1 /*							log10l.c
2  *
3  *	Common logarithm, 128-bit long double precision
4  *
5  *
6  *
7  * SYNOPSIS:
8  *
9  * long double x, y, log10l();
10  *
11  * y = log10l( x );
12  *
13  *
14  *
15  * DESCRIPTION:
16  *
17  * Returns the base 10 logarithm of x.
18  *
19  * The argument is separated into its exponent and fractional
20  * parts.  If the exponent is between -1 and +1, the logarithm
21  * of the fraction is approximated by
22  *
23  *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
24  *
25  * Otherwise, setting  z = 2(x-1)/x+1),
26  *
27  *     log(x) = z + z^3 P(z)/Q(z).
28  *
29  *
30  *
31  * ACCURACY:
32  *
33  *                      Relative error:
34  * arithmetic   domain     # trials      peak         rms
35  *    IEEE      0.5, 2.0     30000      2.3e-34     4.9e-35
36  *    IEEE     exp(+-10000)  30000      1.0e-34     4.1e-35
37  *
38  * In the tests over the interval exp(+-10000), the logarithms
39  * of the random arguments were uniformly distributed over
40  * [-10000, +10000].
41  *
42  */
43 
44 /*
45    Cephes Math Library Release 2.2:  January, 1991
46    Copyright 1984, 1991 by Stephen L. Moshier
47    Adapted for glibc November, 2001
48 
49     This library is free software; you can redistribute it and/or
50     modify it under the terms of the GNU Lesser General Public
51     License as published by the Free Software Foundation; either
52     version 2.1 of the License, or (at your option) any later version.
53 
54     This library is distributed in the hope that it will be useful,
55     but WITHOUT ANY WARRANTY; without even the implied warranty of
56     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
57     Lesser General Public License for more details.
58 
59     You should have received a copy of the GNU Lesser General Public
60     License along with this library; if not, see <https://www.gnu.org/licenses/>.
61  */
62 
63 #include <math.h>
64 #include <math_private.h>
65 #include <libm-alias-finite.h>
66 
67 /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
68  * 1/sqrt(2) <= x < sqrt(2)
69  * Theoretical peak relative error = 5.3e-37,
70  * relative peak error spread = 2.3e-14
71  */
72 static const long double P[13] =
73 {
74   1.313572404063446165910279910527789794488E4L,
75   7.771154681358524243729929227226708890930E4L,
76   2.014652742082537582487669938141683759923E5L,
77   3.007007295140399532324943111654767187848E5L,
78   2.854829159639697837788887080758954924001E5L,
79   1.797628303815655343403735250238293741397E5L,
80   7.594356839258970405033155585486712125861E4L,
81   2.128857716871515081352991964243375186031E4L,
82   3.824952356185897735160588078446136783779E3L,
83   4.114517881637811823002128927449878962058E2L,
84   2.321125933898420063925789532045674660756E1L,
85   4.998469661968096229986658302195402690910E-1L,
86   1.538612243596254322971797716843006400388E-6L
87 };
88 static const long double Q[12] =
89 {
90   3.940717212190338497730839731583397586124E4L,
91   2.626900195321832660448791748036714883242E5L,
92   7.777690340007566932935753241556479363645E5L,
93   1.347518538384329112529391120390701166528E6L,
94   1.514882452993549494932585972882995548426E6L,
95   1.158019977462989115839826904108208787040E6L,
96   6.132189329546557743179177159925690841200E5L,
97   2.248234257620569139969141618556349415120E5L,
98   5.605842085972455027590989944010492125825E4L,
99   9.147150349299596453976674231612674085381E3L,
100   9.104928120962988414618126155557301584078E2L,
101   4.839208193348159620282142911143429644326E1L
102 /* 1.000000000000000000000000000000000000000E0L, */
103 };
104 
105 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
106  * where z = 2(x-1)/(x+1)
107  * 1/sqrt(2) <= x < sqrt(2)
108  * Theoretical peak relative error = 1.1e-35,
109  * relative peak error spread 1.1e-9
110  */
111 static const long double R[6] =
112 {
113   1.418134209872192732479751274970992665513E5L,
114  -8.977257995689735303686582344659576526998E4L,
115   2.048819892795278657810231591630928516206E4L,
116  -2.024301798136027039250415126250455056397E3L,
117   8.057002716646055371965756206836056074715E1L,
118  -8.828896441624934385266096344596648080902E-1L
119 };
120 static const long double S[6] =
121 {
122   1.701761051846631278975701529965589676574E6L,
123  -1.332535117259762928288745111081235577029E6L,
124   4.001557694070773974936904547424676279307E5L,
125  -5.748542087379434595104154610899551484314E4L,
126   3.998526750980007367835804959888064681098E3L,
127  -1.186359407982897997337150403816839480438E2L
128 /* 1.000000000000000000000000000000000000000E0L, */
129 };
130 
131 static const long double
132 /* log10(2) */
133 L102A = 0.3125L,
134 L102B = -1.14700043360188047862611052755069732318101185E-2L,
135 /* log10(e) */
136 L10EA = 0.5L,
137 L10EB = -6.570551809674817234887108108339491770560299E-2L,
138 /* sqrt(2)/2 */
139 SQRTH = 7.071067811865475244008443621048490392848359E-1L;
140 
141 
142 
143 /* Evaluate P[n] x^n  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
144 
145 static long double
neval(long double x,const long double * p,int n)146 neval (long double x, const long double *p, int n)
147 {
148   long double y;
149 
150   p += n;
151   y = *p--;
152   do
153     {
154       y = y * x + *p--;
155     }
156   while (--n > 0);
157   return y;
158 }
159 
160 
161 /* Evaluate x^n+1  +  P[n] x^(n)  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
162 
163 static long double
deval(long double x,const long double * p,int n)164 deval (long double x, const long double *p, int n)
165 {
166   long double y;
167 
168   p += n;
169   y = x + *p--;
170   do
171     {
172       y = y * x + *p--;
173     }
174   while (--n > 0);
175   return y;
176 }
177 
178 
179 
180 long double
__ieee754_log10l(long double x)181 __ieee754_log10l (long double x)
182 {
183   long double z;
184   long double y;
185   int e;
186   int64_t hx;
187   double xhi;
188 
189 /* Test for domain */
190   xhi = ldbl_high (x);
191   EXTRACT_WORDS64 (hx, xhi);
192   if ((hx & 0x7fffffffffffffffLL) == 0)
193     return (-1.0L / fabsl (x));		/* log10l(+-0)=-inf  */
194   if (hx < 0)
195     return (x - x) / (x - x);
196   if (hx >= 0x7ff0000000000000LL)
197     return (x + x);
198 
199   if (x == 1.0L)
200     return 0.0L;
201 
202 /* separate mantissa from exponent */
203 
204 /* Note, frexp is used so that denormal numbers
205  * will be handled properly.
206  */
207   x = __frexpl (x, &e);
208 
209 
210 /* logarithm using log(x) = z + z**3 P(z)/Q(z),
211  * where z = 2(x-1)/x+1)
212  */
213   if ((e > 2) || (e < -2))
214     {
215       if (x < SQRTH)
216 	{			/* 2( 2x-1 )/( 2x+1 ) */
217 	  e -= 1;
218 	  z = x - 0.5L;
219 	  y = 0.5L * z + 0.5L;
220 	}
221       else
222 	{			/*  2 (x-1)/(x+1)   */
223 	  z = x - 0.5L;
224 	  z -= 0.5L;
225 	  y = 0.5L * x + 0.5L;
226 	}
227       x = z / y;
228       z = x * x;
229       y = x * (z * neval (z, R, 5) / deval (z, S, 5));
230       goto done;
231     }
232 
233 
234 /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
235 
236   if (x < SQRTH)
237     {
238       e -= 1;
239       x = 2.0 * x - 1.0L;	/*  2x - 1  */
240     }
241   else
242     {
243       x = x - 1.0L;
244     }
245   z = x * x;
246   y = x * (z * neval (x, P, 12) / deval (x, Q, 11));
247   y = y - 0.5 * z;
248 
249 done:
250 
251   /* Multiply log of fraction by log10(e)
252    * and base 2 exponent by log10(2).
253    */
254   z = y * L10EB;
255   z += x * L10EB;
256   z += e * L102B;
257   z += y * L10EA;
258   z += x * L10EA;
259   z += e * L102A;
260   return (z);
261 }
262 libm_alias_finite (__ieee754_log10l, __log10l)
263