1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /*
13   Long double expansions are
14   Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
15   and are incorporated herein by permission of the author.  The author
16   reserves the right to distribute this material elsewhere under different
17   copying permissions.  These modifications are distributed here under
18   the following terms:
19 
20     This library is free software; you can redistribute it and/or
21     modify it under the terms of the GNU Lesser General Public
22     License as published by the Free Software Foundation; either
23     version 2.1 of the License, or (at your option) any later version.
24 
25     This library is distributed in the hope that it will be useful,
26     but WITHOUT ANY WARRANTY; without even the implied warranty of
27     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
28     Lesser General Public License for more details.
29 
30     You should have received a copy of the GNU Lesser General Public
31     License along with this library; if not, see
32     <https://www.gnu.org/licenses/>.  */
33 
34 /* __kernel_tanl( x, y, k )
35  * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
36  * Input x is assumed to be bounded by ~pi/4 in magnitude.
37  * Input y is the tail of x.
38  * Input k indicates whether tan (if k=1) or
39  * -1/tan (if k= -1) is returned.
40  *
41  * Algorithm
42  *	1. Since tan(-x) = -tan(x), we need only to consider positive x.
43  *	2. if x < 2^-57, return x with inexact if x!=0.
44  *	3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2)
45  *          on [0,0.67433].
46  *
47  *	   Note: tan(x+y) = tan(x) + tan'(x)*y
48  *		          ~ tan(x) + (1+x*x)*y
49  *	   Therefore, for better accuracy in computing tan(x+y), let
50  *		r = x^3 * R(x^2)
51  *	   then
52  *		tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y))
53  *
54  *      4. For x in [0.67433,pi/4],  let y = pi/4 - x, then
55  *		tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
56  *		       = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
57  */
58 
59 #include <float.h>
60 #include <math.h>
61 #include <math_private.h>
62 #include <math-underflow.h>
63 #include <libc-diag.h>
64 
65 static const long double
66   one = 1.0L,
67   pio4hi = 7.8539816339744830961566084581987569936977E-1L,
68   pio4lo = 2.1679525325309452561992610065108379921906E-35L,
69 
70   /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2)
71      0 <= x <= 0.6743316650390625
72      Peak relative error 8.0e-36  */
73  TH =  3.333333333333333333333333333333333333333E-1L,
74  T0 = -1.813014711743583437742363284336855889393E7L,
75  T1 =  1.320767960008972224312740075083259247618E6L,
76  T2 = -2.626775478255838182468651821863299023956E4L,
77  T3 =  1.764573356488504935415411383687150199315E2L,
78  T4 = -3.333267763822178690794678978979803526092E-1L,
79 
80  U0 = -1.359761033807687578306772463253710042010E8L,
81  U1 =  6.494370630656893175666729313065113194784E7L,
82  U2 = -4.180787672237927475505536849168729386782E6L,
83  U3 =  8.031643765106170040139966622980914621521E4L,
84  U4 = -5.323131271912475695157127875560667378597E2L;
85   /* 1.000000000000000000000000000000000000000E0 */
86 
87 
88 long double
__kernel_tanl(long double x,long double y,int iy)89 __kernel_tanl (long double x, long double y, int iy)
90 {
91   long double z, r, v, w, s;
92   int32_t ix, sign, hx, lx;
93   double xhi;
94 
95   xhi = ldbl_high (x);
96   EXTRACT_WORDS (hx, lx, xhi);
97   ix = hx & 0x7fffffff;
98   if (ix < 0x3c600000)		/* x < 2**-57 */
99     {
100       if ((int) x == 0)		/* generate inexact */
101 	{
102 	  if ((ix | lx | (iy + 1)) == 0)
103 	    return one / fabs (x);
104 	  else if (iy == 1)
105 	    {
106 	      math_check_force_underflow (x);
107 	      return x;
108 	    }
109 	  else
110 	    return -one / x;
111 	}
112     }
113   if (ix >= 0x3fe59420) /* |x| >= 0.6743316650390625 */
114     {
115       if ((hx & 0x80000000) != 0)
116 	{
117 	  x = -x;
118 	  y = -y;
119 	  sign = -1;
120 	}
121       else
122 	sign = 1;
123       z = pio4hi - x;
124       w = pio4lo - y;
125       x = z + w;
126       y = 0.0;
127     }
128   z = x * x;
129   r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4)));
130   v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z))));
131   r = r / v;
132 
133   s = z * x;
134   r = y + z * (s * r + y);
135   r += TH * s;
136   w = x + r;
137   if (ix >= 0x3fe59420)
138     {
139       v = (long double) iy;
140       w = (v - 2.0 * (x - (w * w / (w + v) - r)));
141       /* SIGN is set for arguments that reach this code, but not
142 	 otherwise, resulting in warnings that it may be used
143 	 uninitialized although in the cases where it is used it has
144 	 always been set.  */
145       DIAG_PUSH_NEEDS_COMMENT;
146       DIAG_IGNORE_NEEDS_COMMENT (5, "-Wmaybe-uninitialized");
147       if (sign < 0)
148 	w = -w;
149       DIAG_POP_NEEDS_COMMENT;
150       return w;
151     }
152   if (iy == 1)
153     return w;
154   else
155     {				/* if allow error up to 2 ulp,
156 				   simply return -1.0/(x+r) here */
157       /*  compute -1.0/(x+r) accurately */
158       long double u1, z1;
159 
160       u1 = ldbl_high (w);
161       v = r - (u1 - x);		/* u1+v = r+x */
162       z = -1.0 / w;
163       z1 = ldbl_high (z);
164       s = 1.0 + z1 * u1;
165       return z1 + z * (s + z1 * v);
166     }
167 }
168