1.file "expf.s"
2
3
4// Copyright (c) 2000 - 2005, Intel Corporation
5// All rights reserved.
6//
7//
8// Redistribution and use in source and binary forms, with or without
9// modification, are permitted provided that the following conditions are
10// met:
11//
12// * Redistributions of source code must retain the above copyright
13// notice, this list of conditions and the following disclaimer.
14//
15// * Redistributions in binary form must reproduce the above copyright
16// notice, this list of conditions and the following disclaimer in the
17// documentation and/or other materials provided with the distribution.
18//
19// * The name of Intel Corporation may not be used to endorse or promote
20// products derived from this software without specific prior written
21// permission.
22
23// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
27// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
31// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
32// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34//
35// Intel Corporation is the author of this code, and requests that all
36// problem reports or change requests be submitted to it directly at
37// http://www.intel.com/software/products/opensource/libraries/num.htm.
38
39// History
40//*********************************************************************
41// 02/02/00 Original version
42// 04/04/00 Unwind support added
43// 08/15/00 Bundle added after call to __libm_error_support to properly
44//          set [the previously overwritten] GR_Parameter_RESULT.
45// 08/21/00 Improvements to save 2 cycles on main path, and shorten x=0 case
46// 12/07/00 Widen main path, shorten x=inf, nan paths
47// 03/15/01 Fix monotonicity problem around x=0 for round to +inf
48// 02/05/02 Corrected uninitialize predicate in POSSIBLE_UNDERFLOW path
49// 05/20/02 Cleaned up namespace and sf0 syntax
50// 07/26/02 Algorithm changed, accuracy improved
51// 09/26/02 support of higher precision inputs added, underflow threshold
52//          corrected
53// 11/15/02 Improved performance on Itanium 2, added possible over/under paths
54// 05/30/03 Set inexact flag on unmasked overflow/underflow
55// 03/31/05 Reformatted delimiters between data tables
56//
57//
58// API
59//*********************************************************************
60// float expf(float)
61//
62// Overview of operation
63//*********************************************************************
64// Take the input x. w is "how many log2/128 in x?"
65//  w = x * 64/log2
66//  NJ = int(w)
67//  x = NJ*log2/64 + R
68
69//  NJ = 64*n + j
70//  x = n*log2 + (log2/64)*j + R
71//
72//  So, exp(x) = 2^n * 2^(j/64)* exp(R)
73//
74//  T =  2^n * 2^(j/64)
75//       Construct 2^n
76//       Get 2^(j/64) table
77//           actually all the entries of 2^(j/64) table are stored in DP and
78//           with exponent bits set to 0 -> multiplication on 2^n can be
79//           performed by doing logical "or" operation with bits presenting 2^n
80
81//  exp(R) = 1 + (exp(R) - 1)
82//  P = exp(R) - 1 approximated by Taylor series of 3rd degree
83//      P = A3*R^3 + A2*R^2 + R, A3 = 1/6, A2 = 1/2
84//
85
86//  The final result is reconstructed as follows
87//  exp(x) = T + T*P
88
89// Special values
90//*********************************************************************
91// expf(+0)    = 1.0
92// expf(-0)    = 1.0
93
94// expf(+qnan) = +qnan
95// expf(-qnan) = -qnan
96// expf(+snan) = +qnan
97// expf(-snan) = -qnan
98
99// expf(-inf)  = +0
100// expf(+inf)  = +inf
101
102// Overflow and Underflow
103//*********************************************************************
104// expf(x) = largest single normal when
105//     x = 88.72283 = 0x42b17217
106
107// expf(x) = smallest single normal when
108//     x = -87.33654 = 0xc2aeac4f
109
110// expf(x) = largest round-to-nearest single zero when
111//     x = -103.97208 = 0xc2cff1b5
112
113
114// Registers used
115//*********************************************************************
116// Floating Point registers used:
117// f8, input
118// f6,f7, f9 -> f15,  f32 -> f40
119
120// General registers used:
121// r3, r23 -> r38
122
123// Predicate registers used:
124// p10 -> p15
125
126// Assembly macros
127//*********************************************************************
128// integer registers used
129// scratch
130rNJ                   = r3
131
132rTmp                  = r23
133rJ                    = r23
134rN                    = r24
135rTblAddr              = r25
136rA3                   = r26
137rExpHalf              = r27
138rLn2Div64             = r28
139r17ones_m1            = r29
140rGt_ln                = r29
141rRightShifter         = r30
142r64DivLn2             = r31
143// stacked
144GR_SAVE_PFS           = r32
145GR_SAVE_B0            = r33
146GR_SAVE_GP            = r34
147GR_Parameter_X        = r35
148GR_Parameter_Y        = r36
149GR_Parameter_RESULT   = r37
150GR_Parameter_TAG      = r38
151
152// floating point registers used
153FR_X                  = f10
154FR_Y                  = f1
155FR_RESULT             = f8
156// scratch
157fRightShifter         = f6
158f64DivLn2             = f7
159fNormX                = f9
160fNint                 = f10
161fN                    = f11
162fR                    = f12
163fLn2Div64             = f13
164fA2                   = f14
165fA3                   = f15
166// stacked
167fP                    = f32
168fT                    = f33
169fMIN_SGL_OFLOW_ARG    = f34
170fMAX_SGL_ZERO_ARG     = f35
171fMAX_SGL_NORM_ARG     = f36
172fMIN_SGL_NORM_ARG     = f37
173fRSqr                 = f38
174fTmp                  = f39
175fGt_pln               = f39
176fWre_urm_f8           = f40
177fFtz_urm_f8           = f40
178
179
180RODATA
181.align 16
182
183LOCAL_OBJECT_START(_expf_table)
184data4 0x42b17218         // Smallest sgl arg to overflow sgl result, +88.7228
185data4 0xc2cff1b5         // Largest sgl for rnd-to-nearest 0 result, -103.9720
186data4 0x42b17217         // Largest sgl arg to give normal sgl result, +88.7228
187data4 0xc2aeac4f         // Smallest sgl arg to give normal sgl result, -87.3365
188//
189// 2^(j/64) table, j goes from 0 to 63
190data8 0x0000000000000000 // 2^(0/64)
191data8 0x00002C9A3E778061 // 2^(1/64)
192data8 0x000059B0D3158574 // 2^(2/64)
193data8 0x0000874518759BC8 // 2^(3/64)
194data8 0x0000B5586CF9890F // 2^(4/64)
195data8 0x0000E3EC32D3D1A2 // 2^(5/64)
196data8 0x00011301D0125B51 // 2^(6/64)
197data8 0x0001429AAEA92DE0 // 2^(7/64)
198data8 0x000172B83C7D517B // 2^(8/64)
199data8 0x0001A35BEB6FCB75 // 2^(9/64)
200data8 0x0001D4873168B9AA // 2^(10/64)
201data8 0x0002063B88628CD6 // 2^(11/64)
202data8 0x0002387A6E756238 // 2^(12/64)
203data8 0x00026B4565E27CDD // 2^(13/64)
204data8 0x00029E9DF51FDEE1 // 2^(14/64)
205data8 0x0002D285A6E4030B // 2^(15/64)
206data8 0x000306FE0A31B715 // 2^(16/64)
207data8 0x00033C08B26416FF // 2^(17/64)
208data8 0x000371A7373AA9CB // 2^(18/64)
209data8 0x0003A7DB34E59FF7 // 2^(19/64)
210data8 0x0003DEA64C123422 // 2^(20/64)
211data8 0x0004160A21F72E2A // 2^(21/64)
212data8 0x00044E086061892D // 2^(22/64)
213data8 0x000486A2B5C13CD0 // 2^(23/64)
214data8 0x0004BFDAD5362A27 // 2^(24/64)
215data8 0x0004F9B2769D2CA7 // 2^(25/64)
216data8 0x0005342B569D4F82 // 2^(26/64)
217data8 0x00056F4736B527DA // 2^(27/64)
218data8 0x0005AB07DD485429 // 2^(28/64)
219data8 0x0005E76F15AD2148 // 2^(29/64)
220data8 0x0006247EB03A5585 // 2^(30/64)
221data8 0x0006623882552225 // 2^(31/64)
222data8 0x0006A09E667F3BCD // 2^(32/64)
223data8 0x0006DFB23C651A2F // 2^(33/64)
224data8 0x00071F75E8EC5F74 // 2^(34/64)
225data8 0x00075FEB564267C9 // 2^(35/64)
226data8 0x0007A11473EB0187 // 2^(36/64)
227data8 0x0007E2F336CF4E62 // 2^(37/64)
228data8 0x00082589994CCE13 // 2^(38/64)
229data8 0x000868D99B4492ED // 2^(39/64)
230data8 0x0008ACE5422AA0DB // 2^(40/64)
231data8 0x0008F1AE99157736 // 2^(41/64)
232data8 0x00093737B0CDC5E5 // 2^(42/64)
233data8 0x00097D829FDE4E50 // 2^(43/64)
234data8 0x0009C49182A3F090 // 2^(44/64)
235data8 0x000A0C667B5DE565 // 2^(45/64)
236data8 0x000A5503B23E255D // 2^(46/64)
237data8 0x000A9E6B5579FDBF // 2^(47/64)
238data8 0x000AE89F995AD3AD // 2^(48/64)
239data8 0x000B33A2B84F15FB // 2^(49/64)
240data8 0x000B7F76F2FB5E47 // 2^(50/64)
241data8 0x000BCC1E904BC1D2 // 2^(51/64)
242data8 0x000C199BDD85529C // 2^(52/64)
243data8 0x000C67F12E57D14B // 2^(53/64)
244data8 0x000CB720DCEF9069 // 2^(54/64)
245data8 0x000D072D4A07897C // 2^(55/64)
246data8 0x000D5818DCFBA487 // 2^(56/64)
247data8 0x000DA9E603DB3285 // 2^(57/64)
248data8 0x000DFC97337B9B5F // 2^(58/64)
249data8 0x000E502EE78B3FF6 // 2^(59/64)
250data8 0x000EA4AFA2A490DA // 2^(60/64)
251data8 0x000EFA1BEE615A27 // 2^(61/64)
252data8 0x000F50765B6E4540 // 2^(62/64)
253data8 0x000FA7C1819E90D8 // 2^(63/64)
254LOCAL_OBJECT_END(_expf_table)
255
256
257.section .text
258GLOBAL_IEEE754_ENTRY(expf)
259
260{ .mlx
261      addl            rTblAddr = @ltoff(_expf_table),gp
262      movl            r64DivLn2 = 0x40571547652B82FE // 64/ln(2)
263}
264{ .mlx
265      addl            rA3 = 0x3E2AA, r0 // high bits of 1.0/6.0 rounded to SP
266      movl            rRightShifter = 0x43E8000000000000 // DP Right Shifter
267}
268;;
269
270{ .mfi
271      // point to the beginning of the table
272      ld8             rTblAddr = [rTblAddr]
273      fclass.m        p14, p0 = f8, 0x22    // test for -INF
274      shl             rA3 = rA3, 12  // 0x3E2AA000, approx to 1.0/6.0 in SP
275}
276{ .mfi
277      nop.m           0
278      fnorm.s1        fNormX = f8           // normalized x
279      addl            rExpHalf = 0xFFFE, r0 // exponent of 1/2
280}
281;;
282
283{ .mfi
284      setf.d          f64DivLn2 = r64DivLn2 // load 64/ln(2) to FP reg
285      fclass.m        p15, p0 = f8, 0x1e1   // test for NaT,NaN,+Inf
286      nop.i           0
287}
288{ .mlx
289      // load Right Shifter to FP reg
290      setf.d          fRightShifter = rRightShifter
291      movl            rLn2Div64 = 0x3F862E42FEFA39EF // DP ln(2)/64 in GR
292}
293;;
294
295{ .mfi
296      nop.m           0
297      fcmp.eq.s1      p13, p0 = f0, f8      // test for x = 0.0
298      nop.i           0
299}
300{ .mfb
301      setf.s          fA3 = rA3             // load A3 to FP reg
302(p14) fma.s.s0        f8 = f0, f1, f0       // result if x = -inf
303(p14) br.ret.spnt     b0                    // exit here if x = -inf
304}
305;;
306
307{ .mfi
308      setf.exp        fA2 = rExpHalf        // load A2 to FP reg
309      fcmp.eq.s0      p6, p0 = f8, f0       // Dummy to flag denorm
310      nop.i           0
311}
312{ .mfb
313      setf.d          fLn2Div64 = rLn2Div64 // load ln(2)/64 to FP reg
314(p15) fma.s.s0        f8 = f8, f1, f0       // result if x = NaT,NaN,+Inf
315(p15) br.ret.spnt     b0                    // exit here if x = NaT,NaN,+Inf
316}
317;;
318
319{ .mfb
320      // overflow and underflow_zero threshold
321      ldfps           fMIN_SGL_OFLOW_ARG, fMAX_SGL_ZERO_ARG = [rTblAddr], 8
322(p13) fma.s.s0        f8 = f1, f1, f0       // result if x = 0.0
323(p13) br.ret.spnt     b0                    // exit here if x =0.0
324}
325;;
326
327      // max normal and underflow_denorm threshold
328{ .mfi
329      ldfps           fMAX_SGL_NORM_ARG, fMIN_SGL_NORM_ARG = [rTblAddr], 8
330      nop.f           0
331      nop.i           0
332}
333;;
334
335{ .mfi
336      nop.m           0
337      // x*(64/ln(2)) + Right Shifter
338      fma.s1          fNint = fNormX, f64DivLn2, fRightShifter
339      nop.i           0
340}
341;;
342
343// Divide arguments into the following categories:
344//  Certain Underflow       p11 - -inf < x <= MAX_SGL_ZERO_ARG
345//  Possible Underflow      p13 - MAX_SGL_ZERO_ARG < x < MIN_SGL_NORM_ARG
346//  Certain Safe                - MIN_SGL_NORM_ARG <= x <= MAX_SGL_NORM_ARG
347//  Possible Overflow       p14 - MAX_SGL_NORM_ARG < x < MIN_SGL_OFLOW_ARG
348//  Certain Overflow        p15 - MIN_SGL_OFLOW_ARG <= x < +inf
349//
350// If the input is really a single arg, then there will never be
351// "Possible Overflow" arguments.
352//
353
354{ .mfi
355      nop.m           0
356      // check for overflow
357      fcmp.ge.s1      p15, p0 = fNormX, fMIN_SGL_OFLOW_ARG
358      nop.i           0
359}
360;;
361
362{ .mfi
363      nop.m           0
364      // check for underflow and tiny (+0) result
365      fcmp.le.s1      p11, p0 = fNormX, fMAX_SGL_ZERO_ARG
366      nop.i           0
367}
368{ .mfb
369      nop.m           0
370      fms.s1          fN = fNint, f1, fRightShifter // n in FP register
371      // branch out if overflow
372(p15) br.cond.spnt    EXP_CERTAIN_OVERFLOW
373}
374;;
375
376{ .mfb
377      getf.sig        rNJ = fNint           // bits of n, j
378      // check for underflow and deno result
379      fcmp.lt.s1      p13, p0 = fNormX, fMIN_SGL_NORM_ARG
380      // branch out if underflow and tiny (+0) result
381(p11) br.cond.spnt    EXP_CERTAIN_UNDERFLOW
382}
383;;
384
385{ .mfi
386      nop.m           0
387      // check for possible overflow
388      fcmp.gt.s1      p14, p0 = fNormX, fMAX_SGL_NORM_ARG
389      extr.u          rJ = rNJ, 0, 6        // bits of j
390}
391{ .mfi
392      addl            rN = 0xFFFF - 63, rNJ // biased and shifted n
393      fnma.s1         fR = fLn2Div64, fN, fNormX // R = x - N*ln(2)/64
394      nop.i           0
395}
396;;
397
398{ .mfi
399      shladd          rJ = rJ, 3, rTblAddr  // address in the 2^(j/64) table
400      nop.f           0
401      shr             rN = rN, 6            // biased n
402}
403;;
404
405{ .mfi
406      ld8             rJ = [rJ]
407      nop.f           0
408      shl             rN = rN, 52           // 2^n bits in DP format
409}
410;;
411
412{ .mfi
413      or              rN = rN, rJ // bits of 2^n * 2^(j/64) in DP format
414      nop.f           0
415      nop.i           0
416}
417;;
418
419{ .mfi
420      setf.d          fT = rN               // 2^n * 2^(j/64)
421      fma.s1          fP = fA3, fR, fA2     // A3*R + A2
422      nop.i           0
423}
424{ .mfi
425      nop.m           0
426      fma.s1          fRSqr = fR, fR, f0    // R^2
427      nop.i           0
428}
429;;
430
431{ .mfi
432      nop.m           0
433      fma.s1          fP = fP, fRSqr, fR    // P = (A3*R + A2)*R^2 + R
434      nop.i           0
435}
436;;
437
438{ .mbb
439      nop.m           0
440      // branch out if possible underflow
441(p13) br.cond.spnt    EXP_POSSIBLE_UNDERFLOW
442      // branch out if possible overflow result
443(p14) br.cond.spnt    EXP_POSSIBLE_OVERFLOW
444}
445;;
446
447{ .mfb
448      nop.m           0
449      // final result in the absence of over- and underflow
450      fma.s.s0        f8 = fP, fT, fT
451      // exit here in the absence of over- and underflow
452      br.ret.sptk     b0
453}
454;;
455
456EXP_POSSIBLE_OVERFLOW:
457
458// Here if fMAX_SGL_NORM_ARG < x < fMIN_SGL_OFLOW_ARG
459// This cannot happen if input is a single, only if input higher precision.
460// Overflow is a possibility, not a certainty.
461
462// Recompute result using status field 2 with user's rounding mode,
463// and wre set.  If result is larger than largest single, then we have
464// overflow
465
466{ .mfi
467      mov             rGt_ln  = 0x1007f // Exponent for largest single + 1 ulp
468      fsetc.s2        0x7F,0x42         // Get user's round mode, set wre
469      nop.i           0
470}
471;;
472
473{ .mfi
474      setf.exp        fGt_pln = rGt_ln  // Create largest single + 1 ulp
475      fma.s.s2        fWre_urm_f8 = fP, fT, fT    // Result with wre set
476      nop.i           0
477}
478;;
479
480{ .mfi
481      nop.m           0
482      fsetc.s2        0x7F,0x40                   // Turn off wre in sf2
483      nop.i           0
484}
485;;
486
487{ .mfi
488      nop.m           0
489      fcmp.ge.s1      p6, p0 =  fWre_urm_f8, fGt_pln // Test for overflow
490      nop.i           0
491}
492;;
493
494{ .mfb
495      nop.m           0
496      nop.f           0
497(p6)  br.cond.spnt    EXP_CERTAIN_OVERFLOW // Branch if overflow
498}
499;;
500
501{ .mfb
502      nop.m           0
503      fma.s.s0        f8 = fP, fT, fT
504      br.ret.sptk     b0                     // Exit if really no overflow
505}
506;;
507
508// here if overflow
509EXP_CERTAIN_OVERFLOW:
510{ .mmi
511      addl            r17ones_m1 = 0x1FFFE, r0
512;;
513      setf.exp        fTmp = r17ones_m1
514      nop.i           0
515}
516;;
517
518{ .mfi
519      alloc           r32=ar.pfs,0,3,4,0
520      fmerge.s        FR_X = f8,f8
521      nop.i           0
522}
523{ .mfb
524      mov             GR_Parameter_TAG = 16
525      fma.s.s0        FR_RESULT = fTmp, fTmp, fTmp // Set I,O and +INF result
526      br.cond.sptk    __libm_error_region
527}
528;;
529
530EXP_POSSIBLE_UNDERFLOW:
531
532// Here if fMAX_SGL_ZERO_ARG < x < fMIN_SGL_NORM_ARG
533// Underflow is a possibility, not a certainty
534
535// We define an underflow when the answer with
536//    ftz set
537// is zero (tiny numbers become zero)
538
539// Notice (from below) that if we have an unlimited exponent range,
540// then there is an extra machine number E between the largest denormal and
541// the smallest normal.
542
543// So if with unbounded exponent we round to E or below, then we are
544// tiny and underflow has occurred.
545
546// But notice that you can be in a situation where we are tiny, namely
547// rounded to E, but when the exponent is bounded we round to smallest
548// normal. So the answer can be the smallest normal with underflow.
549
550//                           E
551// -----+--------------------+--------------------+-----
552//      |                    |                    |
553//   1.1...10 2^-3fff    1.1...11 2^-3fff    1.0...00 2^-3ffe
554//   0.1...11 2^-3ffe                                   (biased, 1)
555//    largest dn                               smallest normal
556
557{ .mfi
558      nop.m           0
559      fsetc.s2        0x7F,0x41                // Get user's round mode, set ftz
560      nop.i           0
561}
562;;
563
564{ .mfi
565      nop.m           0
566      fma.s.s2        fFtz_urm_f8 = fP, fT, fT // Result with ftz set
567      nop.i           0
568}
569;;
570
571{ .mfi
572      nop.m           0
573      fsetc.s2        0x7F,0x40                // Turn off ftz in sf2
574      nop.i           0
575}
576;;
577
578{ .mfi
579      nop.m           0
580      fcmp.eq.s1      p6, p7 = fFtz_urm_f8, f0 // Test for underflow
581      nop.i           0
582}
583{ .mfi
584      nop.m           0
585      fma.s.s0        f8 = fP, fT, fT          // Compute result, set I, maybe U
586      nop.i           0
587}
588;;
589
590{ .mbb
591      nop.m           0
592(p6)  br.cond.spnt    EXP_UNDERFLOW_COMMON     // Branch if really underflow
593(p7)  br.ret.sptk     b0                       // Exit if really no underflow
594}
595;;
596
597EXP_CERTAIN_UNDERFLOW:
598// Here if  x < fMAX_SGL_ZERO_ARG
599// Result will be zero (or smallest denorm if round to +inf) with I, U set
600{ .mmi
601      mov             rTmp = 1
602;;
603      setf.exp        fTmp = rTmp               // Form small normal
604      nop.i           0
605}
606;;
607
608{ .mfi
609      nop.m           0
610      fmerge.se       fTmp = fTmp, f64DivLn2    // Small with non-trial signif
611      nop.i           0
612}
613;;
614
615{ .mfb
616      nop.m           0
617      fma.s.s0        f8 = fTmp, fTmp, f0 // Set I,U, tiny (+0.0) result
618      br.cond.sptk    EXP_UNDERFLOW_COMMON
619}
620;;
621
622EXP_UNDERFLOW_COMMON:
623// Determine if underflow result is zero or nonzero
624{ .mfi
625      alloc           r32=ar.pfs,0,3,4,0
626      fcmp.eq.s1      p6, p0 =  f8, f0
627      nop.i           0
628}
629;;
630
631{ .mfb
632      nop.m           0
633      fmerge.s        FR_X = fNormX,fNormX
634(p6)  br.cond.spnt    EXP_UNDERFLOW_ZERO
635}
636;;
637
638EXP_UNDERFLOW_NONZERO:
639// Here if  x < fMIN_SGL_NORM_ARG and result nonzero;
640// I, U are set
641{ .mfb
642      mov             GR_Parameter_TAG = 17
643      nop.f           0                         // FR_RESULT already set
644      br.cond.sptk    __libm_error_region
645}
646;;
647
648EXP_UNDERFLOW_ZERO:
649// Here if x < fMIN_SGL_NORM_ARG and result zero;
650// I, U are set
651{ .mfb
652      mov             GR_Parameter_TAG = 17
653      nop.f           0                         // FR_RESULT already set
654      br.cond.sptk    __libm_error_region
655}
656;;
657
658GLOBAL_IEEE754_END(expf)
659libm_alias_float_other (__exp, exp)
660#ifdef SHARED
661.symver expf,expf@@GLIBC_2.27
662.weak __expf_compat
663.set __expf_compat,__expf
664.symver __expf_compat,expf@GLIBC_2.2
665#endif
666
667
668LOCAL_LIBM_ENTRY(__libm_error_region)
669.prologue
670{ .mfi
671      add   GR_Parameter_Y=-32,sp             // Parameter 2 value
672      nop.f 0
673.save   ar.pfs,GR_SAVE_PFS
674      mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
675}
676{ .mfi
677.fframe 64
678      add sp=-64,sp                           // Create new stack
679      nop.f 0
680      mov GR_SAVE_GP=gp                       // Save gp
681};;
682{ .mmi
683      stfs [GR_Parameter_Y] = FR_Y,16         // Store Parameter 2 on stack
684      add GR_Parameter_X = 16,sp              // Parameter 1 address
685.save   b0, GR_SAVE_B0
686      mov GR_SAVE_B0=b0                       // Save b0
687};;
688.body
689{ .mfi
690      stfs [GR_Parameter_X] = FR_X            // Store Parameter 1 on stack
691      nop.f 0
692      add   GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
693}
694{ .mib
695      stfs [GR_Parameter_Y] = FR_RESULT       // Store Parameter 3 on stack
696      add   GR_Parameter_Y = -16,GR_Parameter_Y
697      br.call.sptk b0=__libm_error_support#   // Call error handling function
698};;
699
700{ .mmi
701      add   GR_Parameter_RESULT = 48,sp
702      nop.m 0
703      nop.i 0
704};;
705
706{ .mmi
707      ldfs  f8 = [GR_Parameter_RESULT]       // Get return result off stack
708.restore sp
709      add   sp = 64,sp                       // Restore stack pointer
710      mov   b0 = GR_SAVE_B0                  // Restore return address
711};;
712{ .mib
713      mov   gp = GR_SAVE_GP                  // Restore gp
714      mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
715      br.ret.sptk     b0                     // Return
716};;
717
718LOCAL_LIBM_END(__libm_error_region)
719
720
721.type   __libm_error_support#,@function
722.global __libm_error_support#
723