1 /* e_sinhl.c -- long double version of e_sinh.c.
2  */
3 
4 /*
5  * ====================================================
6  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7  *
8  * Developed at SunPro, a Sun Microsystems, Inc. business.
9  * Permission to use, copy, modify, and distribute this
10  * software is freely granted, provided that this notice
11  * is preserved.
12  * ====================================================
13  */
14 
15 /* Changes for 128-bit long double are
16    Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
17    and are incorporated herein by permission of the author.  The author
18    reserves the right to distribute this material elsewhere under different
19    copying permissions.  These modifications are distributed here under
20    the following terms:
21 
22     This library is free software; you can redistribute it and/or
23     modify it under the terms of the GNU Lesser General Public
24     License as published by the Free Software Foundation; either
25     version 2.1 of the License, or (at your option) any later version.
26 
27     This library is distributed in the hope that it will be useful,
28     but WITHOUT ANY WARRANTY; without even the implied warranty of
29     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
30     Lesser General Public License for more details.
31 
32     You should have received a copy of the GNU Lesser General Public
33     License along with this library; if not, see
34     <https://www.gnu.org/licenses/>.  */
35 
36 /* __ieee754_sinhl(x)
37  * Method :
38  * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
39  *      1. Replace x by |x| (sinhl(-x) = -sinhl(x)).
40  *      2.
41  *                                                   E + E/(E+1)
42  *          0        <= x <= 25     :  sinhl(x) := --------------, E=expm1l(x)
43  *                                                       2
44  *
45  *          25       <= x <= lnovft :  sinhl(x) := expl(x)/2
46  *          lnovft   <= x <= ln2ovft:  sinhl(x) := expl(x/2)/2 * expl(x/2)
47  *          ln2ovft  <  x           :  sinhl(x) := x*shuge (overflow)
48  *
49  * Special cases:
50  *      sinhl(x) is |x| if x is +INF, -INF, or NaN.
51  *      only sinhl(0)=0 is exact for finite x.
52  */
53 
54 #include <float.h>
55 #include <math.h>
56 #include <math_private.h>
57 #include <math-underflow.h>
58 #include <libm-alias-finite.h>
59 
60 static const _Float128 one = 1.0, shuge = L(1.0e4931),
61 ovf_thresh = L(1.1357216553474703894801348310092223067821E4);
62 
63 _Float128
__ieee754_sinhl(_Float128 x)64 __ieee754_sinhl (_Float128 x)
65 {
66   _Float128 t, w, h;
67   uint32_t jx, ix;
68   ieee854_long_double_shape_type u;
69 
70   /* Words of |x|. */
71   u.value = x;
72   jx = u.parts32.w0;
73   ix = jx & 0x7fffffff;
74 
75   /* x is INF or NaN */
76   if (ix >= 0x7fff0000)
77     return x + x;
78 
79   h = 0.5;
80   if (jx & 0x80000000)
81     h = -h;
82 
83   /* Absolute value of x.  */
84   u.parts32.w0 = ix;
85 
86   /* |x| in [0,40], return sign(x)*0.5*(E+E/(E+1))) */
87   if (ix <= 0x40044000)
88     {
89       if (ix < 0x3fc60000) /* |x| < 2^-57 */
90 	{
91 	  math_check_force_underflow (x);
92 	  if (shuge + x > one)
93 	    return x;		/* sinh(tiny) = tiny with inexact */
94 	}
95       t = __expm1l (u.value);
96       if (ix < 0x3fff0000)
97 	return h * (2.0 * t - t * t / (t + one));
98       return h * (t + t / (t + one));
99     }
100 
101   /* |x| in [40, log(maxdouble)] return 0.5*exp(|x|) */
102   if (ix <= 0x400c62e3) /* 11356.375 */
103     return h * __ieee754_expl (u.value);
104 
105   /* |x| in [log(maxdouble), overflowthreshold]
106      Overflow threshold is log(2 * maxdouble).  */
107   if (u.value <= ovf_thresh)
108     {
109       w = __ieee754_expl (0.5 * u.value);
110       t = h * w;
111       return t * w;
112     }
113 
114   /* |x| > overflowthreshold, sinhl(x) overflow */
115   return x * shuge;
116 }
117 libm_alias_finite (__ieee754_sinhl, __sinhl)
118