1# Begin of automatic generation 2 3# Maximal error of functions: 4Function: "acos": 5double: 1 6float: 1 7ldouble: 1 8 9Function: "acos_downward": 10double: 1 11float: 1 12ldouble: 3 13 14Function: "acos_towardzero": 15double: 1 16float: 1 17ldouble: 3 18 19Function: "acos_upward": 20double: 1 21float: 1 22ldouble: 2 23 24Function: "acosh": 25double: 2 26float: 2 27ldouble: 1 28 29Function: "acosh_downward": 30double: 2 31float: 2 32ldouble: 2 33 34Function: "acosh_towardzero": 35double: 2 36float: 2 37ldouble: 5 38 39Function: "acosh_upward": 40double: 2 41float: 2 42ldouble: 4 43 44Function: "add_ldouble": 45double: 1 46float: 1 47 48Function: "asin": 49double: 1 50float: 1 51ldouble: 2 52 53Function: "asin_downward": 54double: 1 55float: 1 56ldouble: 2 57 58Function: "asin_towardzero": 59double: 1 60float: 1 61ldouble: 1 62 63Function: "asin_upward": 64double: 2 65float: 1 66ldouble: 2 67 68Function: "asinh": 69double: 2 70float: 2 71ldouble: 2 72 73Function: "asinh_downward": 74double: 3 75float: 3 76ldouble: 5 77 78Function: "asinh_towardzero": 79double: 2 80float: 2 81ldouble: 5 82 83Function: "asinh_upward": 84double: 3 85float: 3 86ldouble: 7 87 88Function: "atan": 89double: 1 90float: 1 91ldouble: 1 92 93Function: "atan2": 94float: 2 95ldouble: 2 96 97Function: "atan2_downward": 98double: 1 99float: 2 100ldouble: 5 101 102Function: "atan2_towardzero": 103double: 1 104float: 2 105ldouble: 6 106 107Function: "atan2_upward": 108double: 1 109float: 2 110ldouble: 3 111 112Function: "atan_downward": 113double: 1 114float: 2 115ldouble: 1 116 117Function: "atan_towardzero": 118double: 1 119float: 1 120ldouble: 1 121 122Function: "atan_upward": 123double: 1 124float: 2 125ldouble: 2 126 127Function: "atanh": 128double: 2 129float: 2 130ldouble: 2 131 132Function: "atanh_downward": 133double: 3 134float: 3 135ldouble: 3 136 137Function: "atanh_towardzero": 138double: 2 139float: 2 140ldouble: 4 141 142Function: "atanh_upward": 143double: 3 144float: 3 145ldouble: 4 146 147Function: "cabs": 148double: 1 149ldouble: 1 150 151Function: "cabs_downward": 152double: 1 153ldouble: 1 154 155Function: "cabs_towardzero": 156double: 1 157ldouble: 1 158 159Function: "cabs_upward": 160double: 1 161ldouble: 1 162 163Function: Real part of "cacos": 164double: 1 165float: 2 166ldouble: 2 167 168Function: Imaginary part of "cacos": 169double: 2 170float: 2 171ldouble: 1 172 173Function: Real part of "cacos_downward": 174double: 3 175float: 2 176ldouble: 6 177 178Function: Imaginary part of "cacos_downward": 179double: 5 180float: 3 181ldouble: 8 182 183Function: Real part of "cacos_towardzero": 184double: 3 185float: 2 186ldouble: 7 187 188Function: Imaginary part of "cacos_towardzero": 189double: 5 190float: 3 191ldouble: 8 192 193Function: Real part of "cacos_upward": 194double: 2 195float: 2 196ldouble: 4 197 198Function: Imaginary part of "cacos_upward": 199double: 5 200float: 7 201ldouble: 13 202 203Function: Real part of "cacosh": 204double: 2 205float: 2 206ldouble: 1 207 208Function: Imaginary part of "cacosh": 209double: 1 210float: 2 211ldouble: 2 212 213Function: Real part of "cacosh_downward": 214double: 5 215float: 3 216ldouble: 8 217 218Function: Imaginary part of "cacosh_downward": 219double: 3 220float: 3 221ldouble: 6 222 223Function: Real part of "cacosh_towardzero": 224double: 5 225float: 3 226ldouble: 8 227 228Function: Imaginary part of "cacosh_towardzero": 229double: 3 230float: 2 231ldouble: 7 232 233Function: Real part of "cacosh_upward": 234double: 4 235float: 4 236ldouble: 12 237 238Function: Imaginary part of "cacosh_upward": 239double: 3 240float: 2 241ldouble: 5 242 243Function: "carg": 244float: 1 245ldouble: 2 246 247Function: "carg_downward": 248double: 1 249float: 2 250ldouble: 5 251 252Function: "carg_towardzero": 253double: 1 254float: 2 255ldouble: 6 256 257Function: "carg_upward": 258double: 1 259float: 2 260ldouble: 3 261 262Function: Real part of "casin": 263double: 1 264float: 1 265ldouble: 2 266 267Function: Imaginary part of "casin": 268double: 2 269float: 2 270ldouble: 1 271 272Function: Real part of "casin_downward": 273double: 3 274float: 2 275ldouble: 3 276 277Function: Imaginary part of "casin_downward": 278double: 5 279float: 3 280ldouble: 8 281 282Function: Real part of "casin_towardzero": 283double: 3 284float: 1 285ldouble: 5 286 287Function: Imaginary part of "casin_towardzero": 288double: 5 289float: 3 290ldouble: 8 291 292Function: Real part of "casin_upward": 293double: 3 294float: 2 295ldouble: 6 296 297Function: Imaginary part of "casin_upward": 298double: 5 299float: 7 300ldouble: 13 301 302Function: Real part of "casinh": 303double: 2 304float: 2 305ldouble: 1 306 307Function: Imaginary part of "casinh": 308double: 1 309float: 1 310ldouble: 2 311 312Function: Real part of "casinh_downward": 313double: 5 314float: 3 315ldouble: 8 316 317Function: Imaginary part of "casinh_downward": 318double: 3 319float: 2 320ldouble: 3 321 322Function: Real part of "casinh_towardzero": 323double: 5 324float: 3 325ldouble: 8 326 327Function: Imaginary part of "casinh_towardzero": 328double: 3 329float: 1 330ldouble: 5 331 332Function: Real part of "casinh_upward": 333double: 5 334float: 7 335ldouble: 13 336 337Function: Imaginary part of "casinh_upward": 338double: 3 339float: 2 340ldouble: 6 341 342Function: Real part of "catan": 343double: 1 344float: 1 345ldouble: 3 346 347Function: Imaginary part of "catan": 348double: 1 349float: 1 350ldouble: 2 351 352Function: Real part of "catan_downward": 353double: 1 354float: 2 355ldouble: 6 356 357Function: Imaginary part of "catan_downward": 358double: 2 359float: 2 360ldouble: 7 361 362Function: Real part of "catan_towardzero": 363double: 1 364float: 2 365ldouble: 7 366 367Function: Imaginary part of "catan_towardzero": 368double: 2 369float: 2 370ldouble: 3 371 372Function: Real part of "catan_upward": 373double: 1 374float: 1 375ldouble: 6 376 377Function: Imaginary part of "catan_upward": 378double: 3 379float: 3 380ldouble: 8 381 382Function: Real part of "catanh": 383double: 1 384float: 1 385ldouble: 2 386 387Function: Imaginary part of "catanh": 388double: 1 389float: 1 390ldouble: 3 391 392Function: Real part of "catanh_downward": 393double: 2 394float: 2 395ldouble: 5 396 397Function: Imaginary part of "catanh_downward": 398double: 1 399float: 2 400ldouble: 6 401 402Function: Real part of "catanh_towardzero": 403double: 2 404float: 2 405ldouble: 3 406 407Function: Imaginary part of "catanh_towardzero": 408double: 1 409float: 2 410ldouble: 7 411 412Function: Real part of "catanh_upward": 413double: 4 414float: 4 415ldouble: 8 416 417Function: Imaginary part of "catanh_upward": 418double: 1 419float: 1 420ldouble: 6 421 422Function: "cbrt": 423double: 4 424float: 1 425ldouble: 1 426 427Function: "cbrt_downward": 428double: 4 429float: 1 430ldouble: 5 431 432Function: "cbrt_towardzero": 433double: 3 434float: 1 435ldouble: 3 436 437Function: "cbrt_upward": 438double: 5 439float: 1 440ldouble: 2 441 442Function: Real part of "ccos": 443double: 1 444float: 1 445ldouble: 1 446 447Function: Imaginary part of "ccos": 448double: 1 449float: 1 450ldouble: 2 451 452Function: Real part of "ccos_downward": 453double: 1 454float: 1 455ldouble: 6 456 457Function: Imaginary part of "ccos_downward": 458double: 3 459float: 3 460ldouble: 6 461 462Function: Real part of "ccos_towardzero": 463double: 1 464float: 2 465ldouble: 6 466 467Function: Imaginary part of "ccos_towardzero": 468double: 3 469float: 3 470ldouble: 6 471 472Function: Real part of "ccos_upward": 473double: 1 474float: 2 475ldouble: 3 476 477Function: Imaginary part of "ccos_upward": 478double: 2 479float: 2 480ldouble: 4 481 482Function: Real part of "ccosh": 483double: 1 484float: 1 485ldouble: 1 486 487Function: Imaginary part of "ccosh": 488double: 1 489float: 1 490ldouble: 2 491 492Function: Real part of "ccosh_downward": 493double: 2 494float: 3 495ldouble: 6 496 497Function: Imaginary part of "ccosh_downward": 498double: 3 499float: 3 500ldouble: 6 501 502Function: Real part of "ccosh_towardzero": 503double: 2 504float: 3 505ldouble: 10 506 507Function: Imaginary part of "ccosh_towardzero": 508double: 3 509float: 3 510ldouble: 6 511 512Function: Real part of "ccosh_upward": 513double: 1 514float: 2 515ldouble: 3 516 517Function: Imaginary part of "ccosh_upward": 518double: 2 519float: 2 520ldouble: 4 521 522Function: Real part of "cexp": 523double: 2 524float: 1 525ldouble: 1 526 527Function: Imaginary part of "cexp": 528double: 1 529float: 2 530ldouble: 1 531 532Function: Real part of "cexp_downward": 533double: 2 534float: 2 535ldouble: 11 536 537Function: Imaginary part of "cexp_downward": 538double: 3 539float: 3 540ldouble: 11 541 542Function: Real part of "cexp_towardzero": 543double: 2 544float: 2 545ldouble: 11 546 547Function: Imaginary part of "cexp_towardzero": 548double: 3 549float: 3 550ldouble: 11 551 552Function: Real part of "cexp_upward": 553double: 1 554float: 2 555ldouble: 3 556 557Function: Imaginary part of "cexp_upward": 558double: 3 559float: 2 560ldouble: 3 561 562Function: Real part of "clog": 563double: 3 564float: 3 565ldouble: 2 566 567Function: Imaginary part of "clog": 568double: 1 569float: 1 570ldouble: 2 571 572Function: Real part of "clog10": 573double: 3 574float: 4 575ldouble: 3 576 577Function: Imaginary part of "clog10": 578double: 2 579float: 2 580ldouble: 2 581 582Function: Real part of "clog10_downward": 583double: 5 584float: 5 585ldouble: 8 586 587Function: Imaginary part of "clog10_downward": 588double: 2 589float: 4 590ldouble: 7 591 592Function: Real part of "clog10_towardzero": 593double: 5 594float: 5 595ldouble: 8 596 597Function: Imaginary part of "clog10_towardzero": 598double: 2 599float: 4 600ldouble: 8 601 602Function: Real part of "clog10_upward": 603double: 6 604float: 5 605ldouble: 8 606 607Function: Imaginary part of "clog10_upward": 608double: 2 609float: 4 610ldouble: 7 611 612Function: Real part of "clog_downward": 613double: 4 614float: 3 615ldouble: 3 616 617Function: Imaginary part of "clog_downward": 618double: 1 619float: 2 620ldouble: 5 621 622Function: Real part of "clog_towardzero": 623double: 4 624float: 4 625ldouble: 4 626 627Function: Imaginary part of "clog_towardzero": 628double: 1 629float: 3 630ldouble: 7 631 632Function: Real part of "clog_upward": 633double: 4 634float: 3 635ldouble: 6 636 637Function: Imaginary part of "clog_upward": 638double: 1 639float: 2 640ldouble: 4 641 642Function: "cos": 643double: 1 644float: 1 645ldouble: 4 646 647Function: "cos_downward": 648double: 1 649float: 2 650ldouble: 5 651 652Function: "cos_towardzero": 653double: 1 654float: 1 655ldouble: 4 656 657Function: "cos_upward": 658double: 1 659float: 2 660ldouble: 5 661 662Function: "cosh": 663double: 2 664float: 2 665ldouble: 3 666 667Function: "cosh_downward": 668double: 3 669float: 1 670ldouble: 6 671 672Function: "cosh_towardzero": 673double: 3 674float: 1 675ldouble: 6 676 677Function: "cosh_upward": 678double: 2 679float: 2 680ldouble: 2 681 682Function: Real part of "cpow": 683double: 2 684float: 5 685ldouble: 4 686 687Function: Imaginary part of "cpow": 688float: 2 689ldouble: 1 690 691Function: Real part of "cpow_downward": 692double: 5 693float: 8 694ldouble: 7 695 696Function: Imaginary part of "cpow_downward": 697double: 1 698float: 2 699ldouble: 4 700 701Function: Real part of "cpow_towardzero": 702double: 5 703float: 8 704ldouble: 8 705 706Function: Imaginary part of "cpow_towardzero": 707double: 1 708float: 2 709ldouble: 4 710 711Function: Real part of "cpow_upward": 712double: 4 713float: 1 714ldouble: 3 715 716Function: Imaginary part of "cpow_upward": 717double: 1 718float: 2 719ldouble: 3 720 721Function: Real part of "csin": 722double: 1 723float: 1 724ldouble: 2 725 726Function: Imaginary part of "csin": 727ldouble: 1 728 729Function: Real part of "csin_downward": 730double: 3 731float: 3 732ldouble: 6 733 734Function: Imaginary part of "csin_downward": 735double: 1 736float: 1 737ldouble: 6 738 739Function: Real part of "csin_towardzero": 740double: 3 741float: 3 742ldouble: 6 743 744Function: Imaginary part of "csin_towardzero": 745double: 1 746float: 1 747ldouble: 6 748 749Function: Real part of "csin_upward": 750double: 2 751float: 2 752ldouble: 3 753 754Function: Imaginary part of "csin_upward": 755double: 1 756float: 2 757ldouble: 3 758 759Function: Real part of "csinh": 760float: 1 761ldouble: 1 762 763Function: Imaginary part of "csinh": 764double: 1 765float: 1 766ldouble: 2 767 768Function: Real part of "csinh_downward": 769double: 2 770float: 2 771ldouble: 6 772 773Function: Imaginary part of "csinh_downward": 774double: 3 775float: 3 776ldouble: 6 777 778Function: Real part of "csinh_towardzero": 779double: 2 780float: 2 781ldouble: 6 782 783Function: Imaginary part of "csinh_towardzero": 784double: 3 785float: 3 786ldouble: 6 787 788Function: Real part of "csinh_upward": 789double: 1 790float: 2 791ldouble: 3 792 793Function: Imaginary part of "csinh_upward": 794double: 2 795float: 2 796ldouble: 3 797 798Function: Real part of "csqrt": 799double: 2 800float: 2 801ldouble: 1 802 803Function: Imaginary part of "csqrt": 804double: 2 805float: 2 806ldouble: 1 807 808Function: Real part of "csqrt_downward": 809double: 5 810float: 4 811ldouble: 4 812 813Function: Imaginary part of "csqrt_downward": 814double: 4 815float: 3 816ldouble: 5 817 818Function: Real part of "csqrt_towardzero": 819double: 4 820float: 3 821ldouble: 5 822 823Function: Imaginary part of "csqrt_towardzero": 824double: 4 825float: 3 826ldouble: 5 827 828Function: Real part of "csqrt_upward": 829double: 5 830float: 4 831ldouble: 12 832 833Function: Imaginary part of "csqrt_upward": 834double: 3 835float: 3 836ldouble: 8 837 838Function: Real part of "ctan": 839double: 1 840float: 1 841ldouble: 3 842 843Function: Imaginary part of "ctan": 844double: 2 845float: 2 846ldouble: 2 847 848Function: Real part of "ctan_downward": 849double: 6 850float: 5 851ldouble: 6 852 853Function: Imaginary part of "ctan_downward": 854double: 2 855float: 2 856ldouble: 9 857 858Function: Real part of "ctan_towardzero": 859double: 5 860float: 3 861ldouble: 4 862 863Function: Imaginary part of "ctan_towardzero": 864double: 2 865float: 2 866ldouble: 13 867 868Function: Real part of "ctan_upward": 869double: 2 870float: 4 871ldouble: 7 872 873Function: Imaginary part of "ctan_upward": 874double: 2 875float: 3 876ldouble: 10 877 878Function: Real part of "ctanh": 879double: 2 880float: 2 881ldouble: 2 882 883Function: Imaginary part of "ctanh": 884double: 2 885float: 2 886ldouble: 3 887 888Function: Real part of "ctanh_downward": 889double: 4 890float: 2 891ldouble: 9 892 893Function: Imaginary part of "ctanh_downward": 894double: 6 895float: 5 896ldouble: 6 897 898Function: Real part of "ctanh_towardzero": 899double: 2 900float: 2 901ldouble: 13 902 903Function: Imaginary part of "ctanh_towardzero": 904double: 5 905float: 3 906ldouble: 10 907 908Function: Real part of "ctanh_upward": 909double: 2 910float: 3 911ldouble: 10 912 913Function: Imaginary part of "ctanh_upward": 914double: 2 915float: 3 916ldouble: 10 917 918Function: "div_ldouble": 919float: 1 920 921Function: "erf": 922double: 1 923float: 1 924ldouble: 1 925 926Function: "erf_downward": 927double: 1 928float: 1 929ldouble: 2 930 931Function: "erf_towardzero": 932double: 1 933float: 1 934ldouble: 2 935 936Function: "erf_upward": 937double: 1 938float: 1 939ldouble: 2 940 941Function: "erfc": 942double: 5 943float: 3 944ldouble: 3 945 946Function: "erfc_downward": 947double: 5 948float: 6 949ldouble: 10 950 951Function: "erfc_towardzero": 952double: 3 953float: 4 954ldouble: 11 955 956Function: "erfc_upward": 957double: 5 958float: 6 959ldouble: 7 960 961Function: "exp": 962double: 1 963float: 1 964ldouble: 1 965 966Function: "exp10": 967double: 2 968ldouble: 1 969 970Function: "exp10_downward": 971double: 3 972float: 1 973ldouble: 9 974 975Function: "exp10_towardzero": 976double: 3 977float: 1 978ldouble: 9 979 980Function: "exp10_upward": 981double: 2 982float: 1 983ldouble: 4 984 985Function: "exp2": 986double: 1 987float: 1 988ldouble: 1 989 990Function: "exp2_downward": 991double: 1 992float: 1 993ldouble: 1 994 995Function: "exp2_towardzero": 996double: 1 997float: 1 998ldouble: 2 999 1000Function: "exp2_upward": 1001double: 1 1002float: 1 1003ldouble: 2 1004 1005Function: "exp_downward": 1006double: 1 1007float: 1 1008ldouble: 1 1009 1010Function: "exp_towardzero": 1011double: 1 1012float: 1 1013ldouble: 1 1014 1015Function: "exp_upward": 1016double: 1 1017float: 1 1018ldouble: 1 1019 1020Function: "expm1": 1021double: 1 1022float: 1 1023ldouble: 1 1024 1025Function: "expm1_downward": 1026double: 1 1027float: 1 1028ldouble: 5 1029 1030Function: "expm1_towardzero": 1031double: 1 1032float: 2 1033ldouble: 5 1034 1035Function: "expm1_upward": 1036double: 1 1037float: 1 1038ldouble: 6 1039 1040Function: "fma": 1041ldouble: 1 1042 1043Function: "fma_downward": 1044ldouble: 1 1045 1046Function: "fma_towardzero": 1047ldouble: 2 1048 1049Function: "fma_upward": 1050ldouble: 3 1051 1052Function: "fmod": 1053ldouble: 1 1054 1055Function: "fmod_downward": 1056ldouble: 1 1057 1058Function: "fmod_towardzero": 1059ldouble: 1 1060 1061Function: "fmod_upward": 1062ldouble: 1 1063 1064Function: "gamma": 1065double: 4 1066float: 7 1067ldouble: 3 1068 1069Function: "gamma_downward": 1070double: 5 1071float: 7 1072ldouble: 15 1073 1074Function: "gamma_towardzero": 1075double: 5 1076float: 6 1077ldouble: 16 1078 1079Function: "gamma_upward": 1080double: 5 1081float: 6 1082ldouble: 11 1083 1084Function: "hypot": 1085double: 1 1086ldouble: 1 1087 1088Function: "hypot_downward": 1089double: 1 1090ldouble: 2 1091 1092Function: "hypot_towardzero": 1093double: 1 1094ldouble: 2 1095 1096Function: "hypot_upward": 1097double: 1 1098ldouble: 3 1099 1100Function: "j0": 1101double: 2 1102float: 9 1103ldouble: 4 1104 1105Function: "j0_downward": 1106double: 5 1107float: 9 1108ldouble: 12 1109 1110Function: "j0_towardzero": 1111double: 6 1112float: 9 1113ldouble: 14 1114 1115Function: "j0_upward": 1116double: 9 1117float: 9 1118ldouble: 13 1119 1120Function: "j1": 1121double: 4 1122float: 9 1123ldouble: 10 1124 1125Function: "j1_downward": 1126double: 5 1127float: 8 1128ldouble: 6 1129 1130Function: "j1_towardzero": 1131double: 4 1132float: 8 1133ldouble: 6 1134 1135Function: "j1_upward": 1136double: 9 1137float: 9 1138ldouble: 6 1139 1140Function: "jn": 1141double: 4 1142float: 4 1143ldouble: 4 1144 1145Function: "jn_downward": 1146double: 5 1147float: 5 1148ldouble: 6 1149 1150Function: "jn_towardzero": 1151double: 5 1152float: 5 1153ldouble: 6 1154 1155Function: "jn_upward": 1156double: 5 1157float: 5 1158ldouble: 5 1159 1160Function: "ldexp_downward": 1161ldouble: 1 1162 1163Function: "ldexp_upward": 1164ldouble: 1 1165 1166Function: "lgamma": 1167double: 4 1168float: 7 1169ldouble: 3 1170 1171Function: "lgamma_downward": 1172double: 5 1173float: 7 1174ldouble: 15 1175 1176Function: "lgamma_towardzero": 1177double: 5 1178float: 6 1179ldouble: 16 1180 1181Function: "lgamma_upward": 1182double: 5 1183float: 6 1184ldouble: 11 1185 1186Function: "log": 1187float: 1 1188ldouble: 1 1189 1190Function: "log10": 1191double: 2 1192float: 2 1193ldouble: 1 1194 1195Function: "log10_downward": 1196double: 2 1197float: 3 1198ldouble: 1 1199 1200Function: "log10_towardzero": 1201double: 2 1202float: 2 1203ldouble: 2 1204 1205Function: "log10_upward": 1206double: 2 1207float: 2 1208ldouble: 2 1209 1210Function: "log1p": 1211double: 1 1212float: 1 1213ldouble: 2 1214 1215Function: "log1p_downward": 1216double: 2 1217float: 2 1218ldouble: 2 1219 1220Function: "log1p_towardzero": 1221double: 2 1222float: 2 1223ldouble: 2 1224 1225Function: "log1p_upward": 1226double: 2 1227float: 2 1228ldouble: 2 1229 1230Function: "log2": 1231double: 2 1232float: 1 1233ldouble: 1 1234 1235Function: "log2_downward": 1236double: 3 1237float: 3 1238ldouble: 2 1239 1240Function: "log2_towardzero": 1241double: 2 1242float: 2 1243ldouble: 5 1244 1245Function: "log2_upward": 1246double: 3 1247float: 3 1248ldouble: 4 1249 1250Function: "log_downward": 1251float: 2 1252ldouble: 1 1253 1254Function: "log_towardzero": 1255float: 2 1256ldouble: 2 1257 1258Function: "log_upward": 1259double: 1 1260float: 2 1261ldouble: 1 1262 1263Function: "mul_downward_ldouble": 1264double: 1 1265float: 1 1266 1267Function: "mul_ldouble": 1268double: 1 1269float: 1 1270 1271Function: "mul_towardzero_ldouble": 1272double: 1 1273float: 1 1274 1275Function: "mul_upward_ldouble": 1276double: 1 1277float: 1 1278 1279Function: "nextafter_downward": 1280ldouble: 1 1281 1282Function: "nextafter_upward": 1283ldouble: 1 1284 1285Function: "pow": 1286double: 1 1287float: 1 1288ldouble: 1 1289 1290Function: "pow_downward": 1291double: 1 1292float: 1 1293ldouble: 1 1294 1295Function: "pow_towardzero": 1296double: 1 1297float: 1 1298ldouble: 1 1299 1300Function: "pow_upward": 1301double: 1 1302float: 1 1303ldouble: 1 1304 1305Function: "scalb_downward": 1306ldouble: 1 1307 1308Function: "scalb_upward": 1309ldouble: 1 1310 1311Function: "scalbln_downward": 1312ldouble: 1 1313 1314Function: "scalbln_upward": 1315ldouble: 1 1316 1317Function: "scalbn_downward": 1318ldouble: 1 1319 1320Function: "scalbn_upward": 1321ldouble: 1 1322 1323Function: "sin": 1324double: 1 1325float: 1 1326ldouble: 1 1327 1328Function: "sin_downward": 1329double: 1 1330float: 2 1331ldouble: 4 1332 1333Function: "sin_towardzero": 1334double: 1 1335float: 1 1336ldouble: 5 1337 1338Function: "sin_upward": 1339double: 1 1340float: 2 1341ldouble: 5 1342 1343Function: "sincos": 1344double: 1 1345float: 1 1346ldouble: 1 1347 1348Function: "sincos_downward": 1349double: 1 1350float: 2 1351ldouble: 4 1352 1353Function: "sincos_towardzero": 1354double: 1 1355float: 1 1356ldouble: 7 1357 1358Function: "sincos_upward": 1359double: 1 1360float: 2 1361ldouble: 7 1362 1363Function: "sinh": 1364double: 2 1365float: 2 1366ldouble: 3 1367 1368Function: "sinh_downward": 1369double: 3 1370float: 3 1371ldouble: 6 1372 1373Function: "sinh_towardzero": 1374double: 3 1375float: 2 1376ldouble: 6 1377 1378Function: "sinh_upward": 1379double: 3 1380float: 3 1381ldouble: 6 1382 1383Function: "sqrt": 1384ldouble: 1 1385 1386Function: "sqrt_downward": 1387ldouble: 1 1388 1389Function: "sqrt_towardzero": 1390ldouble: 1 1391 1392Function: "sqrt_upward": 1393ldouble: 1 1394 1395Function: "sub_ldouble": 1396double: 1 1397float: 1 1398 1399Function: "tan": 1400float: 1 1401ldouble: 2 1402 1403Function: "tan_downward": 1404double: 1 1405float: 2 1406ldouble: 3 1407 1408Function: "tan_towardzero": 1409double: 1 1410float: 1 1411ldouble: 2 1412 1413Function: "tan_upward": 1414double: 1 1415float: 1 1416ldouble: 3 1417 1418Function: "tanh": 1419double: 2 1420float: 2 1421ldouble: 1 1422 1423Function: "tanh_downward": 1424double: 3 1425float: 3 1426ldouble: 4 1427 1428Function: "tanh_towardzero": 1429double: 2 1430float: 2 1431ldouble: 4 1432 1433Function: "tanh_upward": 1434double: 3 1435float: 3 1436ldouble: 6 1437 1438Function: "tgamma": 1439double: 9 1440float: 8 1441ldouble: 5 1442 1443Function: "tgamma_downward": 1444double: 9 1445float: 7 1446ldouble: 5 1447 1448Function: "tgamma_towardzero": 1449double: 9 1450float: 7 1451ldouble: 5 1452 1453Function: "tgamma_upward": 1454double: 9 1455float: 8 1456ldouble: 4 1457 1458Function: "y0": 1459double: 3 1460float: 9 1461ldouble: 10 1462 1463Function: "y0_downward": 1464double: 3 1465float: 9 1466ldouble: 10 1467 1468Function: "y0_towardzero": 1469double: 4 1470float: 9 1471ldouble: 8 1472 1473Function: "y0_upward": 1474double: 3 1475float: 9 1476ldouble: 8 1477 1478Function: "y1": 1479double: 3 1480float: 9 1481ldouble: 2 1482 1483Function: "y1_downward": 1484double: 6 1485float: 9 1486ldouble: 7 1487 1488Function: "y1_towardzero": 1489double: 3 1490float: 9 1491ldouble: 7 1492 1493Function: "y1_upward": 1494double: 7 1495float: 9 1496ldouble: 9 1497 1498Function: "yn": 1499double: 3 1500float: 3 1501ldouble: 2 1502 1503Function: "yn_downward": 1504double: 3 1505float: 4 1506ldouble: 10 1507 1508Function: "yn_towardzero": 1509double: 3 1510float: 3 1511ldouble: 8 1512 1513Function: "yn_upward": 1514double: 4 1515float: 5 1516ldouble: 5 1517 1518# end of automatic generation 1519