt_to_page(addr);
586 		ClearPageReserved(page);
587 		set_page_count(page, 1);
588 		free_page(addr);
589 		totalram_pages++;
590 	}
591 
592 	if (size && s)
593 		printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
594 }
595 
596 /*
597  * mem_init() marks the free areas in the mem_map and tells us how much
598  * memory is free.  This is done after various parts of the system have
599  * claimed their memory after the kernel image.
600  */
mem_init(void)601 void __init mem_init(void)
602 {
603 	unsigned int codepages, datapages, initpages;
604 	int i, node;
605 
606 	codepages = &_etext - &_text;
607 	datapages = &_end - &_etext;
608 	initpages = &__init_end - &__init_begin;
609 
610 	high_memory = (void *)__va(meminfo.end);
611 	max_mapnr   = virt_to_page(high_memory) - mem_map;
612 
613 	/*
614 	 * We may have non-contiguous memory.
615 	 */
616 	if (meminfo.nr_banks != 1)
617 		create_memmap_holes(&meminfo);
618 
619 	/* this will put all unused low memory onto the freelists */
620 	for (node = 0; node < numnodes; node++) {
621 		pg_data_t *pgdat = NODE_DATA(node);
622 
623 		if (pgdat->node_size != 0)
624 			totalram_pages += free_all_bootmem_node(pgdat);
625 	}
626 
627 #ifdef CONFIG_SA1111
628 	/* now that our DMA memory is actually so designated, we can free it */
629 	free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL);
630 #endif
631 
632 	/*
633 	 * Since our memory may not be contiguous, calculate the
634 	 * real number of pages we have in this system
635 	 */
636 	printk(KERN_INFO "Memory:");
637 
638 	num_physpages = 0;
639 	for (i = 0; i < meminfo.nr_banks; i++) {
640 		num_physpages += meminfo.bank[i].size >> PAGE_SHIFT;
641 		printk(" %ldMB", meminfo.bank[i].size >> 20);
642 	}
643 
644 	printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
645 	printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
646 		"%dK data, %dK init)\n",
647 		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
648 		codepages >> 10, datapages >> 10, initpages >> 10);
649 
650 	if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
651 		extern int sysctl_overcommit_memory;
652 		/*
653 		 * On a machine this small we won't get
654 		 * anywhere without overcommit, so turn
655 		 * it on by default.
656 		 */
657 		sysctl_overcommit_memory = 1;
658 	}
659 }
660 
free_initmem(void)661 void free_initmem(void)
662 {
663 	if (!machine_is_integrator()) {
664 		free_area((unsigned long)(&__init_begin),
665 			  (unsigned long)(&__init_end),
666 			  "init");
667 	}
668 }
669 
670 #ifdef CONFIG_BLK_DEV_INITRD
671 
672 static int keep_initrd;
673 
free_initrd_mem(unsigned long start,unsigned long end)674 void free_initrd_mem(unsigned long start, unsigned long end)
675 {
676 	if (!keep_initrd)
677 		free_area(start, end, "initrd");
678 }
679 
keepinitrd_setup(char * __unused)680 static int __init keepinitrd_setup(char *__unused)
681 {
682 	keep_initrd = 1;
683 	return 1;
684 }
685 
686 __setup("keepinitrd", keepinitrd_setup);
687 #endif
688 
si_meminfo(struct sysinfo * val)689 void si_meminfo(struct sysinfo *val)
690 {
691 	val->totalram  = totalram_pages;
692 	val->sharedram = 0;
693 	val->freeram   = nr_free_pages();
694 	val->bufferram = atomic_read(&buffermem_pages);
695 	val->totalhigh = 0;
696 	val->freehigh  = 0;
697 	val->mem_unit  = PAGE_SIZE;
698 }
699