1# Begin of automatic generation
2
3# Maximal error of functions:
4Function: "acos":
5double: 1
6float: 1
7ldouble: 1
8
9Function: "acos_downward":
10double: 1
11float: 1
12ldouble: 3
13
14Function: "acos_towardzero":
15double: 1
16float: 1
17ldouble: 3
18
19Function: "acos_upward":
20double: 1
21float: 1
22ldouble: 2
23
24Function: "acosh":
25double: 2
26float: 2
27ldouble: 1
28
29Function: "acosh_downward":
30double: 2
31float: 2
32ldouble: 2
33
34Function: "acosh_towardzero":
35double: 2
36float: 2
37ldouble: 5
38
39Function: "acosh_upward":
40double: 2
41float: 2
42ldouble: 4
43
44Function: "add_ldouble":
45double: 1
46float: 1
47
48Function: "asin":
49double: 1
50float: 1
51ldouble: 2
52
53Function: "asin_downward":
54double: 1
55float: 1
56ldouble: 2
57
58Function: "asin_towardzero":
59double: 1
60float: 1
61ldouble: 1
62
63Function: "asin_upward":
64double: 2
65float: 1
66ldouble: 2
67
68Function: "asinh":
69double: 2
70float: 2
71ldouble: 2
72
73Function: "asinh_downward":
74double: 3
75float: 3
76ldouble: 5
77
78Function: "asinh_towardzero":
79double: 2
80float: 2
81ldouble: 5
82
83Function: "asinh_upward":
84double: 3
85float: 3
86ldouble: 7
87
88Function: "atan":
89double: 1
90float: 1
91ldouble: 1
92
93Function: "atan2":
94float: 2
95ldouble: 2
96
97Function: "atan2_downward":
98double: 1
99float: 2
100ldouble: 5
101
102Function: "atan2_towardzero":
103double: 1
104float: 2
105ldouble: 6
106
107Function: "atan2_upward":
108double: 1
109float: 2
110ldouble: 3
111
112Function: "atan_downward":
113double: 1
114float: 2
115ldouble: 1
116
117Function: "atan_towardzero":
118double: 1
119float: 1
120ldouble: 1
121
122Function: "atan_upward":
123double: 1
124float: 2
125ldouble: 2
126
127Function: "atanh":
128double: 2
129float: 2
130ldouble: 2
131
132Function: "atanh_downward":
133double: 3
134float: 3
135ldouble: 3
136
137Function: "atanh_towardzero":
138double: 2
139float: 2
140ldouble: 4
141
142Function: "atanh_upward":
143double: 3
144float: 3
145ldouble: 4
146
147Function: "cabs":
148double: 1
149ldouble: 1
150
151Function: "cabs_downward":
152double: 1
153ldouble: 1
154
155Function: "cabs_towardzero":
156double: 1
157ldouble: 1
158
159Function: "cabs_upward":
160double: 1
161ldouble: 1
162
163Function: Real part of "cacos":
164double: 1
165float: 2
166ldouble: 2
167
168Function: Imaginary part of "cacos":
169double: 2
170float: 2
171ldouble: 1
172
173Function: Real part of "cacos_downward":
174double: 3
175float: 2
176ldouble: 6
177
178Function: Imaginary part of "cacos_downward":
179double: 5
180float: 3
181ldouble: 8
182
183Function: Real part of "cacos_towardzero":
184double: 3
185float: 2
186ldouble: 7
187
188Function: Imaginary part of "cacos_towardzero":
189double: 5
190float: 3
191ldouble: 8
192
193Function: Real part of "cacos_upward":
194double: 2
195float: 2
196ldouble: 4
197
198Function: Imaginary part of "cacos_upward":
199double: 5
200float: 7
201ldouble: 13
202
203Function: Real part of "cacosh":
204double: 2
205float: 2
206ldouble: 1
207
208Function: Imaginary part of "cacosh":
209double: 1
210float: 2
211ldouble: 2
212
213Function: Real part of "cacosh_downward":
214double: 5
215float: 3
216ldouble: 8
217
218Function: Imaginary part of "cacosh_downward":
219double: 3
220float: 3
221ldouble: 6
222
223Function: Real part of "cacosh_towardzero":
224double: 5
225float: 3
226ldouble: 8
227
228Function: Imaginary part of "cacosh_towardzero":
229double: 3
230float: 2
231ldouble: 7
232
233Function: Real part of "cacosh_upward":
234double: 4
235float: 4
236ldouble: 12
237
238Function: Imaginary part of "cacosh_upward":
239double: 3
240float: 2
241ldouble: 5
242
243Function: "carg":
244float: 1
245ldouble: 2
246
247Function: "carg_downward":
248double: 1
249float: 2
250ldouble: 5
251
252Function: "carg_towardzero":
253double: 1
254float: 2
255ldouble: 6
256
257Function: "carg_upward":
258double: 1
259float: 2
260ldouble: 3
261
262Function: Real part of "casin":
263double: 1
264float: 1
265ldouble: 2
266
267Function: Imaginary part of "casin":
268double: 2
269float: 2
270ldouble: 1
271
272Function: Real part of "casin_downward":
273double: 3
274float: 2
275ldouble: 3
276
277Function: Imaginary part of "casin_downward":
278double: 5
279float: 3
280ldouble: 8
281
282Function: Real part of "casin_towardzero":
283double: 3
284float: 1
285ldouble: 5
286
287Function: Imaginary part of "casin_towardzero":
288double: 5
289float: 3
290ldouble: 8
291
292Function: Real part of "casin_upward":
293double: 3
294float: 2
295ldouble: 6
296
297Function: Imaginary part of "casin_upward":
298double: 5
299float: 7
300ldouble: 13
301
302Function: Real part of "casinh":
303double: 2
304float: 2
305ldouble: 1
306
307Function: Imaginary part of "casinh":
308double: 1
309float: 1
310ldouble: 2
311
312Function: Real part of "casinh_downward":
313double: 5
314float: 3
315ldouble: 8
316
317Function: Imaginary part of "casinh_downward":
318double: 3
319float: 2
320ldouble: 3
321
322Function: Real part of "casinh_towardzero":
323double: 5
324float: 3
325ldouble: 8
326
327Function: Imaginary part of "casinh_towardzero":
328double: 3
329float: 1
330ldouble: 5
331
332Function: Real part of "casinh_upward":
333double: 5
334float: 7
335ldouble: 13
336
337Function: Imaginary part of "casinh_upward":
338double: 3
339float: 2
340ldouble: 6
341
342Function: Real part of "catan":
343double: 1
344float: 1
345ldouble: 3
346
347Function: Imaginary part of "catan":
348double: 1
349float: 1
350ldouble: 2
351
352Function: Real part of "catan_downward":
353double: 1
354float: 2
355ldouble: 6
356
357Function: Imaginary part of "catan_downward":
358double: 2
359float: 2
360ldouble: 7
361
362Function: Real part of "catan_towardzero":
363double: 1
364float: 2
365ldouble: 7
366
367Function: Imaginary part of "catan_towardzero":
368double: 2
369float: 2
370ldouble: 3
371
372Function: Real part of "catan_upward":
373double: 1
374float: 1
375ldouble: 6
376
377Function: Imaginary part of "catan_upward":
378double: 3
379float: 3
380ldouble: 8
381
382Function: Real part of "catanh":
383double: 1
384float: 1
385ldouble: 2
386
387Function: Imaginary part of "catanh":
388double: 1
389float: 1
390ldouble: 3
391
392Function: Real part of "catanh_downward":
393double: 2
394float: 2
395ldouble: 5
396
397Function: Imaginary part of "catanh_downward":
398double: 1
399float: 2
400ldouble: 6
401
402Function: Real part of "catanh_towardzero":
403double: 2
404float: 2
405ldouble: 3
406
407Function: Imaginary part of "catanh_towardzero":
408double: 1
409float: 2
410ldouble: 7
411
412Function: Real part of "catanh_upward":
413double: 4
414float: 4
415ldouble: 8
416
417Function: Imaginary part of "catanh_upward":
418double: 1
419float: 1
420ldouble: 6
421
422Function: "cbrt":
423double: 4
424float: 1
425ldouble: 1
426
427Function: "cbrt_downward":
428double: 4
429float: 1
430ldouble: 5
431
432Function: "cbrt_towardzero":
433double: 3
434float: 1
435ldouble: 3
436
437Function: "cbrt_upward":
438double: 5
439float: 1
440ldouble: 2
441
442Function: Real part of "ccos":
443double: 1
444float: 1
445ldouble: 1
446
447Function: Imaginary part of "ccos":
448double: 1
449float: 1
450ldouble: 2
451
452Function: Real part of "ccos_downward":
453double: 1
454float: 1
455ldouble: 6
456
457Function: Imaginary part of "ccos_downward":
458double: 3
459float: 3
460ldouble: 6
461
462Function: Real part of "ccos_towardzero":
463double: 1
464float: 2
465ldouble: 6
466
467Function: Imaginary part of "ccos_towardzero":
468double: 3
469float: 3
470ldouble: 6
471
472Function: Real part of "ccos_upward":
473double: 1
474float: 2
475ldouble: 3
476
477Function: Imaginary part of "ccos_upward":
478double: 2
479float: 2
480ldouble: 4
481
482Function: Real part of "ccosh":
483double: 1
484float: 1
485ldouble: 1
486
487Function: Imaginary part of "ccosh":
488double: 1
489float: 1
490ldouble: 2
491
492Function: Real part of "ccosh_downward":
493double: 2
494float: 3
495ldouble: 6
496
497Function: Imaginary part of "ccosh_downward":
498double: 3
499float: 3
500ldouble: 6
501
502Function: Real part of "ccosh_towardzero":
503double: 2
504float: 3
505ldouble: 10
506
507Function: Imaginary part of "ccosh_towardzero":
508double: 3
509float: 3
510ldouble: 6
511
512Function: Real part of "ccosh_upward":
513double: 1
514float: 2
515ldouble: 3
516
517Function: Imaginary part of "ccosh_upward":
518double: 2
519float: 2
520ldouble: 4
521
522Function: Real part of "cexp":
523double: 2
524float: 1
525ldouble: 1
526
527Function: Imaginary part of "cexp":
528double: 1
529float: 2
530ldouble: 1
531
532Function: Real part of "cexp_downward":
533double: 2
534float: 2
535ldouble: 11
536
537Function: Imaginary part of "cexp_downward":
538double: 3
539float: 3
540ldouble: 11
541
542Function: Real part of "cexp_towardzero":
543double: 2
544float: 2
545ldouble: 11
546
547Function: Imaginary part of "cexp_towardzero":
548double: 3
549float: 3
550ldouble: 11
551
552Function: Real part of "cexp_upward":
553double: 1
554float: 2
555ldouble: 3
556
557Function: Imaginary part of "cexp_upward":
558double: 3
559float: 2
560ldouble: 3
561
562Function: Real part of "clog":
563double: 3
564float: 3
565ldouble: 2
566
567Function: Imaginary part of "clog":
568double: 1
569float: 1
570ldouble: 2
571
572Function: Real part of "clog10":
573double: 3
574float: 4
575ldouble: 3
576
577Function: Imaginary part of "clog10":
578double: 2
579float: 2
580ldouble: 2
581
582Function: Real part of "clog10_downward":
583double: 5
584float: 5
585ldouble: 8
586
587Function: Imaginary part of "clog10_downward":
588double: 2
589float: 4
590ldouble: 7
591
592Function: Real part of "clog10_towardzero":
593double: 5
594float: 5
595ldouble: 8
596
597Function: Imaginary part of "clog10_towardzero":
598double: 2
599float: 4
600ldouble: 8
601
602Function: Real part of "clog10_upward":
603double: 6
604float: 5
605ldouble: 8
606
607Function: Imaginary part of "clog10_upward":
608double: 2
609float: 4
610ldouble: 7
611
612Function: Real part of "clog_downward":
613double: 4
614float: 3
615ldouble: 3
616
617Function: Imaginary part of "clog_downward":
618double: 1
619float: 2
620ldouble: 5
621
622Function: Real part of "clog_towardzero":
623double: 4
624float: 4
625ldouble: 4
626
627Function: Imaginary part of "clog_towardzero":
628double: 1
629float: 3
630ldouble: 7
631
632Function: Real part of "clog_upward":
633double: 4
634float: 3
635ldouble: 6
636
637Function: Imaginary part of "clog_upward":
638double: 1
639float: 2
640ldouble: 4
641
642Function: "cos":
643double: 1
644float: 1
645ldouble: 4
646
647Function: "cos_downward":
648double: 1
649float: 2
650ldouble: 5
651
652Function: "cos_towardzero":
653double: 1
654float: 1
655ldouble: 4
656
657Function: "cos_upward":
658double: 1
659float: 2
660ldouble: 5
661
662Function: "cosh":
663double: 2
664float: 2
665ldouble: 3
666
667Function: "cosh_downward":
668double: 3
669float: 1
670ldouble: 6
671
672Function: "cosh_towardzero":
673double: 3
674float: 1
675ldouble: 6
676
677Function: "cosh_upward":
678double: 2
679float: 2
680ldouble: 2
681
682Function: Real part of "cpow":
683double: 2
684float: 5
685ldouble: 4
686
687Function: Imaginary part of "cpow":
688float: 2
689ldouble: 1
690
691Function: Real part of "cpow_downward":
692double: 5
693float: 8
694ldouble: 7
695
696Function: Imaginary part of "cpow_downward":
697double: 1
698float: 2
699ldouble: 4
700
701Function: Real part of "cpow_towardzero":
702double: 5
703float: 8
704ldouble: 8
705
706Function: Imaginary part of "cpow_towardzero":
707double: 1
708float: 2
709ldouble: 4
710
711Function: Real part of "cpow_upward":
712double: 4
713float: 1
714ldouble: 3
715
716Function: Imaginary part of "cpow_upward":
717double: 1
718float: 2
719ldouble: 3
720
721Function: Real part of "csin":
722double: 1
723float: 1
724ldouble: 2
725
726Function: Imaginary part of "csin":
727ldouble: 1
728
729Function: Real part of "csin_downward":
730double: 3
731float: 3
732ldouble: 6
733
734Function: Imaginary part of "csin_downward":
735double: 1
736float: 1
737ldouble: 6
738
739Function: Real part of "csin_towardzero":
740double: 3
741float: 3
742ldouble: 6
743
744Function: Imaginary part of "csin_towardzero":
745double: 1
746float: 1
747ldouble: 6
748
749Function: Real part of "csin_upward":
750double: 2
751float: 2
752ldouble: 3
753
754Function: Imaginary part of "csin_upward":
755double: 1
756float: 2
757ldouble: 3
758
759Function: Real part of "csinh":
760float: 1
761ldouble: 1
762
763Function: Imaginary part of "csinh":
764double: 1
765float: 1
766ldouble: 2
767
768Function: Real part of "csinh_downward":
769double: 2
770float: 2
771ldouble: 6
772
773Function: Imaginary part of "csinh_downward":
774double: 3
775float: 3
776ldouble: 6
777
778Function: Real part of "csinh_towardzero":
779double: 2
780float: 2
781ldouble: 6
782
783Function: Imaginary part of "csinh_towardzero":
784double: 3
785float: 3
786ldouble: 6
787
788Function: Real part of "csinh_upward":
789double: 1
790float: 2
791ldouble: 3
792
793Function: Imaginary part of "csinh_upward":
794double: 2
795float: 2
796ldouble: 3
797
798Function: Real part of "csqrt":
799double: 2
800float: 2
801ldouble: 1
802
803Function: Imaginary part of "csqrt":
804double: 2
805float: 2
806ldouble: 1
807
808Function: Real part of "csqrt_downward":
809double: 5
810float: 4
811ldouble: 4
812
813Function: Imaginary part of "csqrt_downward":
814double: 4
815float: 3
816ldouble: 5
817
818Function: Real part of "csqrt_towardzero":
819double: 4
820float: 3
821ldouble: 5
822
823Function: Imaginary part of "csqrt_towardzero":
824double: 4
825float: 3
826ldouble: 5
827
828Function: Real part of "csqrt_upward":
829double: 5
830float: 4
831ldouble: 12
832
833Function: Imaginary part of "csqrt_upward":
834double: 3
835float: 3
836ldouble: 8
837
838Function: Real part of "ctan":
839double: 1
840float: 1
841ldouble: 3
842
843Function: Imaginary part of "ctan":
844double: 2
845float: 2
846ldouble: 2
847
848Function: Real part of "ctan_downward":
849double: 6
850float: 5
851ldouble: 6
852
853Function: Imaginary part of "ctan_downward":
854double: 2
855float: 2
856ldouble: 9
857
858Function: Real part of "ctan_towardzero":
859double: 5
860float: 3
861ldouble: 4
862
863Function: Imaginary part of "ctan_towardzero":
864double: 2
865float: 2
866ldouble: 13
867
868Function: Real part of "ctan_upward":
869double: 2
870float: 4
871ldouble: 7
872
873Function: Imaginary part of "ctan_upward":
874double: 2
875float: 3
876ldouble: 10
877
878Function: Real part of "ctanh":
879double: 2
880float: 2
881ldouble: 2
882
883Function: Imaginary part of "ctanh":
884double: 2
885float: 2
886ldouble: 3
887
888Function: Real part of "ctanh_downward":
889double: 4
890float: 2
891ldouble: 9
892
893Function: Imaginary part of "ctanh_downward":
894double: 6
895float: 5
896ldouble: 6
897
898Function: Real part of "ctanh_towardzero":
899double: 2
900float: 2
901ldouble: 13
902
903Function: Imaginary part of "ctanh_towardzero":
904double: 5
905float: 3
906ldouble: 10
907
908Function: Real part of "ctanh_upward":
909double: 2
910float: 3
911ldouble: 10
912
913Function: Imaginary part of "ctanh_upward":
914double: 2
915float: 3
916ldouble: 10
917
918Function: "div_ldouble":
919float: 1
920
921Function: "erf":
922double: 1
923float: 1
924ldouble: 1
925
926Function: "erf_downward":
927double: 1
928float: 1
929ldouble: 2
930
931Function: "erf_towardzero":
932double: 1
933float: 1
934ldouble: 2
935
936Function: "erf_upward":
937double: 1
938float: 1
939ldouble: 2
940
941Function: "erfc":
942double: 5
943float: 3
944ldouble: 3
945
946Function: "erfc_downward":
947double: 5
948float: 6
949ldouble: 10
950
951Function: "erfc_towardzero":
952double: 3
953float: 4
954ldouble: 11
955
956Function: "erfc_upward":
957double: 5
958float: 6
959ldouble: 7
960
961Function: "exp":
962double: 1
963float: 1
964ldouble: 1
965
966Function: "exp10":
967double: 2
968ldouble: 1
969
970Function: "exp10_downward":
971double: 3
972float: 1
973ldouble: 9
974
975Function: "exp10_towardzero":
976double: 3
977float: 1
978ldouble: 9
979
980Function: "exp10_upward":
981double: 2
982float: 1
983ldouble: 4
984
985Function: "exp2":
986double: 1
987float: 1
988ldouble: 1
989
990Function: "exp2_downward":
991double: 1
992float: 1
993ldouble: 1
994
995Function: "exp2_towardzero":
996double: 1
997float: 1
998ldouble: 2
999
1000Function: "exp2_upward":
1001double: 1
1002float: 1
1003ldouble: 2
1004
1005Function: "exp_downward":
1006double: 1
1007float: 1
1008ldouble: 1
1009
1010Function: "exp_towardzero":
1011double: 1
1012float: 1
1013ldouble: 1
1014
1015Function: "exp_upward":
1016double: 1
1017float: 1
1018ldouble: 1
1019
1020Function: "expm1":
1021double: 1
1022float: 1
1023ldouble: 1
1024
1025Function: "expm1_downward":
1026double: 1
1027float: 1
1028ldouble: 5
1029
1030Function: "expm1_towardzero":
1031double: 1
1032float: 2
1033ldouble: 5
1034
1035Function: "expm1_upward":
1036double: 1
1037float: 1
1038ldouble: 6
1039
1040Function: "fma":
1041ldouble: 1
1042
1043Function: "fma_downward":
1044ldouble: 1
1045
1046Function: "fma_towardzero":
1047ldouble: 2
1048
1049Function: "fma_upward":
1050ldouble: 3
1051
1052Function: "fmod":
1053ldouble: 1
1054
1055Function: "fmod_downward":
1056ldouble: 1
1057
1058Function: "fmod_towardzero":
1059ldouble: 1
1060
1061Function: "fmod_upward":
1062ldouble: 1
1063
1064Function: "gamma":
1065double: 4
1066float: 7
1067ldouble: 3
1068
1069Function: "gamma_downward":
1070double: 5
1071float: 7
1072ldouble: 15
1073
1074Function: "gamma_towardzero":
1075double: 5
1076float: 6
1077ldouble: 16
1078
1079Function: "gamma_upward":
1080double: 5
1081float: 6
1082ldouble: 11
1083
1084Function: "hypot":
1085double: 1
1086ldouble: 1
1087
1088Function: "hypot_downward":
1089double: 1
1090ldouble: 2
1091
1092Function: "hypot_towardzero":
1093double: 1
1094ldouble: 2
1095
1096Function: "hypot_upward":
1097double: 1
1098ldouble: 3
1099
1100Function: "j0":
1101double: 2
1102float: 9
1103ldouble: 4
1104
1105Function: "j0_downward":
1106double: 5
1107float: 9
1108ldouble: 12
1109
1110Function: "j0_towardzero":
1111double: 6
1112float: 9
1113ldouble: 14
1114
1115Function: "j0_upward":
1116double: 9
1117float: 9
1118ldouble: 13
1119
1120Function: "j1":
1121double: 4
1122float: 9
1123ldouble: 10
1124
1125Function: "j1_downward":
1126double: 5
1127float: 8
1128ldouble: 6
1129
1130Function: "j1_towardzero":
1131double: 4
1132float: 8
1133ldouble: 6
1134
1135Function: "j1_upward":
1136double: 9
1137float: 9
1138ldouble: 6
1139
1140Function: "jn":
1141double: 4
1142float: 4
1143ldouble: 4
1144
1145Function: "jn_downward":
1146double: 5
1147float: 5
1148ldouble: 6
1149
1150Function: "jn_towardzero":
1151double: 5
1152float: 5
1153ldouble: 6
1154
1155Function: "jn_upward":
1156double: 5
1157float: 5
1158ldouble: 5
1159
1160Function: "ldexp_downward":
1161ldouble: 1
1162
1163Function: "ldexp_upward":
1164ldouble: 1
1165
1166Function: "lgamma":
1167double: 4
1168float: 7
1169ldouble: 3
1170
1171Function: "lgamma_downward":
1172double: 5
1173float: 7
1174ldouble: 15
1175
1176Function: "lgamma_towardzero":
1177double: 5
1178float: 6
1179ldouble: 16
1180
1181Function: "lgamma_upward":
1182double: 5
1183float: 6
1184ldouble: 11
1185
1186Function: "log":
1187float: 1
1188ldouble: 1
1189
1190Function: "log10":
1191double: 2
1192float: 2
1193ldouble: 1
1194
1195Function: "log10_downward":
1196double: 2
1197float: 3
1198ldouble: 1
1199
1200Function: "log10_towardzero":
1201double: 2
1202float: 2
1203ldouble: 2
1204
1205Function: "log10_upward":
1206double: 2
1207float: 2
1208ldouble: 2
1209
1210Function: "log1p":
1211double: 1
1212float: 1
1213ldouble: 2
1214
1215Function: "log1p_downward":
1216double: 2
1217float: 2
1218ldouble: 2
1219
1220Function: "log1p_towardzero":
1221double: 2
1222float: 2
1223ldouble: 2
1224
1225Function: "log1p_upward":
1226double: 2
1227float: 2
1228ldouble: 2
1229
1230Function: "log2":
1231double: 2
1232float: 1
1233ldouble: 1
1234
1235Function: "log2_downward":
1236double: 3
1237float: 3
1238ldouble: 2
1239
1240Function: "log2_towardzero":
1241double: 2
1242float: 2
1243ldouble: 5
1244
1245Function: "log2_upward":
1246double: 3
1247float: 3
1248ldouble: 4
1249
1250Function: "log_downward":
1251float: 2
1252ldouble: 1
1253
1254Function: "log_towardzero":
1255float: 2
1256ldouble: 2
1257
1258Function: "log_upward":
1259double: 1
1260float: 2
1261ldouble: 1
1262
1263Function: "mul_downward_ldouble":
1264double: 1
1265float: 1
1266
1267Function: "mul_ldouble":
1268double: 1
1269float: 1
1270
1271Function: "mul_towardzero_ldouble":
1272double: 1
1273float: 1
1274
1275Function: "mul_upward_ldouble":
1276double: 1
1277float: 1
1278
1279Function: "nextafter_downward":
1280ldouble: 1
1281
1282Function: "nextafter_upward":
1283ldouble: 1
1284
1285Function: "pow":
1286double: 1
1287float: 1
1288ldouble: 1
1289
1290Function: "pow_downward":
1291double: 1
1292float: 1
1293ldouble: 1
1294
1295Function: "pow_towardzero":
1296double: 1
1297float: 1
1298ldouble: 1
1299
1300Function: "pow_upward":
1301double: 1
1302float: 1
1303ldouble: 1
1304
1305Function: "scalb_downward":
1306ldouble: 1
1307
1308Function: "scalb_upward":
1309ldouble: 1
1310
1311Function: "scalbln_downward":
1312ldouble: 1
1313
1314Function: "scalbln_upward":
1315ldouble: 1
1316
1317Function: "scalbn_downward":
1318ldouble: 1
1319
1320Function: "scalbn_upward":
1321ldouble: 1
1322
1323Function: "sin":
1324double: 1
1325float: 1
1326ldouble: 1
1327
1328Function: "sin_downward":
1329double: 1
1330float: 2
1331ldouble: 4
1332
1333Function: "sin_towardzero":
1334double: 1
1335float: 1
1336ldouble: 5
1337
1338Function: "sin_upward":
1339double: 1
1340float: 2
1341ldouble: 5
1342
1343Function: "sincos":
1344double: 1
1345float: 1
1346ldouble: 1
1347
1348Function: "sincos_downward":
1349double: 1
1350float: 2
1351ldouble: 4
1352
1353Function: "sincos_towardzero":
1354double: 1
1355float: 1
1356ldouble: 7
1357
1358Function: "sincos_upward":
1359double: 1
1360float: 2
1361ldouble: 7
1362
1363Function: "sinh":
1364double: 2
1365float: 2
1366ldouble: 3
1367
1368Function: "sinh_downward":
1369double: 3
1370float: 3
1371ldouble: 6
1372
1373Function: "sinh_towardzero":
1374double: 3
1375float: 2
1376ldouble: 6
1377
1378Function: "sinh_upward":
1379double: 3
1380float: 3
1381ldouble: 6
1382
1383Function: "sqrt":
1384ldouble: 1
1385
1386Function: "sqrt_downward":
1387ldouble: 1
1388
1389Function: "sqrt_towardzero":
1390ldouble: 1
1391
1392Function: "sqrt_upward":
1393ldouble: 1
1394
1395Function: "sub_ldouble":
1396double: 1
1397float: 1
1398
1399Function: "tan":
1400float: 1
1401ldouble: 2
1402
1403Function: "tan_downward":
1404double: 1
1405float: 2
1406ldouble: 3
1407
1408Function: "tan_towardzero":
1409double: 1
1410float: 1
1411ldouble: 2
1412
1413Function: "tan_upward":
1414double: 1
1415float: 1
1416ldouble: 3
1417
1418Function: "tanh":
1419double: 2
1420float: 2
1421ldouble: 1
1422
1423Function: "tanh_downward":
1424double: 3
1425float: 3
1426ldouble: 4
1427
1428Function: "tanh_towardzero":
1429double: 2
1430float: 2
1431ldouble: 4
1432
1433Function: "tanh_upward":
1434double: 3
1435float: 3
1436ldouble: 6
1437
1438Function: "tgamma":
1439double: 9
1440float: 8
1441ldouble: 5
1442
1443Function: "tgamma_downward":
1444double: 9
1445float: 7
1446ldouble: 5
1447
1448Function: "tgamma_towardzero":
1449double: 9
1450float: 7
1451ldouble: 5
1452
1453Function: "tgamma_upward":
1454double: 9
1455float: 8
1456ldouble: 4
1457
1458Function: "y0":
1459double: 3
1460float: 9
1461ldouble: 10
1462
1463Function: "y0_downward":
1464double: 3
1465float: 9
1466ldouble: 10
1467
1468Function: "y0_towardzero":
1469double: 4
1470float: 9
1471ldouble: 8
1472
1473Function: "y0_upward":
1474double: 3
1475float: 9
1476ldouble: 8
1477
1478Function: "y1":
1479double: 3
1480float: 9
1481ldouble: 2
1482
1483Function: "y1_downward":
1484double: 6
1485float: 9
1486ldouble: 7
1487
1488Function: "y1_towardzero":
1489double: 3
1490float: 9
1491ldouble: 7
1492
1493Function: "y1_upward":
1494double: 7
1495float: 9
1496ldouble: 9
1497
1498Function: "yn":
1499double: 3
1500float: 3
1501ldouble: 2
1502
1503Function: "yn_downward":
1504double: 3
1505float: 4
1506ldouble: 10
1507
1508Function: "yn_towardzero":
1509double: 3
1510float: 3
1511ldouble: 8
1512
1513Function: "yn_upward":
1514double: 4
1515float: 5
1516ldouble: 5
1517
1518# end of automatic generation
1519