1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /*
13   Long double expansions are
14   Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
15   and are incorporated herein by permission of the author.  The author
16   reserves the right to distribute this material elsewhere under different
17   copying permissions.  These modifications are distributed here under
18   the following terms:
19 
20     This library is free software; you can redistribute it and/or
21     modify it under the terms of the GNU Lesser General Public
22     License as published by the Free Software Foundation; either
23     version 2.1 of the License, or (at your option) any later version.
24 
25     This library is distributed in the hope that it will be useful,
26     but WITHOUT ANY WARRANTY; without even the implied warranty of
27     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
28     Lesser General Public License for more details.
29 
30     You should have received a copy of the GNU Lesser General Public
31     License along with this library; if not, see
32     <https://www.gnu.org/licenses/>.  */
33 
34 /* __ieee754_asin(x)
35  * Method :
36  *	Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
37  *	we approximate asin(x) on [0,0.5] by
38  *		asin(x) = x + x*x^2*R(x^2)
39  *
40  *	For x in [0.5,1]
41  *		asin(x) = pi/2-2*asin(sqrt((1-x)/2))
42  *	Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
43  *	then for x>0.98
44  *		asin(x) = pi/2 - 2*(s+s*z*R(z))
45  *			= pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
46  *	For x<=0.98, let pio4_hi = pio2_hi/2, then
47  *		f = hi part of s;
48  *		c = sqrt(z) - f = (z-f*f)/(s+f)		...f+c=sqrt(z)
49  *	and
50  *		asin(x) = pi/2 - 2*(s+s*z*R(z))
51  *			= pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
52  *			= pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
53  *
54  * Special cases:
55  *	if x is NaN, return x itself;
56  *	if |x|>1, return NaN with invalid signal.
57  *
58  */
59 
60 
61 #include <float.h>
62 #include <math.h>
63 #include <math_private.h>
64 #include <math-underflow.h>
65 #include <libm-alias-finite.h>
66 
67 static const long double
68   one = 1.0L,
69   huge = 1.0e+4932L,
70   pio2_hi = 0x1.921fb54442d1846ap+0L, /* pi/2 rounded to nearest to 64
71 					 bits.  */
72   pio2_lo = -0x7.6733ae8fe47c65d8p-68L, /* pi/2 - pio2_hi rounded to
73 					   nearest to 64 bits.  */
74   pio4_hi = 0xc.90fdaa22168c235p-4L, /* pi/4 rounded to nearest to 64
75 					bits.  */
76 
77 	/* coefficient for R(x^2) */
78 
79   /* asin(x) = x + x^3 pS(x^2) / qS(x^2)
80      0 <= x <= 0.5
81      peak relative error 1.9e-21  */
82   pS0 =  -1.008714657938491626019651170502036851607E1L,
83   pS1 =   2.331460313214179572063441834101394865259E1L,
84   pS2 =  -1.863169762159016144159202387315381830227E1L,
85   pS3 =   5.930399351579141771077475766877674661747E0L,
86   pS4 =  -6.121291917696920296944056882932695185001E-1L,
87   pS5 =   3.776934006243367487161248678019350338383E-3L,
88 
89   qS0 =  -6.052287947630949712886794360635592886517E1L,
90   qS1 =   1.671229145571899593737596543114258558503E2L,
91   qS2 =  -1.707840117062586426144397688315411324388E2L,
92   qS3 =   7.870295154902110425886636075950077640623E1L,
93   qS4 =  -1.568433562487314651121702982333303458814E1L;
94     /* 1.000000000000000000000000000000000000000E0 */
95 
96 long double
__ieee754_asinl(long double x)97 __ieee754_asinl (long double x)
98 {
99   long double t, w, p, q, c, r, s;
100   int32_t ix;
101   uint32_t se, i0, i1, k;
102 
103   GET_LDOUBLE_WORDS (se, i0, i1, x);
104   ix = se & 0x7fff;
105   ix = (ix << 16) | (i0 >> 16);
106   if (ix >= 0x3fff8000)
107     {				/* |x|>= 1 */
108       if (ix == 0x3fff8000 && ((i0 - 0x80000000) | i1) == 0)
109 	/* asin(1)=+-pi/2 with inexact */
110 	return x * pio2_hi + x * pio2_lo;
111       return (x - x) / (x - x);	/* asin(|x|>1) is NaN */
112     }
113   else if (ix < 0x3ffe8000)
114     {				/* |x|<0.5 */
115       if (ix < 0x3fde8000)
116 	{			/* if |x| < 2**-33 */
117 	  math_check_force_underflow (x);
118 	  if (huge + x > one)
119 	    return x;		/* return x with inexact if x!=0 */
120 	}
121       else
122 	{
123 	  t = x * x;
124 	  p =
125 	    t * (pS0 +
126 		 t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
127 	  q = qS0 + t * (qS1 + t * (qS2 + t * (qS3 + t * (qS4 + t))));
128 	  w = p / q;
129 	  return x + x * w;
130 	}
131     }
132   /* 1> |x|>= 0.5 */
133   w = one - fabsl (x);
134   t = w * 0.5;
135   p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
136   q = qS0 + t * (qS1 + t * (qS2 + t * (qS3 + t * (qS4 + t))));
137   s = sqrtl (t);
138   if (ix >= 0x3ffef999)
139     {				/* if |x| > 0.975 */
140       w = p / q;
141       t = pio2_hi - (2.0 * (s + s * w) - pio2_lo);
142     }
143   else
144     {
145       GET_LDOUBLE_WORDS (k, i0, i1, s);
146       i1 = 0;
147       SET_LDOUBLE_WORDS (w,k,i0,i1);
148       c = (t - w * w) / (s + w);
149       r = p / q;
150       p = 2.0 * s * r - (pio2_lo - 2.0 * c);
151       q = pio4_hi - 2.0 * w;
152       t = pio4_hi - (p - q);
153     }
154   if ((se & 0x8000) == 0)
155     return t;
156   else
157     return -t;
158 }
159 libm_alias_finite (__ieee754_asinl, __asinl)
160