1.file "acos.s"
2
3
4// Copyright (c) 2000 - 2003 Intel Corporation
5// All rights reserved.
6//
7//
8// Redistribution and use in source and binary forms, with or without
9// modification, are permitted provided that the following conditions are
10// met:
11//
12// * Redistributions of source code must retain the above copyright
13// notice, this list of conditions and the following disclaimer.
14//
15// * Redistributions in binary form must reproduce the above copyright
16// notice, this list of conditions and the following disclaimer in the
17// documentation and/or other materials provided with the distribution.
18//
19// * The name of Intel Corporation may not be used to endorse or promote
20// products derived from this software without specific prior written
21// permission.
22
23// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
27// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
31// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
32// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34//
35// Intel Corporation is the author of this code, and requests that all
36// problem reports or change requests be submitted to it directly at
37// http://www.intel.com/software/products/opensource/libraries/num.htm.
38
39// History
40//==============================================================
41// 02/02/00 Initial version
42// 08/17/00 New and much faster algorithm.
43// 08/30/00 Avoided bank conflicts on loads, shortened |x|=1 and x=0 paths,
44//          fixed mfb split issue stalls.
45// 05/20/02 Cleaned up namespace and sf0 syntax
46// 08/02/02 New and much faster algorithm II
47// 02/06/03 Reordered header: .section, .global, .proc, .align
48
49// Description
50//=========================================
51// The acos function computes the principal value of the arc cosine of x.
52// acos(0) returns Pi/2, acos(1) returns 0, acos(-1) returns Pi.
53// A doman error occurs for arguments not in the range [-1,+1].
54//
55// The acos function returns the arc cosine in the range [0, Pi] radians.
56//
57// There are 8 paths:
58// 1. x = +/-0.0
59//    Return acos(x) = Pi/2 + x
60//
61// 2. 0.0 < |x| < 0.625
62//    Return acos(x) = Pi/2 - x - x^3 *PolA(x^2)
63//    where PolA(x^2) = A3 + A5*x^2 + A7*x^4 +...+ A35*x^32
64//
65// 3. 0.625 <=|x| < 1.0
66//    Return acos(x) = Pi/2 - asin(x) =
67//                   = Pi/2 - sign(x) * ( Pi/2 - sqrt(R) * PolB(R))
68//    Where R = 1 - |x|,
69//          PolB(R) = B0 + B1*R + B2*R^2 +...+B12*R^12
70//
71//    sqrt(R) is approximated using the following sequence:
72//        y0 = (1 + eps)/sqrt(R) - initial approximation by frsqrta,
73//             |eps| < 2^(-8)
74//        Then 3 iterations are used to refine the result:
75//        H0 = 0.5*y0
76//        S0 = R*y0
77//
78//        d0 = 0.5 - H0*S0
79//        H1 = H0 + d0*H0
80//        S1 = S0 + d0*S0
81//
82//        d1 = 0.5 - H1*S1
83//        H2 = H1 + d0*H1
84//        S2 = S1 + d0*S1
85//
86//        d2 = 0.5 - H2*S2
87//        S3 = S3 + d2*S3
88//
89//        S3 approximates sqrt(R) with enough accuracy for this algorithm
90//
91//    So, the result should be reconstracted as follows:
92//    acos(x) = Pi/2 - sign(x) * (Pi/2 - S3*PolB(R))
93//
94//    But for optimization purposes the reconstruction step is slightly
95//    changed:
96//    acos(x) = Cpi + sign(x)*PolB(R)*S2 - sign(x)*d2*S2*PolB(R)
97//        where Cpi = 0 if x > 0 and Cpi = Pi if x < 0
98//
99// 4. |x| = 1.0
100//    Return acos(1.0) = 0.0, acos(-1.0) = Pi
101//
102// 5. 1.0 < |x| <= +INF
103//    A doman error occurs for arguments not in the range [-1,+1]
104//
105// 6. x = [S,Q]NaN
106//    Return acos(x) = QNaN
107//
108// 7. x is denormal
109//    Return acos(x) = Pi/2 - x,
110//
111// 8. x is unnormal
112//    Normalize input in f8 and return to the very beginning of the function
113//
114// Registers used
115//==============================================================
116// Floating Point registers used:
117// f8, input, output
118// f6, f7, f9 -> f15, f32 -> f64
119
120// General registers used:
121// r3, r21 -> r31, r32 -> r38
122
123// Predicate registers used:
124// p0, p6 -> p14
125
126//
127// Assembly macros
128//=========================================
129// integer registers used
130// scratch
131rTblAddr                      = r3
132
133rPiBy2Ptr                     = r21
134rTmpPtr3                      = r22
135rDenoBound                    = r23
136rOne                          = r24
137rAbsXBits                     = r25
138rHalf                         = r26
139r0625                         = r27
140rSign                         = r28
141rXBits                        = r29
142rTmpPtr2                      = r30
143rTmpPtr1                      = r31
144
145// stacked
146GR_SAVE_PFS                   = r32
147GR_SAVE_B0                    = r33
148GR_SAVE_GP                    = r34
149GR_Parameter_X                = r35
150GR_Parameter_Y                = r36
151GR_Parameter_RESULT           = r37
152GR_Parameter_TAG              = r38
153
154// floating point registers used
155FR_X                          = f10
156FR_Y                          = f1
157FR_RESULT                     = f8
158
159
160// scratch
161fXSqr                         = f6
162fXCube                        = f7
163fXQuadr                       = f9
164f1pX                          = f10
165f1mX                          = f11
166f1pXRcp                       = f12
167f1mXRcp                       = f13
168fH                            = f14
169fS                            = f15
170// stacked
171fA3                           = f32
172fB1                           = f32
173fA5                           = f33
174fB2                           = f33
175fA7                           = f34
176fPiBy2                        = f34
177fA9                           = f35
178fA11                          = f36
179fB10                          = f35
180fB11                          = f36
181fA13                          = f37
182fA15                          = f38
183fB4                           = f37
184fB5                           = f38
185fA17                          = f39
186fA19                          = f40
187fB6                           = f39
188fB7                           = f40
189fA21                          = f41
190fA23                          = f42
191fB3                           = f41
192fB8                           = f42
193fA25                          = f43
194fA27                          = f44
195fB9                           = f43
196fB12                          = f44
197fA29                          = f45
198fA31                          = f46
199fA33                          = f47
200fA35                          = f48
201fBaseP                        = f49
202fB0                           = f50
203fSignedS                      = f51
204fD                            = f52
205fHalf                         = f53
206fR                            = f54
207fCloseTo1Pol                  = f55
208fSignX                        = f56
209fDenoBound                    = f57
210fNormX                        = f58
211fX8                           = f59
212fRSqr                         = f60
213fRQuadr                       = f61
214fR8                           = f62
215fX16                          = f63
216fCpi                          = f64
217
218// Data tables
219//==============================================================
220RODATA
221.align 16
222LOCAL_OBJECT_START(acos_base_range_table)
223// Ai: Polynomial coefficients for the acos(x), |x| < .625000
224// Bi: Polynomial coefficients for the acos(x), |x| > .625000
225data8 0xBFDAAB56C01AE468 //A29
226data8 0x3FE1C470B76A5B2B //A31
227data8 0xBFDC5FF82A0C4205 //A33
228data8 0x3FC71FD88BFE93F0 //A35
229data8 0xB504F333F9DE6487, 0x00003FFF //B0
230data8 0xAAAAAAAAAAAAFC18, 0x00003FFC //A3
231data8 0x3F9F1C71BC4A7823 //A9
232data8 0x3F96E8BBAAB216B2 //A11
233data8 0x3F91C4CA1F9F8A98 //A13
234data8 0x3F8C9DDCEDEBE7A6 //A15
235data8 0x3F877784442B1516 //A17
236data8 0x3F859C0491802BA2 //A19
237data8 0x9999999998C88B8F, 0x00003FFB //A5
238data8 0x3F6BD7A9A660BF5E //A21
239data8 0x3F9FC1659340419D //A23
240data8 0xB6DB6DB798149BDF, 0x00003FFA //A7
241data8 0xBFB3EF18964D3ED3 //A25
242data8 0x3FCD285315542CF2 //A27
243data8 0xF15BEEEFF7D2966A, 0x00003FFB //B1
244data8 0x3EF0DDA376D10FB3 //B10
245data8 0xBEB83CAFE05EBAC9 //B11
246data8 0x3F65FFB67B513644 //B4
247data8 0x3F5032FBB86A4501 //B5
248data8 0x3F392162276C7CBA //B6
249data8 0x3F2435949FD98BDF //B7
250data8 0xD93923D7FA08341C, 0x00003FF9 //B2
251data8 0x3F802995B6D90BDB //B3
252data8 0x3F10DF86B341A63F //B8
253data8 0xC90FDAA22168C235, 0x00003FFF // Pi/2
254data8 0x3EFA3EBD6B0ECB9D //B9
255data8 0x3EDE18BA080E9098 //B12
256LOCAL_OBJECT_END(acos_base_range_table)
257
258.section .text
259GLOBAL_LIBM_ENTRY(acos)
260acos_unnormal_back:
261{ .mfi
262      getf.d             rXBits = f8 // grab bits of input value
263      // set p12 = 1 if x is a NaN, denormal, or zero
264      fclass.m           p12, p0 = f8, 0xcf
265      adds               rSign = 1, r0
266}
267{ .mfi
268      addl               rTblAddr = @ltoff(acos_base_range_table),gp
269      // 1 - x = 1 - |x| for positive x
270      fms.s1             f1mX = f1, f1, f8
271      addl               rHalf = 0xFFFE, r0 // exponent of 1/2
272}
273;;
274{ .mfi
275      addl               r0625 = 0x3FE4, r0 // high 16 bits of 0.625
276      // set p8 = 1 if x < 0
277      fcmp.lt.s1         p8, p9 = f8, f0
278      shl                rSign = rSign, 63 // sign bit
279}
280{ .mfi
281      // point to the beginning of the table
282      ld8                rTblAddr = [rTblAddr]
283      // 1 + x = 1 - |x| for negative x
284      fma.s1             f1pX = f1, f1, f8
285      adds               rOne = 0x3FF, r0
286}
287;;
288{ .mfi
289      andcm              rAbsXBits = rXBits, rSign // bits of |x|
290      fmerge.s           fSignX = f8, f1 // signum(x)
291      shl                r0625 = r0625, 48 // bits of DP representation of 0.625
292}
293{ .mfb
294      setf.exp           fHalf = rHalf // load A2 to FP reg
295      fma.s1             fXSqr = f8, f8, f0 // x^2
296      // branch on special path if x is a NaN, denormal, or zero
297(p12) br.cond.spnt       acos_special
298}
299;;
300{ .mfi
301      adds               rPiBy2Ptr = 272, rTblAddr
302      nop.f              0
303      shl                rOne = rOne, 52 // bits of 1.0
304}
305{ .mfi
306      adds               rTmpPtr1 = 16, rTblAddr
307      nop.f              0
308      // set p6 = 1 if |x| < 0.625
309      cmp.lt             p6, p7 = rAbsXBits, r0625
310}
311;;
312{ .mfi
313      ldfpd              fA29, fA31 = [rTblAddr] // A29, fA31
314      // 1 - x = 1 - |x| for positive x
315(p9)  fms.s1             fR = f1, f1, f8
316      // point to coefficient of "near 1" polynomial
317(p7)  adds               rTmpPtr2 = 176, rTblAddr
318}
319{ .mfi
320      ldfpd              fA33, fA35 = [rTmpPtr1], 16 // A33, fA35
321      // 1 + x = 1 - |x| for negative x
322(p8)  fma.s1             fR = f1, f1, f8
323(p6)  adds               rTmpPtr2 = 48, rTblAddr
324}
325;;
326{ .mfi
327      ldfe               fB0 = [rTmpPtr1], 16 // B0
328      nop.f              0
329      nop.i              0
330}
331{ .mib
332      adds               rTmpPtr3 = 16, rTmpPtr2
333      // set p10 = 1 if |x| = 1.0
334      cmp.eq             p10, p0 = rAbsXBits, rOne
335      // branch on special path for |x| = 1.0
336(p10) br.cond.spnt       acos_abs_1
337}
338;;
339{ .mfi
340      ldfe               fA3 = [rTmpPtr2], 48 // A3 or B1
341      nop.f              0
342      adds               rTmpPtr1 = 64, rTmpPtr3
343}
344{ .mib
345      ldfpd              fA9, fA11 = [rTmpPtr3], 16 // A9, A11 or B10, B11
346      // set p11 = 1 if |x| > 1.0
347      cmp.gt             p11, p0 = rAbsXBits, rOne
348      // branch on special path for |x| > 1.0
349(p11) br.cond.spnt       acos_abs_gt_1
350}
351;;
352{ .mfi
353      ldfpd              fA17, fA19 = [rTmpPtr2], 16 // A17, A19 or B6, B7
354      // initial approximation of 1 / sqrt(1 - x)
355      frsqrta.s1         f1mXRcp, p0 = f1mX
356      nop.i              0
357}
358{ .mfi
359      ldfpd              fA13, fA15 = [rTmpPtr3] // A13, A15 or B4, B5
360      fma.s1             fXCube = fXSqr, f8, f0 // x^3
361      nop.i              0
362}
363;;
364{ .mfi
365      ldfe               fA5 = [rTmpPtr2], 48 // A5 or B2
366      // initial approximation of 1 / sqrt(1 + x)
367      frsqrta.s1         f1pXRcp, p0 = f1pX
368      nop.i              0
369}
370{ .mfi
371      ldfpd              fA21, fA23 = [rTmpPtr1], 16 // A21, A23 or B3, B8
372      fma.s1             fXQuadr = fXSqr, fXSqr, f0 // x^4
373      nop.i              0
374}
375;;
376{ .mfi
377      ldfe               fA7 = [rTmpPtr1] // A7 or Pi/2
378      fma.s1             fRSqr = fR, fR, f0 // R^2
379      nop.i              0
380}
381{ .mfb
382      ldfpd              fA25, fA27 = [rTmpPtr2] // A25, A27 or B9, B12
383      nop.f              0
384(p6)  br.cond.spnt       acos_base_range;
385}
386;;
387
388{ .mfi
389      nop.m              0
390(p9)  fma.s1             fH = fHalf, f1mXRcp, f0 // H0 for x > 0
391      nop.i              0
392}
393{ .mfi
394      nop.m              0
395(p9)  fma.s1             fS = f1mX, f1mXRcp, f0  // S0 for x > 0
396      nop.i              0
397}
398;;
399{ .mfi
400      nop.m              0
401(p8)  fma.s1             fH = fHalf, f1pXRcp, f0 // H0 for x < 0
402      nop.i              0
403}
404{ .mfi
405      nop.m              0
406(p8)  fma.s1             fS = f1pX, f1pXRcp, f0  // S0 for x > 0
407      nop.i              0
408}
409;;
410{ .mfi
411      nop.m              0
412      fma.s1             fRQuadr = fRSqr, fRSqr, f0 // R^4
413      nop.i              0
414}
415;;
416{ .mfi
417      nop.m              0
418      fma.s1             fB11 = fB11, fR, fB10
419      nop.i              0
420}
421{ .mfi
422      nop.m              0
423      fma.s1             fB1 = fB1, fR, fB0
424      nop.i              0
425}
426;;
427{ .mfi
428      nop.m              0
429      fma.s1             fB5 = fB5, fR, fB4
430      nop.i              0
431}
432{ .mfi
433      nop.m              0
434      fma.s1             fB7 = fB7, fR, fB6
435      nop.i              0
436}
437;;
438{ .mfi
439      nop.m              0
440      fma.s1             fB3 = fB3, fR, fB2
441      nop.i              0
442}
443;;
444{ .mfi
445      nop.m              0
446      fnma.s1            fD = fH, fS, fHalf // d0 = 1/2 - H0*S0
447      nop.i              0
448}
449;;
450{ .mfi
451      nop.m              0
452      fma.s1             fR8 = fRQuadr, fRQuadr, f0 // R^4
453      nop.i              0
454}
455{ .mfi
456      nop.m              0
457      fma.s1             fB9 = fB9, fR, fB8
458      nop.i              0
459}
460;;
461{.mfi
462      nop.m              0
463      fma.s1             fB12 = fB12, fRSqr, fB11
464      nop.i              0
465}
466{.mfi
467      nop.m              0
468      fma.s1             fB7 = fB7, fRSqr, fB5
469      nop.i              0
470}
471;;
472{.mfi
473      nop.m              0
474      fma.s1             fB3 = fB3, fRSqr, fB1
475      nop.i              0
476}
477;;
478{ .mfi
479      nop.m              0
480      fma.s1             fH = fH, fD, fH // H1 = H0 + H0*d0
481      nop.i              0
482}
483{ .mfi
484      nop.m              0
485      fma.s1             fS = fS, fD, fS // S1 = S0 + S0*d0
486      nop.i              0
487}
488;;
489{.mfi
490      nop.m              0
491(p9)  fma.s1             fCpi = f1, f0, f0 // Cpi = 0 if x > 0
492      nop.i              0
493}
494{ .mfi
495      nop.m              0
496(p8)  fma.s1             fCpi = fPiBy2, f1, fPiBy2 // Cpi = Pi if x < 0
497      nop.i              0
498}
499;;
500{ .mfi
501      nop.m              0
502      fma.s1             fB12 = fB12, fRSqr, fB9
503      nop.i              0
504}
505{ .mfi
506      nop.m              0
507      fma.s1             fB7 = fB7, fRQuadr, fB3
508      nop.i              0
509}
510;;
511{.mfi
512      nop.m              0
513      fnma.s1            fD = fH, fS, fHalf // d1 = 1/2 - H1*S1
514      nop.i              0
515}
516{ .mfi
517      nop.m              0
518      fnma.s1            fSignedS = fSignX, fS, f0 // -signum(x)*S1
519      nop.i              0
520}
521;;
522{ .mfi
523      nop.m              0
524      fma.s1             fCloseTo1Pol = fB12, fR8, fB7
525      nop.i              0
526}
527;;
528{ .mfi
529      nop.m              0
530      fma.s1             fH = fH, fD, fH // H2 = H1 + H1*d1
531      nop.i              0
532}
533{ .mfi
534      nop.m              0
535      fma.s1             fS = fS, fD, fS // S2 = S1 + S1*d1
536      nop.i              0
537}
538;;
539{ .mfi
540      nop.m              0
541      // -signum(x)* S2 = -signum(x)*(S1 + S1*d1)
542      fma.s1             fSignedS = fSignedS, fD, fSignedS
543      nop.i              0
544}
545;;
546{.mfi
547      nop.m              0
548      fnma.s1            fD = fH, fS, fHalf // d2 = 1/2 - H2*S2
549      nop.i              0
550}
551;;
552{ .mfi
553      nop.m              0
554      // Cpi + signum(x)*PolB*S2
555      fnma.s1            fCpi = fSignedS, fCloseTo1Pol, fCpi
556      nop.i              0
557}
558{ .mfi
559      nop.m              0
560      // signum(x)*PolB * S2
561      fnma.s1            fCloseTo1Pol = fSignedS, fCloseTo1Pol, f0
562      nop.i              0
563}
564;;
565{ .mfb
566      nop.m              0
567      // final result for 0.625 <= |x| < 1
568      fma.d.s0           f8 = fCloseTo1Pol, fD, fCpi
569      // exit here for  0.625 <= |x| < 1
570      br.ret.sptk        b0
571}
572;;
573
574
575// here if |x| < 0.625
576.align 32
577acos_base_range:
578{ .mfi
579      ldfe               fCpi = [rPiBy2Ptr] // Pi/2
580      fma.s1             fA33 = fA33, fXSqr, fA31
581      nop.i              0
582}
583{ .mfi
584      nop.m              0
585      fma.s1             fA15 = fA15, fXSqr, fA13
586      nop.i              0
587}
588;;
589{ .mfi
590      nop.m              0
591      fma.s1             fA29 = fA29, fXSqr, fA27
592      nop.i              0
593}
594{ .mfi
595      nop.m              0
596      fma.s1             fA25 = fA25, fXSqr, fA23
597      nop.i              0
598}
599;;
600{ .mfi
601      nop.m              0
602      fma.s1             fA21 = fA21, fXSqr, fA19
603      nop.i              0
604}
605{ .mfi
606      nop.m              0
607      fma.s1             fA9 = fA9, fXSqr, fA7
608      nop.i              0
609}
610;;
611{ .mfi
612      nop.m              0
613      fma.s1             fA5 = fA5, fXSqr, fA3
614      nop.i              0
615}
616;;
617{ .mfi
618      nop.m              0
619      fma.s1             fA35 = fA35, fXQuadr, fA33
620      nop.i              0
621}
622{ .mfi
623      nop.m              0
624      fma.s1             fA17 = fA17, fXQuadr, fA15
625      nop.i              0
626}
627;;
628{ .mfi
629      nop.m              0
630      fma.s1             fX8 = fXQuadr, fXQuadr, f0 // x^8
631      nop.i              0
632}
633{ .mfi
634      nop.m              0
635      fma.s1             fA25 = fA25, fXQuadr, fA21
636      nop.i              0
637}
638;;
639{ .mfi
640      nop.m              0
641      fma.s1             fA9 = fA9, fXQuadr, fA5
642      nop.i              0
643}
644;;
645{ .mfi
646      nop.m              0
647      fms.s1             fCpi = fCpi, f1, f8 // Pi/2 - x
648      nop.i              0
649}
650;;
651{ .mfi
652      nop.m              0
653      fma.s1             fA35 = fA35, fXQuadr, fA29
654      nop.i              0
655}
656{ .mfi
657      nop.m              0
658      fma.s1             fA17 = fA17, fXSqr, fA11
659      nop.i              0
660}
661;;
662{ .mfi
663      nop.m              0
664      fma.s1             fX16 = fX8, fX8, f0 // x^16
665      nop.i              0
666}
667;;
668{ .mfi
669      nop.m              0
670      fma.s1             fA35 = fA35, fX8, fA25
671      nop.i              0
672}
673{ .mfi
674      nop.m              0
675      fma.s1             fA17 = fA17, fX8, fA9
676      nop.i              0
677}
678;;
679{ .mfi
680      nop.m              0
681      fma.s1             fBaseP = fA35, fX16, fA17
682      nop.i              0
683}
684;;
685{ .mfb
686      nop.m              0
687      // final result for |x| < 0.625
688      fnma.d.s0           f8 = fBaseP, fXCube, fCpi
689      // exit here for |x| < 0.625 path
690      br.ret.sptk        b0
691}
692;;
693
694// here if |x| = 1
695// acos(1) = 0
696// acos(-1) = Pi
697.align 32
698acos_abs_1:
699{ .mfi
700      ldfe               fPiBy2 = [rPiBy2Ptr] // Pi/2
701      nop.f              0
702      nop.i              0
703}
704;;
705.pred.rel "mutex", p8, p9
706{ .mfi
707      nop.m              0
708      // result for x = 1.0
709(p9)  fma.d.s0           f8 = f1, f0, f0 // 0.0
710      nop.i              0
711}
712{.mfb
713      nop.m              0
714      // result for x = -1.0
715(p8)  fma.d.s0           f8 = fPiBy2, f1, fPiBy2 // Pi
716      // exit here for |x| = 1.0
717      br.ret.sptk        b0
718}
719;;
720
721// here if x is a NaN, denormal, or zero
722.align 32
723acos_special:
724{ .mfi
725      // point to Pi/2
726      adds               rPiBy2Ptr = 272, rTblAddr
727      // set p12 = 1 if x is a NaN
728      fclass.m           p12, p0 = f8, 0xc3
729      nop.i              0
730}
731{ .mlx
732      nop.m              0
733      // smallest positive DP normalized number
734      movl               rDenoBound = 0x0010000000000000
735}
736;;
737{ .mfi
738      ldfe               fPiBy2 = [rPiBy2Ptr] // Pi/2
739      // set p13 = 1 if x = 0.0
740      fclass.m           p13, p0 = f8, 0x07
741      nop.i              0
742}
743{ .mfi
744      nop.m              0
745      fnorm.s1           fNormX = f8
746      nop.i              0
747}
748;;
749{ .mfb
750      // load smallest normal to FP reg
751      setf.d             fDenoBound = rDenoBound
752      // answer if x is a NaN
753(p12) fma.d.s0           f8 = f8,f1,f0
754      // exit here if x is a NaN
755(p12) br.ret.spnt        b0
756}
757;;
758{ .mfi
759      nop.m              0
760      // absolute value of normalized x
761      fmerge.s           fNormX = f1, fNormX
762      nop.i              0
763}
764;;
765{ .mfb
766      nop.m              0
767      // final result for x = 0
768(p13) fma.d.s0           f8 = fPiBy2, f1, f8
769      // exit here if x = 0.0
770(p13) br.ret.spnt        b0
771}
772;;
773// if we still here then x is denormal or unnormal
774{ .mfi
775      nop.m              0
776      // set p14 = 1 if normalized x is greater than or
777      // equal to the smallest denormalized value
778      // So, if p14 is set to 1 it means that we deal with
779      // unnormal rather than with "true" denormal
780      fcmp.ge.s1         p14, p0 = fNormX, fDenoBound
781      nop.i              0
782}
783;;
784{ .mfi
785      nop.m              0
786(p14) fcmp.eq.s0         p6, p0 = f8, f0      // Set D flag if x unnormal
787      nop.i              0
788}
789{ .mfb
790      nop.m              0
791      // normalize unnormal input
792(p14) fnorm.s1           f8 = f8
793      // return to the main path
794(p14) br.cond.sptk       acos_unnormal_back
795}
796;;
797// if we still here it means that input is "true" denormal
798{ .mfb
799      nop.m              0
800      // final result if x is denormal
801      fms.d.s0           f8 = fPiBy2, f1, f8 // Pi/2 - x
802      // exit here if x is denormal
803      br.ret.sptk        b0
804}
805;;
806
807// here if |x| > 1.0
808// error handler should be called
809.align 32
810acos_abs_gt_1:
811{ .mfi
812      alloc              r32 = ar.pfs, 0, 3, 4, 0 // get some registers
813      fmerge.s           FR_X = f8,f8
814      nop.i              0
815}
816{ .mfb
817      mov                GR_Parameter_TAG = 58 // error code
818      frcpa.s0           FR_RESULT, p0 = f0,f0
819      // call error handler routine
820      br.cond.sptk       __libm_error_region
821}
822;;
823GLOBAL_LIBM_END(acos)
824libm_alias_double_other (acos, acos)
825
826
827
828LOCAL_LIBM_ENTRY(__libm_error_region)
829.prologue
830{ .mfi
831        add   GR_Parameter_Y=-32,sp             // Parameter 2 value
832        nop.f 0
833.save   ar.pfs,GR_SAVE_PFS
834        mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
835}
836{ .mfi
837.fframe 64
838        add sp=-64,sp                           // Create new stack
839        nop.f 0
840        mov GR_SAVE_GP=gp                       // Save gp
841};;
842{ .mmi
843        stfd [GR_Parameter_Y] = FR_Y,16         // STORE Parameter 2 on stack
844        add GR_Parameter_X = 16,sp              // Parameter 1 address
845.save   b0, GR_SAVE_B0
846        mov GR_SAVE_B0=b0                       // Save b0
847};;
848.body
849{ .mib
850        stfd [GR_Parameter_X] = FR_X                  // STORE Parameter 1 on stack
851        add   GR_Parameter_RESULT = 0,GR_Parameter_Y  // Parameter 3 address
852        nop.b 0
853}
854{ .mib
855        stfd [GR_Parameter_Y] = FR_RESULT             // STORE Parameter 3 on stack
856        add   GR_Parameter_Y = -16,GR_Parameter_Y
857        br.call.sptk b0=__libm_error_support#         // Call error handling function
858};;
859{ .mmi
860        add   GR_Parameter_RESULT = 48,sp
861        nop.m 0
862        nop.i 0
863};;
864{ .mmi
865        ldfd  f8 = [GR_Parameter_RESULT]       // Get return result off stack
866.restore sp
867        add   sp = 64,sp                       // Restore stack pointer
868        mov   b0 = GR_SAVE_B0                  // Restore return address
869};;
870{ .mib
871        mov   gp = GR_SAVE_GP                  // Restore gp
872        mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
873        br.ret.sptk     b0                     // Return
874};;
875
876LOCAL_LIBM_END(__libm_error_region)
877.type   __libm_error_support#,@function
878.global __libm_error_support#
879