1# Begin of automatic generation
2
3# Maximal error of functions:
4Function: "acos":
5double: 1
6float128: 1
7ldouble: 2
8
9Function: "acos_downward":
10float128: 1
11ldouble: 2
12
13Function: "acos_towardzero":
14float128: 1
15ldouble: 2
16
17Function: "acos_upward":
18double: 1
19float128: 1
20ldouble: 2
21
22Function: "acosh":
23double: 1
24float128: 4
25ldouble: 3
26
27Function: "acosh_downward":
28double: 1
29float128: 3
30ldouble: 4
31
32Function: "acosh_towardzero":
33double: 1
34float128: 2
35ldouble: 4
36
37Function: "acosh_upward":
38double: 1
39float128: 3
40ldouble: 3
41
42Function: "asin":
43double: 1
44float128: 1
45ldouble: 1
46
47Function: "asin_downward":
48double: 1
49float128: 2
50ldouble: 2
51
52Function: "asin_towardzero":
53double: 1
54float128: 1
55ldouble: 1
56
57Function: "asin_upward":
58double: 1
59float: 1
60float128: 2
61ldouble: 1
62
63Function: "asinh":
64double: 1
65float128: 4
66ldouble: 3
67
68Function: "asinh_downward":
69double: 1
70float: 1
71float128: 4
72ldouble: 5
73
74Function: "asinh_towardzero":
75double: 1
76float: 1
77float128: 2
78ldouble: 4
79
80Function: "asinh_upward":
81double: 1
82float: 1
83float128: 4
84ldouble: 5
85
86Function: "atan":
87double: 1
88float128: 1
89ldouble: 1
90
91Function: "atan2":
92double: 1
93float128: 2
94ldouble: 1
95
96Function: "atan2_downward":
97double: 1
98float: 1
99float128: 2
100ldouble: 1
101
102Function: "atan2_towardzero":
103double: 1
104float: 1
105float128: 3
106ldouble: 1
107
108Function: "atan2_upward":
109double: 1
110float: 1
111float128: 2
112ldouble: 1
113
114Function: "atan_downward":
115double: 1
116float: 1
117float128: 2
118ldouble: 1
119
120Function: "atan_towardzero":
121double: 1
122float: 1
123float128: 1
124ldouble: 1
125
126Function: "atan_upward":
127double: 1
128float: 1
129float128: 2
130ldouble: 1
131
132Function: "atanh":
133double: 1
134float128: 4
135ldouble: 3
136
137Function: "atanh_downward":
138double: 1
139float: 1
140float128: 4
141ldouble: 4
142
143Function: "atanh_towardzero":
144double: 1
145float: 1
146float128: 2
147ldouble: 3
148
149Function: "atanh_upward":
150double: 1
151float: 1
152float128: 4
153ldouble: 5
154
155Function: "cabs":
156double: 1
157float128: 1
158ldouble: 1
159
160Function: "cabs_downward":
161double: 1
162float128: 1
163ldouble: 1
164
165Function: "cabs_towardzero":
166double: 1
167float128: 1
168ldouble: 1
169
170Function: "cabs_upward":
171double: 1
172float128: 1
173ldouble: 1
174
175Function: Real part of "cacos":
176double: 1
177float: 2
178float128: 2
179ldouble: 1
180
181Function: Imaginary part of "cacos":
182double: 2
183float: 2
184float128: 2
185ldouble: 2
186
187Function: Real part of "cacos_downward":
188double: 2
189float: 1
190float128: 3
191ldouble: 2
192
193Function: Imaginary part of "cacos_downward":
194double: 5
195float: 3
196float128: 6
197ldouble: 6
198
199Function: Real part of "cacos_towardzero":
200double: 2
201float: 1
202float128: 3
203ldouble: 2
204
205Function: Imaginary part of "cacos_towardzero":
206double: 4
207float: 3
208float128: 5
209ldouble: 5
210
211Function: Real part of "cacos_upward":
212double: 2
213float: 2
214float128: 3
215ldouble: 2
216
217Function: Imaginary part of "cacos_upward":
218double: 7
219float: 7
220float128: 7
221ldouble: 7
222
223Function: Real part of "cacosh":
224double: 2
225float: 2
226float128: 2
227ldouble: 2
228
229Function: Imaginary part of "cacosh":
230double: 1
231float: 2
232float128: 2
233ldouble: 1
234
235Function: Real part of "cacosh_downward":
236double: 4
237float: 3
238float128: 5
239ldouble: 5
240
241Function: Imaginary part of "cacosh_downward":
242double: 2
243float: 2
244float128: 4
245ldouble: 3
246
247Function: Real part of "cacosh_towardzero":
248double: 4
249float: 3
250float128: 5
251ldouble: 5
252
253Function: Imaginary part of "cacosh_towardzero":
254double: 2
255float: 1
256float128: 3
257ldouble: 2
258
259Function: Real part of "cacosh_upward":
260double: 5
261float: 4
262float128: 6
263ldouble: 5
264
265Function: Imaginary part of "cacosh_upward":
266double: 3
267float: 2
268float128: 4
269ldouble: 3
270
271Function: "carg":
272double: 1
273float128: 2
274ldouble: 1
275
276Function: "carg_downward":
277double: 1
278float: 1
279float128: 2
280ldouble: 1
281
282Function: "carg_towardzero":
283double: 1
284float: 1
285float128: 3
286ldouble: 1
287
288Function: "carg_upward":
289double: 1
290float: 1
291float128: 2
292ldouble: 1
293
294Function: Real part of "casin":
295double: 1
296float: 1
297float128: 2
298ldouble: 1
299
300Function: Imaginary part of "casin":
301double: 2
302float: 2
303float128: 2
304ldouble: 2
305
306Function: Real part of "casin_downward":
307double: 3
308float: 2
309float128: 3
310ldouble: 3
311
312Function: Imaginary part of "casin_downward":
313double: 5
314float: 3
315float128: 6
316ldouble: 6
317
318Function: Real part of "casin_towardzero":
319double: 3
320float: 1
321float128: 3
322ldouble: 3
323
324Function: Imaginary part of "casin_towardzero":
325double: 4
326float: 3
327float128: 5
328ldouble: 5
329
330Function: Real part of "casin_upward":
331double: 2
332float: 2
333float128: 3
334ldouble: 2
335
336Function: Imaginary part of "casin_upward":
337double: 7
338float: 7
339float128: 7
340ldouble: 7
341
342Function: Real part of "casinh":
343double: 2
344float: 2
345float128: 2
346ldouble: 2
347
348Function: Imaginary part of "casinh":
349double: 1
350float: 1
351float128: 2
352ldouble: 1
353
354Function: Real part of "casinh_downward":
355double: 5
356float: 3
357float128: 6
358ldouble: 6
359
360Function: Imaginary part of "casinh_downward":
361double: 3
362float: 2
363float128: 3
364ldouble: 3
365
366Function: Real part of "casinh_towardzero":
367double: 4
368float: 3
369float128: 5
370ldouble: 5
371
372Function: Imaginary part of "casinh_towardzero":
373double: 3
374float: 1
375float128: 3
376ldouble: 3
377
378Function: Real part of "casinh_upward":
379double: 7
380float: 7
381float128: 7
382ldouble: 7
383
384Function: Imaginary part of "casinh_upward":
385double: 2
386float: 2
387float128: 3
388ldouble: 2
389
390Function: Real part of "catan":
391double: 1
392float128: 1
393ldouble: 1
394
395Function: Imaginary part of "catan":
396double: 1
397float: 1
398float128: 1
399ldouble: 1
400
401Function: Real part of "catan_downward":
402double: 1
403float: 1
404float128: 2
405ldouble: 1
406
407Function: Imaginary part of "catan_downward":
408double: 2
409float: 1
410float128: 2
411ldouble: 4
412
413Function: Real part of "catan_towardzero":
414double: 1
415float: 1
416float128: 2
417ldouble: 1
418
419Function: Imaginary part of "catan_towardzero":
420double: 2
421float: 1
422float128: 2
423ldouble: 4
424
425Function: Real part of "catan_upward":
426double: 1
427float: 1
428float128: 2
429ldouble: 1
430
431Function: Imaginary part of "catan_upward":
432double: 2
433float: 2
434float128: 3
435ldouble: 3
436
437Function: Real part of "catanh":
438double: 1
439float: 1
440float128: 1
441ldouble: 1
442
443Function: Imaginary part of "catanh":
444double: 1
445float128: 1
446ldouble: 1
447
448Function: Real part of "catanh_downward":
449double: 2
450float: 1
451float128: 2
452ldouble: 4
453
454Function: Imaginary part of "catanh_downward":
455double: 1
456float: 1
457float128: 2
458ldouble: 1
459
460Function: Real part of "catanh_towardzero":
461double: 2
462float: 1
463float128: 2
464ldouble: 4
465
466Function: Imaginary part of "catanh_towardzero":
467double: 1
468float: 1
469float128: 2
470ldouble: 1
471
472Function: Real part of "catanh_upward":
473double: 4
474float: 4
475float128: 4
476ldouble: 4
477
478Function: Imaginary part of "catanh_upward":
479double: 1
480float: 1
481float128: 2
482ldouble: 1
483
484Function: "cbrt":
485double: 1
486float: 1
487float128: 1
488ldouble: 3
489
490Function: "cbrt_downward":
491double: 1
492float: 1
493float128: 1
494ldouble: 4
495
496Function: "cbrt_towardzero":
497double: 1
498float: 1
499float128: 1
500ldouble: 3
501
502Function: "cbrt_upward":
503double: 1
504float: 1
505float128: 1
506ldouble: 4
507
508Function: Real part of "ccos":
509double: 1
510float: 1
511float128: 1
512ldouble: 1
513
514Function: Imaginary part of "ccos":
515double: 1
516float: 1
517float128: 1
518ldouble: 1
519
520Function: Real part of "ccos_downward":
521double: 1
522float: 1
523float128: 2
524ldouble: 3
525
526Function: Imaginary part of "ccos_downward":
527double: 3
528float: 3
529float128: 2
530ldouble: 3
531
532Function: Real part of "ccos_towardzero":
533double: 1
534float: 2
535float128: 2
536ldouble: 3
537
538Function: Imaginary part of "ccos_towardzero":
539double: 3
540float: 3
541float128: 2
542ldouble: 3
543
544Function: Real part of "ccos_upward":
545double: 2
546float: 2
547float128: 3
548ldouble: 2
549
550Function: Imaginary part of "ccos_upward":
551double: 2
552float: 2
553float128: 2
554ldouble: 2
555
556Function: Real part of "ccosh":
557double: 1
558float: 1
559float128: 1
560ldouble: 1
561
562Function: Imaginary part of "ccosh":
563double: 1
564float: 1
565float128: 1
566ldouble: 1
567
568Function: Real part of "ccosh_downward":
569double: 2
570float: 2
571float128: 2
572ldouble: 3
573
574Function: Imaginary part of "ccosh_downward":
575double: 3
576float: 3
577float128: 2
578ldouble: 3
579
580Function: Real part of "ccosh_towardzero":
581double: 2
582float: 3
583float128: 2
584ldouble: 3
585
586Function: Imaginary part of "ccosh_towardzero":
587double: 3
588float: 3
589float128: 2
590ldouble: 3
591
592Function: Real part of "ccosh_upward":
593double: 2
594float: 2
595float128: 3
596ldouble: 2
597
598Function: Imaginary part of "ccosh_upward":
599double: 3
600float: 2
601float128: 2
602ldouble: 2
603
604Function: Real part of "cexp":
605double: 2
606float: 1
607float128: 1
608ldouble: 1
609
610Function: Imaginary part of "cexp":
611double: 1
612float: 2
613float128: 1
614ldouble: 1
615
616Function: Real part of "cexp_downward":
617double: 2
618float: 2
619float128: 2
620ldouble: 3
621
622Function: Imaginary part of "cexp_downward":
623double: 3
624float: 3
625float128: 2
626ldouble: 3
627
628Function: Real part of "cexp_towardzero":
629double: 2
630float: 2
631float128: 2
632ldouble: 3
633
634Function: Imaginary part of "cexp_towardzero":
635double: 3
636float: 3
637float128: 2
638ldouble: 3
639
640Function: Real part of "cexp_upward":
641double: 1
642float: 2
643float128: 3
644ldouble: 2
645
646Function: Imaginary part of "cexp_upward":
647double: 3
648float: 2
649float128: 3
650ldouble: 3
651
652Function: Real part of "clog":
653double: 2
654float: 3
655float128: 2
656ldouble: 3
657
658Function: Imaginary part of "clog":
659double: 1
660float128: 1
661ldouble: 1
662
663Function: Real part of "clog10":
664double: 3
665float: 4
666float128: 2
667ldouble: 4
668
669Function: Imaginary part of "clog10":
670double: 2
671float: 2
672float128: 2
673ldouble: 2
674
675Function: Real part of "clog10_downward":
676double: 4
677float: 4
678float128: 3
679ldouble: 8
680
681Function: Imaginary part of "clog10_downward":
682double: 2
683float: 2
684float128: 3
685ldouble: 3
686
687Function: Real part of "clog10_towardzero":
688double: 5
689float: 5
690float128: 4
691ldouble: 8
692
693Function: Imaginary part of "clog10_towardzero":
694double: 2
695float: 2
696float128: 3
697ldouble: 3
698
699Function: Real part of "clog10_upward":
700double: 4
701float: 5
702float128: 4
703ldouble: 8
704
705Function: Imaginary part of "clog10_upward":
706double: 2
707float: 2
708float128: 3
709ldouble: 3
710
711Function: Real part of "clog_downward":
712double: 3
713float: 3
714float128: 3
715ldouble: 5
716
717Function: Imaginary part of "clog_downward":
718double: 1
719float: 1
720float128: 2
721ldouble: 1
722
723Function: Real part of "clog_towardzero":
724double: 3
725float: 4
726float128: 3
727ldouble: 5
728
729Function: Imaginary part of "clog_towardzero":
730double: 1
731float: 1
732float128: 2
733ldouble: 1
734
735Function: Real part of "clog_upward":
736double: 2
737float: 3
738float128: 4
739ldouble: 4
740
741Function: Imaginary part of "clog_upward":
742double: 1
743float: 1
744float128: 2
745ldouble: 1
746
747Function: "cos":
748double: 1
749float: 1
750float128: 2
751ldouble: 1
752
753Function: "cos_downward":
754double: 1
755float: 1
756float128: 3
757ldouble: 3
758
759Function: "cos_towardzero":
760double: 1
761float: 1
762float128: 1
763ldouble: 2
764
765Function: "cos_upward":
766double: 1
767float: 1
768float128: 2
769ldouble: 2
770
771Function: "cosh":
772double: 1
773float: 2
774float128: 2
775ldouble: 3
776
777Function: "cosh_downward":
778double: 3
779float: 1
780float128: 3
781ldouble: 3
782
783Function: "cosh_towardzero":
784double: 3
785float: 1
786float128: 3
787ldouble: 3
788
789Function: "cosh_upward":
790double: 4
791float: 2
792float128: 3
793ldouble: 3
794
795Function: Real part of "cpow":
796double: 2
797float: 5
798float128: 4
799ldouble: 3
800
801Function: Imaginary part of "cpow":
802double: 1
803float: 2
804float128: 1
805ldouble: 4
806
807Function: Real part of "cpow_downward":
808double: 5
809float: 8
810float128: 6
811ldouble: 7
812
813Function: Imaginary part of "cpow_downward":
814double: 2
815float: 2
816float128: 2
817ldouble: 2
818
819Function: Real part of "cpow_towardzero":
820double: 5
821float: 8
822float128: 6
823ldouble: 7
824
825Function: Imaginary part of "cpow_towardzero":
826double: 2
827float: 2
828float128: 2
829ldouble: 1
830
831Function: Real part of "cpow_upward":
832double: 4
833float: 1
834float128: 3
835ldouble: 2
836
837Function: Imaginary part of "cpow_upward":
838double: 1
839float: 2
840float128: 2
841ldouble: 2
842
843Function: Real part of "csin":
844double: 1
845float: 1
846float128: 1
847ldouble: 1
848
849Function: Imaginary part of "csin":
850double: 1
851float: 1
852float128: 1
853
854Function: Real part of "csin_downward":
855double: 3
856float: 3
857float128: 2
858ldouble: 3
859
860Function: Imaginary part of "csin_downward":
861double: 1
862float: 1
863float128: 2
864ldouble: 3
865
866Function: Real part of "csin_towardzero":
867double: 3
868float: 3
869float128: 2
870ldouble: 3
871
872Function: Imaginary part of "csin_towardzero":
873double: 1
874float: 1
875float128: 2
876ldouble: 3
877
878Function: Real part of "csin_upward":
879double: 3
880float: 2
881float128: 2
882ldouble: 3
883
884Function: Imaginary part of "csin_upward":
885double: 2
886float: 2
887float128: 3
888ldouble: 3
889
890Function: Real part of "csinh":
891double: 1
892float: 1
893float128: 1
894ldouble: 1
895
896Function: Imaginary part of "csinh":
897double: 1
898float: 1
899float128: 1
900ldouble: 1
901
902Function: Real part of "csinh_downward":
903double: 2
904float: 2
905float128: 2
906ldouble: 3
907
908Function: Imaginary part of "csinh_downward":
909double: 3
910float: 3
911float128: 2
912ldouble: 3
913
914Function: Real part of "csinh_towardzero":
915double: 2
916float: 2
917float128: 2
918ldouble: 3
919
920Function: Imaginary part of "csinh_towardzero":
921double: 3
922float: 3
923float128: 2
924ldouble: 3
925
926Function: Real part of "csinh_upward":
927double: 2
928float: 2
929float128: 3
930ldouble: 3
931
932Function: Imaginary part of "csinh_upward":
933double: 3
934float: 2
935float128: 2
936ldouble: 3
937
938Function: Real part of "csqrt":
939double: 2
940float: 2
941float128: 2
942ldouble: 2
943
944Function: Imaginary part of "csqrt":
945double: 2
946float: 2
947float128: 2
948ldouble: 2
949
950Function: Real part of "csqrt_downward":
951double: 4
952float: 4
953float128: 4
954ldouble: 5
955
956Function: Imaginary part of "csqrt_downward":
957double: 3
958float: 3
959float128: 3
960ldouble: 4
961
962Function: Real part of "csqrt_towardzero":
963double: 3
964float: 3
965float128: 3
966ldouble: 4
967
968Function: Imaginary part of "csqrt_towardzero":
969double: 3
970float: 3
971float128: 3
972ldouble: 4
973
974Function: Real part of "csqrt_upward":
975double: 4
976float: 4
977float128: 4
978ldouble: 5
979
980Function: Imaginary part of "csqrt_upward":
981double: 3
982float: 3
983float128: 3
984ldouble: 4
985
986Function: Real part of "ctan":
987double: 1
988float: 1
989float128: 3
990ldouble: 2
991
992Function: Imaginary part of "ctan":
993double: 2
994float: 2
995float128: 3
996ldouble: 1
997
998Function: Real part of "ctan_downward":
999double: 6
1000float: 5
1001float128: 4
1002ldouble: 5
1003
1004Function: Imaginary part of "ctan_downward":
1005double: 2
1006float: 2
1007float128: 5
1008ldouble: 4
1009
1010Function: Real part of "ctan_towardzero":
1011double: 5
1012float: 3
1013float128: 4
1014ldouble: 5
1015
1016Function: Imaginary part of "ctan_towardzero":
1017double: 2
1018float: 2
1019float128: 5
1020ldouble: 4
1021
1022Function: Real part of "ctan_upward":
1023double: 3
1024float: 4
1025float128: 5
1026ldouble: 3
1027
1028Function: Imaginary part of "ctan_upward":
1029double: 2
1030float: 1
1031float128: 5
1032ldouble: 3
1033
1034Function: Real part of "ctanh":
1035double: 2
1036float: 2
1037float128: 3
1038ldouble: 1
1039
1040Function: Imaginary part of "ctanh":
1041double: 2
1042float: 2
1043float128: 3
1044ldouble: 2
1045
1046Function: Real part of "ctanh_downward":
1047double: 2
1048float: 2
1049float128: 5
1050ldouble: 4
1051
1052Function: Imaginary part of "ctanh_downward":
1053double: 6
1054float: 5
1055float128: 4
1056ldouble: 4
1057
1058Function: Real part of "ctanh_towardzero":
1059double: 2
1060float: 2
1061float128: 5
1062ldouble: 4
1063
1064Function: Imaginary part of "ctanh_towardzero":
1065double: 5
1066float: 3
1067float128: 3
1068ldouble: 3
1069
1070Function: Real part of "ctanh_upward":
1071double: 2
1072float: 2
1073float128: 5
1074ldouble: 3
1075
1076Function: Imaginary part of "ctanh_upward":
1077double: 3
1078float: 3
1079float128: 5
1080ldouble: 3
1081
1082Function: "erf":
1083double: 1
1084float: 1
1085float128: 1
1086ldouble: 1
1087
1088Function: "erf_downward":
1089double: 1
1090float: 1
1091float128: 2
1092ldouble: 1
1093
1094Function: "erf_towardzero":
1095double: 1
1096float: 1
1097float128: 1
1098ldouble: 1
1099
1100Function: "erf_upward":
1101double: 1
1102float: 1
1103float128: 2
1104ldouble: 1
1105
1106Function: "erfc":
1107double: 5
1108float: 3
1109float128: 4
1110ldouble: 5
1111
1112Function: "erfc_downward":
1113double: 5
1114float: 6
1115float128: 5
1116ldouble: 4
1117
1118Function: "erfc_towardzero":
1119double: 3
1120float: 4
1121float128: 4
1122ldouble: 4
1123
1124Function: "erfc_upward":
1125double: 5
1126float: 6
1127float128: 5
1128ldouble: 5
1129
1130Function: "exp":
1131double: 1
1132float: 1
1133float128: 1
1134ldouble: 1
1135
1136Function: "exp10":
1137double: 1
1138float128: 2
1139ldouble: 1
1140
1141Function: "exp10_downward":
1142double: 1
1143float: 1
1144float128: 3
1145ldouble: 2
1146
1147Function: "exp10_towardzero":
1148double: 1
1149float: 1
1150float128: 3
1151ldouble: 2
1152
1153Function: "exp10_upward":
1154double: 1
1155float: 1
1156float128: 3
1157ldouble: 2
1158
1159Function: "exp2":
1160double: 1
1161float128: 1
1162ldouble: 1
1163
1164Function: "exp2_downward":
1165float128: 1
1166ldouble: 1
1167
1168Function: "exp2_towardzero":
1169double: 1
1170float128: 1
1171ldouble: 1
1172
1173Function: "exp2_upward":
1174float: 1
1175float128: 2
1176ldouble: 1
1177
1178Function: "exp_downward":
1179double: 1
1180float: 1
1181ldouble: 1
1182
1183Function: "exp_towardzero":
1184double: 1
1185float: 1
1186ldouble: 2
1187
1188Function: "exp_upward":
1189double: 1
1190float: 1
1191ldouble: 1
1192
1193Function: "expm1":
1194double: 1
1195float128: 2
1196ldouble: 3
1197
1198Function: "expm1_downward":
1199double: 1
1200float: 1
1201float128: 2
1202ldouble: 4
1203
1204Function: "expm1_towardzero":
1205double: 1
1206float: 1
1207float128: 4
1208ldouble: 4
1209
1210Function: "expm1_upward":
1211double: 1
1212float: 1
1213float128: 3
1214ldouble: 4
1215
1216Function: "gamma":
1217double: 4
1218float: 5
1219ldouble: 4
1220
1221Function: "gamma_downward":
1222double: 5
1223float: 5
1224ldouble: 7
1225
1226Function: "gamma_towardzero":
1227double: 5
1228float: 6
1229ldouble: 7
1230
1231Function: "gamma_upward":
1232double: 5
1233float: 6
1234ldouble: 6
1235
1236Function: "hypot":
1237double: 1
1238float128: 1
1239ldouble: 1
1240
1241Function: "hypot_downward":
1242double: 1
1243float128: 1
1244ldouble: 1
1245
1246Function: "hypot_towardzero":
1247double: 1
1248float128: 1
1249ldouble: 1
1250
1251Function: "hypot_upward":
1252double: 1
1253float128: 1
1254ldouble: 1
1255
1256Function: "j0":
1257double: 5
1258float: 9
1259float128: 2
1260ldouble: 8
1261
1262Function: "j0_downward":
1263double: 5
1264float: 9
1265float128: 9
1266ldouble: 6
1267
1268Function: "j0_towardzero":
1269double: 6
1270float: 9
1271float128: 9
1272ldouble: 6
1273
1274Function: "j0_upward":
1275double: 9
1276float: 9
1277float128: 7
1278ldouble: 6
1279
1280Function: "j1":
1281double: 4
1282float: 9
1283float128: 4
1284ldouble: 9
1285
1286Function: "j1_downward":
1287double: 5
1288float: 6
1289float128: 4
1290ldouble: 4
1291
1292Function: "j1_towardzero":
1293double: 4
1294float: 6
1295float128: 4
1296ldouble: 4
1297
1298Function: "j1_upward":
1299double: 9
1300float: 9
1301float128: 3
1302ldouble: 3
1303
1304Function: "jn":
1305double: 4
1306float: 4
1307float128: 7
1308ldouble: 4
1309
1310Function: "jn_downward":
1311double: 5
1312float: 5
1313float128: 8
1314ldouble: 4
1315
1316Function: "jn_towardzero":
1317double: 5
1318float: 5
1319float128: 8
1320ldouble: 5
1321
1322Function: "jn_upward":
1323double: 5
1324float: 5
1325float128: 7
1326ldouble: 5
1327
1328Function: "lgamma":
1329double: 4
1330float: 5
1331float128: 5
1332ldouble: 4
1333
1334Function: "lgamma_downward":
1335double: 5
1336float: 5
1337float128: 8
1338ldouble: 7
1339
1340Function: "lgamma_towardzero":
1341double: 5
1342float: 6
1343float128: 5
1344ldouble: 7
1345
1346Function: "lgamma_upward":
1347double: 5
1348float: 6
1349float128: 8
1350ldouble: 6
1351
1352Function: "log":
1353double: 1
1354float128: 1
1355ldouble: 1
1356
1357Function: "log10":
1358double: 1
1359float128: 2
1360ldouble: 1
1361
1362Function: "log10_downward":
1363double: 1
1364float: 1
1365float128: 1
1366ldouble: 2
1367
1368Function: "log10_towardzero":
1369double: 1
1370float: 1
1371float128: 1
1372ldouble: 2
1373
1374Function: "log10_upward":
1375double: 1
1376float: 1
1377float128: 1
1378ldouble: 1
1379
1380Function: "log1p":
1381double: 1
1382float128: 3
1383ldouble: 2
1384
1385Function: "log1p_downward":
1386double: 1
1387float: 1
1388float128: 3
1389ldouble: 4
1390
1391Function: "log1p_towardzero":
1392double: 1
1393float: 1
1394float128: 3
1395ldouble: 4
1396
1397Function: "log1p_upward":
1398double: 1
1399float: 1
1400float128: 2
1401ldouble: 3
1402
1403Function: "log2":
1404double: 1
1405float: 1
1406float128: 3
1407ldouble: 1
1408
1409Function: "log2_downward":
1410double: 1
1411float128: 3
1412ldouble: 1
1413
1414Function: "log2_towardzero":
1415double: 1
1416float: 1
1417float128: 1
1418ldouble: 1
1419
1420Function: "log2_upward":
1421double: 1
1422float: 1
1423float128: 1
1424ldouble: 1
1425
1426Function: "log_downward":
1427double: 1
1428float128: 1
1429ldouble: 2
1430
1431Function: "log_towardzero":
1432double: 1
1433float128: 2
1434ldouble: 2
1435
1436Function: "log_upward":
1437double: 1
1438float128: 1
1439ldouble: 1
1440
1441Function: "pow":
1442double: 1
1443float128: 2
1444ldouble: 1
1445
1446Function: "pow_downward":
1447double: 1
1448float: 1
1449float128: 2
1450ldouble: 4
1451
1452Function: "pow_towardzero":
1453double: 1
1454float: 1
1455float128: 2
1456ldouble: 4
1457
1458Function: "pow_upward":
1459double: 1
1460float: 1
1461float128: 2
1462ldouble: 4
1463
1464Function: "sin":
1465double: 1
1466float: 1
1467float128: 2
1468ldouble: 2
1469
1470Function: "sin_downward":
1471double: 1
1472float: 1
1473float128: 3
1474ldouble: 3
1475
1476Function: "sin_towardzero":
1477double: 1
1478float: 1
1479float128: 2
1480ldouble: 2
1481
1482Function: "sin_upward":
1483double: 1
1484float: 1
1485float128: 3
1486ldouble: 3
1487
1488Function: "sincos":
1489double: 1
1490float128: 1
1491ldouble: 1
1492
1493Function: "sincos_downward":
1494double: 1
1495float: 1
1496float128: 3
1497ldouble: 3
1498
1499Function: "sincos_towardzero":
1500double: 1
1501float: 1
1502float128: 2
1503ldouble: 2
1504
1505Function: "sincos_upward":
1506double: 1
1507float: 1
1508float128: 3
1509ldouble: 3
1510
1511Function: "sinh":
1512double: 2
1513float: 2
1514float128: 2
1515ldouble: 3
1516
1517Function: "sinh_downward":
1518double: 3
1519float: 3
1520float128: 3
1521ldouble: 5
1522
1523Function: "sinh_towardzero":
1524double: 3
1525float: 2
1526float128: 3
1527ldouble: 4
1528
1529Function: "sinh_upward":
1530double: 4
1531float: 3
1532float128: 4
1533ldouble: 5
1534
1535Function: "tan":
1536float: 1
1537float128: 1
1538ldouble: 2
1539
1540Function: "tan_downward":
1541double: 1
1542float: 2
1543float128: 1
1544ldouble: 3
1545
1546Function: "tan_towardzero":
1547double: 1
1548float: 2
1549float128: 1
1550ldouble: 3
1551
1552Function: "tan_upward":
1553double: 1
1554float: 2
1555float128: 1
1556ldouble: 2
1557
1558Function: "tanh":
1559double: 2
1560float: 2
1561float128: 2
1562ldouble: 3
1563
1564Function: "tanh_downward":
1565double: 3
1566float: 3
1567float128: 4
1568ldouble: 4
1569
1570Function: "tanh_towardzero":
1571double: 2
1572float: 2
1573float128: 3
1574ldouble: 3
1575
1576Function: "tanh_upward":
1577double: 3
1578float: 3
1579float128: 3
1580ldouble: 4
1581
1582Function: "tgamma":
1583double: 9
1584float: 8
1585float128: 4
1586ldouble: 5
1587
1588Function: "tgamma_downward":
1589double: 9
1590float: 7
1591float128: 5
1592ldouble: 6
1593
1594Function: "tgamma_towardzero":
1595double: 9
1596float: 7
1597float128: 5
1598ldouble: 6
1599
1600Function: "tgamma_upward":
1601double: 8
1602float: 8
1603float128: 4
1604ldouble: 5
1605
1606Function: "y0":
1607double: 3
1608float: 9
1609float128: 3
1610ldouble: 2
1611
1612Function: "y0_downward":
1613double: 3
1614float: 9
1615float128: 7
1616ldouble: 5
1617
1618Function: "y0_towardzero":
1619double: 4
1620float: 4
1621float128: 3
1622ldouble: 8
1623
1624Function: "y0_upward":
1625double: 3
1626float: 9
1627float128: 4
1628ldouble: 7
1629
1630Function: "y1":
1631double: 3
1632float: 9
1633float128: 5
1634ldouble: 3
1635
1636Function: "y1_downward":
1637double: 6
1638float: 9
1639float128: 5
1640ldouble: 7
1641
1642Function: "y1_towardzero":
1643double: 3
1644float: 4
1645float128: 6
1646ldouble: 5
1647
1648Function: "y1_upward":
1649double: 7
1650float: 9
1651float128: 6
1652ldouble: 9
1653
1654Function: "yn":
1655double: 3
1656float: 3
1657float128: 5
1658ldouble: 4
1659
1660Function: "yn_downward":
1661double: 3
1662float: 4
1663float128: 5
1664ldouble: 5
1665
1666Function: "yn_towardzero":
1667double: 3
1668float: 3
1669float128: 5
1670ldouble: 5
1671
1672Function: "yn_upward":
1673double: 4
1674float: 5
1675float128: 5
1676ldouble: 4
1677
1678# end of automatic generation
1679