1# Begin of automatic generation 2 3# Maximal error of functions: 4Function: "acos": 5double: 1 6float128: 1 7ldouble: 2 8 9Function: "acos_downward": 10float128: 1 11ldouble: 2 12 13Function: "acos_towardzero": 14float128: 1 15ldouble: 2 16 17Function: "acos_upward": 18double: 1 19float128: 1 20ldouble: 2 21 22Function: "acosh": 23double: 1 24float128: 4 25ldouble: 3 26 27Function: "acosh_downward": 28double: 1 29float128: 3 30ldouble: 4 31 32Function: "acosh_towardzero": 33double: 1 34float128: 2 35ldouble: 4 36 37Function: "acosh_upward": 38double: 1 39float128: 3 40ldouble: 3 41 42Function: "asin": 43double: 1 44float128: 1 45ldouble: 1 46 47Function: "asin_downward": 48double: 1 49float128: 2 50ldouble: 2 51 52Function: "asin_towardzero": 53double: 1 54float128: 1 55ldouble: 1 56 57Function: "asin_upward": 58double: 1 59float: 1 60float128: 2 61ldouble: 1 62 63Function: "asinh": 64double: 1 65float128: 4 66ldouble: 3 67 68Function: "asinh_downward": 69double: 1 70float: 1 71float128: 4 72ldouble: 5 73 74Function: "asinh_towardzero": 75double: 1 76float: 1 77float128: 2 78ldouble: 4 79 80Function: "asinh_upward": 81double: 1 82float: 1 83float128: 4 84ldouble: 5 85 86Function: "atan": 87double: 1 88float128: 1 89ldouble: 1 90 91Function: "atan2": 92double: 1 93float128: 2 94ldouble: 1 95 96Function: "atan2_downward": 97double: 1 98float: 1 99float128: 2 100ldouble: 1 101 102Function: "atan2_towardzero": 103double: 1 104float: 1 105float128: 3 106ldouble: 1 107 108Function: "atan2_upward": 109double: 1 110float: 1 111float128: 2 112ldouble: 1 113 114Function: "atan_downward": 115double: 1 116float: 1 117float128: 2 118ldouble: 1 119 120Function: "atan_towardzero": 121double: 1 122float: 1 123float128: 1 124ldouble: 1 125 126Function: "atan_upward": 127double: 1 128float: 1 129float128: 2 130ldouble: 1 131 132Function: "atanh": 133double: 1 134float128: 4 135ldouble: 3 136 137Function: "atanh_downward": 138double: 1 139float: 1 140float128: 4 141ldouble: 4 142 143Function: "atanh_towardzero": 144double: 1 145float: 1 146float128: 2 147ldouble: 3 148 149Function: "atanh_upward": 150double: 1 151float: 1 152float128: 4 153ldouble: 5 154 155Function: "cabs": 156double: 1 157float128: 1 158ldouble: 1 159 160Function: "cabs_downward": 161double: 1 162float128: 1 163ldouble: 1 164 165Function: "cabs_towardzero": 166double: 1 167float128: 1 168ldouble: 1 169 170Function: "cabs_upward": 171double: 1 172float128: 1 173ldouble: 1 174 175Function: Real part of "cacos": 176double: 1 177float: 2 178float128: 2 179ldouble: 1 180 181Function: Imaginary part of "cacos": 182double: 2 183float: 2 184float128: 2 185ldouble: 2 186 187Function: Real part of "cacos_downward": 188double: 2 189float: 1 190float128: 3 191ldouble: 2 192 193Function: Imaginary part of "cacos_downward": 194double: 5 195float: 3 196float128: 6 197ldouble: 6 198 199Function: Real part of "cacos_towardzero": 200double: 2 201float: 1 202float128: 3 203ldouble: 2 204 205Function: Imaginary part of "cacos_towardzero": 206double: 4 207float: 3 208float128: 5 209ldouble: 5 210 211Function: Real part of "cacos_upward": 212double: 2 213float: 2 214float128: 3 215ldouble: 2 216 217Function: Imaginary part of "cacos_upward": 218double: 7 219float: 7 220float128: 7 221ldouble: 7 222 223Function: Real part of "cacosh": 224double: 2 225float: 2 226float128: 2 227ldouble: 2 228 229Function: Imaginary part of "cacosh": 230double: 1 231float: 2 232float128: 2 233ldouble: 1 234 235Function: Real part of "cacosh_downward": 236double: 4 237float: 3 238float128: 5 239ldouble: 5 240 241Function: Imaginary part of "cacosh_downward": 242double: 2 243float: 2 244float128: 4 245ldouble: 3 246 247Function: Real part of "cacosh_towardzero": 248double: 4 249float: 3 250float128: 5 251ldouble: 5 252 253Function: Imaginary part of "cacosh_towardzero": 254double: 2 255float: 1 256float128: 3 257ldouble: 2 258 259Function: Real part of "cacosh_upward": 260double: 5 261float: 4 262float128: 6 263ldouble: 5 264 265Function: Imaginary part of "cacosh_upward": 266double: 3 267float: 2 268float128: 4 269ldouble: 3 270 271Function: "carg": 272double: 1 273float128: 2 274ldouble: 1 275 276Function: "carg_downward": 277double: 1 278float: 1 279float128: 2 280ldouble: 1 281 282Function: "carg_towardzero": 283double: 1 284float: 1 285float128: 3 286ldouble: 1 287 288Function: "carg_upward": 289double: 1 290float: 1 291float128: 2 292ldouble: 1 293 294Function: Real part of "casin": 295double: 1 296float: 1 297float128: 2 298ldouble: 1 299 300Function: Imaginary part of "casin": 301double: 2 302float: 2 303float128: 2 304ldouble: 2 305 306Function: Real part of "casin_downward": 307double: 3 308float: 2 309float128: 3 310ldouble: 3 311 312Function: Imaginary part of "casin_downward": 313double: 5 314float: 3 315float128: 6 316ldouble: 6 317 318Function: Real part of "casin_towardzero": 319double: 3 320float: 1 321float128: 3 322ldouble: 3 323 324Function: Imaginary part of "casin_towardzero": 325double: 4 326float: 3 327float128: 5 328ldouble: 5 329 330Function: Real part of "casin_upward": 331double: 2 332float: 2 333float128: 3 334ldouble: 2 335 336Function: Imaginary part of "casin_upward": 337double: 7 338float: 7 339float128: 7 340ldouble: 7 341 342Function: Real part of "casinh": 343double: 2 344float: 2 345float128: 2 346ldouble: 2 347 348Function: Imaginary part of "casinh": 349double: 1 350float: 1 351float128: 2 352ldouble: 1 353 354Function: Real part of "casinh_downward": 355double: 5 356float: 3 357float128: 6 358ldouble: 6 359 360Function: Imaginary part of "casinh_downward": 361double: 3 362float: 2 363float128: 3 364ldouble: 3 365 366Function: Real part of "casinh_towardzero": 367double: 4 368float: 3 369float128: 5 370ldouble: 5 371 372Function: Imaginary part of "casinh_towardzero": 373double: 3 374float: 1 375float128: 3 376ldouble: 3 377 378Function: Real part of "casinh_upward": 379double: 7 380float: 7 381float128: 7 382ldouble: 7 383 384Function: Imaginary part of "casinh_upward": 385double: 2 386float: 2 387float128: 3 388ldouble: 2 389 390Function: Real part of "catan": 391double: 1 392float128: 1 393ldouble: 1 394 395Function: Imaginary part of "catan": 396double: 1 397float: 1 398float128: 1 399ldouble: 1 400 401Function: Real part of "catan_downward": 402double: 1 403float: 1 404float128: 2 405ldouble: 1 406 407Function: Imaginary part of "catan_downward": 408double: 2 409float: 1 410float128: 2 411ldouble: 4 412 413Function: Real part of "catan_towardzero": 414double: 1 415float: 1 416float128: 2 417ldouble: 1 418 419Function: Imaginary part of "catan_towardzero": 420double: 2 421float: 1 422float128: 2 423ldouble: 4 424 425Function: Real part of "catan_upward": 426double: 1 427float: 1 428float128: 2 429ldouble: 1 430 431Function: Imaginary part of "catan_upward": 432double: 2 433float: 2 434float128: 3 435ldouble: 3 436 437Function: Real part of "catanh": 438double: 1 439float: 1 440float128: 1 441ldouble: 1 442 443Function: Imaginary part of "catanh": 444double: 1 445float128: 1 446ldouble: 1 447 448Function: Real part of "catanh_downward": 449double: 2 450float: 1 451float128: 2 452ldouble: 4 453 454Function: Imaginary part of "catanh_downward": 455double: 1 456float: 1 457float128: 2 458ldouble: 1 459 460Function: Real part of "catanh_towardzero": 461double: 2 462float: 1 463float128: 2 464ldouble: 4 465 466Function: Imaginary part of "catanh_towardzero": 467double: 1 468float: 1 469float128: 2 470ldouble: 1 471 472Function: Real part of "catanh_upward": 473double: 4 474float: 4 475float128: 4 476ldouble: 4 477 478Function: Imaginary part of "catanh_upward": 479double: 1 480float: 1 481float128: 2 482ldouble: 1 483 484Function: "cbrt": 485double: 1 486float: 1 487float128: 1 488ldouble: 3 489 490Function: "cbrt_downward": 491double: 1 492float: 1 493float128: 1 494ldouble: 4 495 496Function: "cbrt_towardzero": 497double: 1 498float: 1 499float128: 1 500ldouble: 3 501 502Function: "cbrt_upward": 503double: 1 504float: 1 505float128: 1 506ldouble: 4 507 508Function: Real part of "ccos": 509double: 1 510float: 1 511float128: 1 512ldouble: 1 513 514Function: Imaginary part of "ccos": 515double: 1 516float: 1 517float128: 1 518ldouble: 1 519 520Function: Real part of "ccos_downward": 521double: 1 522float: 1 523float128: 2 524ldouble: 3 525 526Function: Imaginary part of "ccos_downward": 527double: 3 528float: 3 529float128: 2 530ldouble: 3 531 532Function: Real part of "ccos_towardzero": 533double: 1 534float: 2 535float128: 2 536ldouble: 3 537 538Function: Imaginary part of "ccos_towardzero": 539double: 3 540float: 3 541float128: 2 542ldouble: 3 543 544Function: Real part of "ccos_upward": 545double: 2 546float: 2 547float128: 3 548ldouble: 2 549 550Function: Imaginary part of "ccos_upward": 551double: 2 552float: 2 553float128: 2 554ldouble: 2 555 556Function: Real part of "ccosh": 557double: 1 558float: 1 559float128: 1 560ldouble: 1 561 562Function: Imaginary part of "ccosh": 563double: 1 564float: 1 565float128: 1 566ldouble: 1 567 568Function: Real part of "ccosh_downward": 569double: 2 570float: 2 571float128: 2 572ldouble: 3 573 574Function: Imaginary part of "ccosh_downward": 575double: 3 576float: 3 577float128: 2 578ldouble: 3 579 580Function: Real part of "ccosh_towardzero": 581double: 2 582float: 3 583float128: 2 584ldouble: 3 585 586Function: Imaginary part of "ccosh_towardzero": 587double: 3 588float: 3 589float128: 2 590ldouble: 3 591 592Function: Real part of "ccosh_upward": 593double: 2 594float: 2 595float128: 3 596ldouble: 2 597 598Function: Imaginary part of "ccosh_upward": 599double: 3 600float: 2 601float128: 2 602ldouble: 2 603 604Function: Real part of "cexp": 605double: 2 606float: 1 607float128: 1 608ldouble: 1 609 610Function: Imaginary part of "cexp": 611double: 1 612float: 2 613float128: 1 614ldouble: 1 615 616Function: Real part of "cexp_downward": 617double: 2 618float: 2 619float128: 2 620ldouble: 3 621 622Function: Imaginary part of "cexp_downward": 623double: 3 624float: 3 625float128: 2 626ldouble: 3 627 628Function: Real part of "cexp_towardzero": 629double: 2 630float: 2 631float128: 2 632ldouble: 3 633 634Function: Imaginary part of "cexp_towardzero": 635double: 3 636float: 3 637float128: 2 638ldouble: 3 639 640Function: Real part of "cexp_upward": 641double: 1 642float: 2 643float128: 3 644ldouble: 2 645 646Function: Imaginary part of "cexp_upward": 647double: 3 648float: 2 649float128: 3 650ldouble: 3 651 652Function: Real part of "clog": 653double: 2 654float: 3 655float128: 2 656ldouble: 3 657 658Function: Imaginary part of "clog": 659double: 1 660float128: 1 661ldouble: 1 662 663Function: Real part of "clog10": 664double: 3 665float: 4 666float128: 2 667ldouble: 4 668 669Function: Imaginary part of "clog10": 670double: 2 671float: 2 672float128: 2 673ldouble: 2 674 675Function: Real part of "clog10_downward": 676double: 4 677float: 4 678float128: 3 679ldouble: 8 680 681Function: Imaginary part of "clog10_downward": 682double: 2 683float: 2 684float128: 3 685ldouble: 3 686 687Function: Real part of "clog10_towardzero": 688double: 5 689float: 5 690float128: 4 691ldouble: 8 692 693Function: Imaginary part of "clog10_towardzero": 694double: 2 695float: 2 696float128: 3 697ldouble: 3 698 699Function: Real part of "clog10_upward": 700double: 4 701float: 5 702float128: 4 703ldouble: 8 704 705Function: Imaginary part of "clog10_upward": 706double: 2 707float: 2 708float128: 3 709ldouble: 3 710 711Function: Real part of "clog_downward": 712double: 3 713float: 3 714float128: 3 715ldouble: 5 716 717Function: Imaginary part of "clog_downward": 718double: 1 719float: 1 720float128: 2 721ldouble: 1 722 723Function: Real part of "clog_towardzero": 724double: 3 725float: 4 726float128: 3 727ldouble: 5 728 729Function: Imaginary part of "clog_towardzero": 730double: 1 731float: 1 732float128: 2 733ldouble: 1 734 735Function: Real part of "clog_upward": 736double: 2 737float: 3 738float128: 4 739ldouble: 4 740 741Function: Imaginary part of "clog_upward": 742double: 1 743float: 1 744float128: 2 745ldouble: 1 746 747Function: "cos": 748double: 1 749float: 1 750float128: 2 751ldouble: 1 752 753Function: "cos_downward": 754double: 1 755float: 1 756float128: 3 757ldouble: 3 758 759Function: "cos_towardzero": 760double: 1 761float: 1 762float128: 1 763ldouble: 2 764 765Function: "cos_upward": 766double: 1 767float: 1 768float128: 2 769ldouble: 2 770 771Function: "cosh": 772double: 1 773float: 2 774float128: 2 775ldouble: 3 776 777Function: "cosh_downward": 778double: 3 779float: 1 780float128: 3 781ldouble: 3 782 783Function: "cosh_towardzero": 784double: 3 785float: 1 786float128: 3 787ldouble: 3 788 789Function: "cosh_upward": 790double: 4 791float: 2 792float128: 3 793ldouble: 3 794 795Function: Real part of "cpow": 796double: 2 797float: 5 798float128: 4 799ldouble: 3 800 801Function: Imaginary part of "cpow": 802double: 1 803float: 2 804float128: 1 805ldouble: 4 806 807Function: Real part of "cpow_downward": 808double: 5 809float: 8 810float128: 6 811ldouble: 7 812 813Function: Imaginary part of "cpow_downward": 814double: 2 815float: 2 816float128: 2 817ldouble: 2 818 819Function: Real part of "cpow_towardzero": 820double: 5 821float: 8 822float128: 6 823ldouble: 7 824 825Function: Imaginary part of "cpow_towardzero": 826double: 2 827float: 2 828float128: 2 829ldouble: 1 830 831Function: Real part of "cpow_upward": 832double: 4 833float: 1 834float128: 3 835ldouble: 2 836 837Function: Imaginary part of "cpow_upward": 838double: 1 839float: 2 840float128: 2 841ldouble: 2 842 843Function: Real part of "csin": 844double: 1 845float: 1 846float128: 1 847ldouble: 1 848 849Function: Imaginary part of "csin": 850double: 1 851float: 1 852float128: 1 853 854Function: Real part of "csin_downward": 855double: 3 856float: 3 857float128: 2 858ldouble: 3 859 860Function: Imaginary part of "csin_downward": 861double: 1 862float: 1 863float128: 2 864ldouble: 3 865 866Function: Real part of "csin_towardzero": 867double: 3 868float: 3 869float128: 2 870ldouble: 3 871 872Function: Imaginary part of "csin_towardzero": 873double: 1 874float: 1 875float128: 2 876ldouble: 3 877 878Function: Real part of "csin_upward": 879double: 3 880float: 2 881float128: 2 882ldouble: 3 883 884Function: Imaginary part of "csin_upward": 885double: 2 886float: 2 887float128: 3 888ldouble: 3 889 890Function: Real part of "csinh": 891double: 1 892float: 1 893float128: 1 894ldouble: 1 895 896Function: Imaginary part of "csinh": 897double: 1 898float: 1 899float128: 1 900ldouble: 1 901 902Function: Real part of "csinh_downward": 903double: 2 904float: 2 905float128: 2 906ldouble: 3 907 908Function: Imaginary part of "csinh_downward": 909double: 3 910float: 3 911float128: 2 912ldouble: 3 913 914Function: Real part of "csinh_towardzero": 915double: 2 916float: 2 917float128: 2 918ldouble: 3 919 920Function: Imaginary part of "csinh_towardzero": 921double: 3 922float: 3 923float128: 2 924ldouble: 3 925 926Function: Real part of "csinh_upward": 927double: 2 928float: 2 929float128: 3 930ldouble: 3 931 932Function: Imaginary part of "csinh_upward": 933double: 3 934float: 2 935float128: 2 936ldouble: 3 937 938Function: Real part of "csqrt": 939double: 2 940float: 2 941float128: 2 942ldouble: 2 943 944Function: Imaginary part of "csqrt": 945double: 2 946float: 2 947float128: 2 948ldouble: 2 949 950Function: Real part of "csqrt_downward": 951double: 4 952float: 4 953float128: 4 954ldouble: 5 955 956Function: Imaginary part of "csqrt_downward": 957double: 3 958float: 3 959float128: 3 960ldouble: 4 961 962Function: Real part of "csqrt_towardzero": 963double: 3 964float: 3 965float128: 3 966ldouble: 4 967 968Function: Imaginary part of "csqrt_towardzero": 969double: 3 970float: 3 971float128: 3 972ldouble: 4 973 974Function: Real part of "csqrt_upward": 975double: 4 976float: 4 977float128: 4 978ldouble: 5 979 980Function: Imaginary part of "csqrt_upward": 981double: 3 982float: 3 983float128: 3 984ldouble: 4 985 986Function: Real part of "ctan": 987double: 1 988float: 1 989float128: 3 990ldouble: 2 991 992Function: Imaginary part of "ctan": 993double: 2 994float: 2 995float128: 3 996ldouble: 1 997 998Function: Real part of "ctan_downward": 999double: 6 1000float: 5 1001float128: 4 1002ldouble: 5 1003 1004Function: Imaginary part of "ctan_downward": 1005double: 2 1006float: 2 1007float128: 5 1008ldouble: 4 1009 1010Function: Real part of "ctan_towardzero": 1011double: 5 1012float: 3 1013float128: 4 1014ldouble: 5 1015 1016Function: Imaginary part of "ctan_towardzero": 1017double: 2 1018float: 2 1019float128: 5 1020ldouble: 4 1021 1022Function: Real part of "ctan_upward": 1023double: 3 1024float: 4 1025float128: 5 1026ldouble: 3 1027 1028Function: Imaginary part of "ctan_upward": 1029double: 2 1030float: 1 1031float128: 5 1032ldouble: 3 1033 1034Function: Real part of "ctanh": 1035double: 2 1036float: 2 1037float128: 3 1038ldouble: 1 1039 1040Function: Imaginary part of "ctanh": 1041double: 2 1042float: 2 1043float128: 3 1044ldouble: 2 1045 1046Function: Real part of "ctanh_downward": 1047double: 2 1048float: 2 1049float128: 5 1050ldouble: 4 1051 1052Function: Imaginary part of "ctanh_downward": 1053double: 6 1054float: 5 1055float128: 4 1056ldouble: 4 1057 1058Function: Real part of "ctanh_towardzero": 1059double: 2 1060float: 2 1061float128: 5 1062ldouble: 4 1063 1064Function: Imaginary part of "ctanh_towardzero": 1065double: 5 1066float: 3 1067float128: 3 1068ldouble: 3 1069 1070Function: Real part of "ctanh_upward": 1071double: 2 1072float: 2 1073float128: 5 1074ldouble: 3 1075 1076Function: Imaginary part of "ctanh_upward": 1077double: 3 1078float: 3 1079float128: 5 1080ldouble: 3 1081 1082Function: "erf": 1083double: 1 1084float: 1 1085float128: 1 1086ldouble: 1 1087 1088Function: "erf_downward": 1089double: 1 1090float: 1 1091float128: 2 1092ldouble: 1 1093 1094Function: "erf_towardzero": 1095double: 1 1096float: 1 1097float128: 1 1098ldouble: 1 1099 1100Function: "erf_upward": 1101double: 1 1102float: 1 1103float128: 2 1104ldouble: 1 1105 1106Function: "erfc": 1107double: 5 1108float: 3 1109float128: 4 1110ldouble: 5 1111 1112Function: "erfc_downward": 1113double: 5 1114float: 6 1115float128: 5 1116ldouble: 4 1117 1118Function: "erfc_towardzero": 1119double: 3 1120float: 4 1121float128: 4 1122ldouble: 4 1123 1124Function: "erfc_upward": 1125double: 5 1126float: 6 1127float128: 5 1128ldouble: 5 1129 1130Function: "exp": 1131double: 1 1132float: 1 1133float128: 1 1134ldouble: 1 1135 1136Function: "exp10": 1137double: 1 1138float128: 2 1139ldouble: 1 1140 1141Function: "exp10_downward": 1142double: 1 1143float: 1 1144float128: 3 1145ldouble: 2 1146 1147Function: "exp10_towardzero": 1148double: 1 1149float: 1 1150float128: 3 1151ldouble: 2 1152 1153Function: "exp10_upward": 1154double: 1 1155float: 1 1156float128: 3 1157ldouble: 2 1158 1159Function: "exp2": 1160double: 1 1161float128: 1 1162ldouble: 1 1163 1164Function: "exp2_downward": 1165float128: 1 1166ldouble: 1 1167 1168Function: "exp2_towardzero": 1169double: 1 1170float128: 1 1171ldouble: 1 1172 1173Function: "exp2_upward": 1174float: 1 1175float128: 2 1176ldouble: 1 1177 1178Function: "exp_downward": 1179double: 1 1180float: 1 1181ldouble: 1 1182 1183Function: "exp_towardzero": 1184double: 1 1185float: 1 1186ldouble: 2 1187 1188Function: "exp_upward": 1189double: 1 1190float: 1 1191ldouble: 1 1192 1193Function: "expm1": 1194double: 1 1195float128: 2 1196ldouble: 3 1197 1198Function: "expm1_downward": 1199double: 1 1200float: 1 1201float128: 2 1202ldouble: 4 1203 1204Function: "expm1_towardzero": 1205double: 1 1206float: 1 1207float128: 4 1208ldouble: 4 1209 1210Function: "expm1_upward": 1211double: 1 1212float: 1 1213float128: 3 1214ldouble: 4 1215 1216Function: "gamma": 1217double: 4 1218float: 5 1219ldouble: 4 1220 1221Function: "gamma_downward": 1222double: 5 1223float: 5 1224ldouble: 7 1225 1226Function: "gamma_towardzero": 1227double: 5 1228float: 6 1229ldouble: 7 1230 1231Function: "gamma_upward": 1232double: 5 1233float: 6 1234ldouble: 6 1235 1236Function: "hypot": 1237double: 1 1238float128: 1 1239ldouble: 1 1240 1241Function: "hypot_downward": 1242double: 1 1243float128: 1 1244ldouble: 1 1245 1246Function: "hypot_towardzero": 1247double: 1 1248float128: 1 1249ldouble: 1 1250 1251Function: "hypot_upward": 1252double: 1 1253float128: 1 1254ldouble: 1 1255 1256Function: "j0": 1257double: 5 1258float: 9 1259float128: 2 1260ldouble: 8 1261 1262Function: "j0_downward": 1263double: 5 1264float: 9 1265float128: 9 1266ldouble: 6 1267 1268Function: "j0_towardzero": 1269double: 6 1270float: 9 1271float128: 9 1272ldouble: 6 1273 1274Function: "j0_upward": 1275double: 9 1276float: 9 1277float128: 7 1278ldouble: 6 1279 1280Function: "j1": 1281double: 4 1282float: 9 1283float128: 4 1284ldouble: 9 1285 1286Function: "j1_downward": 1287double: 5 1288float: 6 1289float128: 4 1290ldouble: 4 1291 1292Function: "j1_towardzero": 1293double: 4 1294float: 6 1295float128: 4 1296ldouble: 4 1297 1298Function: "j1_upward": 1299double: 9 1300float: 9 1301float128: 3 1302ldouble: 3 1303 1304Function: "jn": 1305double: 4 1306float: 4 1307float128: 7 1308ldouble: 4 1309 1310Function: "jn_downward": 1311double: 5 1312float: 5 1313float128: 8 1314ldouble: 4 1315 1316Function: "jn_towardzero": 1317double: 5 1318float: 5 1319float128: 8 1320ldouble: 5 1321 1322Function: "jn_upward": 1323double: 5 1324float: 5 1325float128: 7 1326ldouble: 5 1327 1328Function: "lgamma": 1329double: 4 1330float: 5 1331float128: 5 1332ldouble: 4 1333 1334Function: "lgamma_downward": 1335double: 5 1336float: 5 1337float128: 8 1338ldouble: 7 1339 1340Function: "lgamma_towardzero": 1341double: 5 1342float: 6 1343float128: 5 1344ldouble: 7 1345 1346Function: "lgamma_upward": 1347double: 5 1348float: 6 1349float128: 8 1350ldouble: 6 1351 1352Function: "log": 1353double: 1 1354float128: 1 1355ldouble: 1 1356 1357Function: "log10": 1358double: 1 1359float128: 2 1360ldouble: 1 1361 1362Function: "log10_downward": 1363double: 1 1364float: 1 1365float128: 1 1366ldouble: 2 1367 1368Function: "log10_towardzero": 1369double: 1 1370float: 1 1371float128: 1 1372ldouble: 2 1373 1374Function: "log10_upward": 1375double: 1 1376float: 1 1377float128: 1 1378ldouble: 1 1379 1380Function: "log1p": 1381double: 1 1382float128: 3 1383ldouble: 2 1384 1385Function: "log1p_downward": 1386double: 1 1387float: 1 1388float128: 3 1389ldouble: 4 1390 1391Function: "log1p_towardzero": 1392double: 1 1393float: 1 1394float128: 3 1395ldouble: 4 1396 1397Function: "log1p_upward": 1398double: 1 1399float: 1 1400float128: 2 1401ldouble: 3 1402 1403Function: "log2": 1404double: 1 1405float: 1 1406float128: 3 1407ldouble: 1 1408 1409Function: "log2_downward": 1410double: 1 1411float128: 3 1412ldouble: 1 1413 1414Function: "log2_towardzero": 1415double: 1 1416float: 1 1417float128: 1 1418ldouble: 1 1419 1420Function: "log2_upward": 1421double: 1 1422float: 1 1423float128: 1 1424ldouble: 1 1425 1426Function: "log_downward": 1427double: 1 1428float128: 1 1429ldouble: 2 1430 1431Function: "log_towardzero": 1432double: 1 1433float128: 2 1434ldouble: 2 1435 1436Function: "log_upward": 1437double: 1 1438float128: 1 1439ldouble: 1 1440 1441Function: "pow": 1442double: 1 1443float128: 2 1444ldouble: 1 1445 1446Function: "pow_downward": 1447double: 1 1448float: 1 1449float128: 2 1450ldouble: 4 1451 1452Function: "pow_towardzero": 1453double: 1 1454float: 1 1455float128: 2 1456ldouble: 4 1457 1458Function: "pow_upward": 1459double: 1 1460float: 1 1461float128: 2 1462ldouble: 4 1463 1464Function: "sin": 1465double: 1 1466float: 1 1467float128: 2 1468ldouble: 2 1469 1470Function: "sin_downward": 1471double: 1 1472float: 1 1473float128: 3 1474ldouble: 3 1475 1476Function: "sin_towardzero": 1477double: 1 1478float: 1 1479float128: 2 1480ldouble: 2 1481 1482Function: "sin_upward": 1483double: 1 1484float: 1 1485float128: 3 1486ldouble: 3 1487 1488Function: "sincos": 1489double: 1 1490float128: 1 1491ldouble: 1 1492 1493Function: "sincos_downward": 1494double: 1 1495float: 1 1496float128: 3 1497ldouble: 3 1498 1499Function: "sincos_towardzero": 1500double: 1 1501float: 1 1502float128: 2 1503ldouble: 2 1504 1505Function: "sincos_upward": 1506double: 1 1507float: 1 1508float128: 3 1509ldouble: 3 1510 1511Function: "sinh": 1512double: 2 1513float: 2 1514float128: 2 1515ldouble: 3 1516 1517Function: "sinh_downward": 1518double: 3 1519float: 3 1520float128: 3 1521ldouble: 5 1522 1523Function: "sinh_towardzero": 1524double: 3 1525float: 2 1526float128: 3 1527ldouble: 4 1528 1529Function: "sinh_upward": 1530double: 4 1531float: 3 1532float128: 4 1533ldouble: 5 1534 1535Function: "tan": 1536float: 1 1537float128: 1 1538ldouble: 2 1539 1540Function: "tan_downward": 1541double: 1 1542float: 2 1543float128: 1 1544ldouble: 3 1545 1546Function: "tan_towardzero": 1547double: 1 1548float: 2 1549float128: 1 1550ldouble: 3 1551 1552Function: "tan_upward": 1553double: 1 1554float: 2 1555float128: 1 1556ldouble: 2 1557 1558Function: "tanh": 1559double: 2 1560float: 2 1561float128: 2 1562ldouble: 3 1563 1564Function: "tanh_downward": 1565double: 3 1566float: 3 1567float128: 4 1568ldouble: 4 1569 1570Function: "tanh_towardzero": 1571double: 2 1572float: 2 1573float128: 3 1574ldouble: 3 1575 1576Function: "tanh_upward": 1577double: 3 1578float: 3 1579float128: 3 1580ldouble: 4 1581 1582Function: "tgamma": 1583double: 9 1584float: 8 1585float128: 4 1586ldouble: 5 1587 1588Function: "tgamma_downward": 1589double: 9 1590float: 7 1591float128: 5 1592ldouble: 6 1593 1594Function: "tgamma_towardzero": 1595double: 9 1596float: 7 1597float128: 5 1598ldouble: 6 1599 1600Function: "tgamma_upward": 1601double: 8 1602float: 8 1603float128: 4 1604ldouble: 5 1605 1606Function: "y0": 1607double: 3 1608float: 9 1609float128: 3 1610ldouble: 2 1611 1612Function: "y0_downward": 1613double: 3 1614float: 9 1615float128: 7 1616ldouble: 5 1617 1618Function: "y0_towardzero": 1619double: 4 1620float: 4 1621float128: 3 1622ldouble: 8 1623 1624Function: "y0_upward": 1625double: 3 1626float: 9 1627float128: 4 1628ldouble: 7 1629 1630Function: "y1": 1631double: 3 1632float: 9 1633float128: 5 1634ldouble: 3 1635 1636Function: "y1_downward": 1637double: 6 1638float: 9 1639float128: 5 1640ldouble: 7 1641 1642Function: "y1_towardzero": 1643double: 3 1644float: 4 1645float128: 6 1646ldouble: 5 1647 1648Function: "y1_upward": 1649double: 7 1650float: 9 1651float128: 6 1652ldouble: 9 1653 1654Function: "yn": 1655double: 3 1656float: 3 1657float128: 5 1658ldouble: 4 1659 1660Function: "yn_downward": 1661double: 3 1662float: 4 1663float128: 5 1664ldouble: 5 1665 1666Function: "yn_towardzero": 1667double: 3 1668float: 3 1669float128: 5 1670ldouble: 5 1671 1672Function: "yn_upward": 1673double: 4 1674float: 5 1675float128: 5 1676ldouble: 4 1677 1678# end of automatic generation 1679