1# Begin of automatic generation 2 3# Maximal error of functions: 4Function: "acos": 5double: 1 6float: 1 7ldouble: 1 8 9Function: "acos_downward": 10double: 1 11float: 1 12ldouble: 1 13 14Function: "acos_towardzero": 15double: 1 16float: 1 17ldouble: 1 18 19Function: "acos_upward": 20double: 1 21float: 1 22ldouble: 1 23 24Function: "acosh": 25double: 2 26float: 2 27ldouble: 4 28 29Function: "acosh_downward": 30double: 2 31float: 2 32ldouble: 3 33 34Function: "acosh_towardzero": 35double: 2 36float: 2 37ldouble: 2 38 39Function: "acosh_upward": 40double: 2 41float: 2 42ldouble: 3 43 44Function: "asin": 45double: 1 46float: 1 47ldouble: 1 48 49Function: "asin_downward": 50double: 1 51float: 1 52ldouble: 2 53 54Function: "asin_towardzero": 55double: 1 56float: 1 57ldouble: 1 58 59Function: "asin_upward": 60double: 2 61float: 1 62ldouble: 2 63 64Function: "asinh": 65double: 2 66float: 2 67ldouble: 4 68 69Function: "asinh_downward": 70double: 3 71float: 3 72ldouble: 4 73 74Function: "asinh_towardzero": 75double: 2 76float: 2 77ldouble: 2 78 79Function: "asinh_upward": 80double: 3 81float: 3 82ldouble: 4 83 84Function: "atan": 85double: 1 86float: 1 87ldouble: 1 88 89Function: "atan2": 90float: 2 91ldouble: 2 92 93Function: "atan2_downward": 94double: 1 95float: 2 96ldouble: 2 97 98Function: "atan2_towardzero": 99double: 1 100float: 2 101ldouble: 3 102 103Function: "atan2_upward": 104double: 1 105float: 2 106ldouble: 2 107 108Function: "atan_downward": 109double: 1 110float: 2 111ldouble: 2 112 113Function: "atan_towardzero": 114double: 1 115float: 1 116ldouble: 1 117 118Function: "atan_upward": 119double: 1 120float: 2 121ldouble: 2 122 123Function: "atanh": 124double: 2 125float: 2 126ldouble: 4 127 128Function: "atanh_downward": 129double: 3 130float: 3 131ldouble: 4 132 133Function: "atanh_towardzero": 134double: 2 135float: 2 136ldouble: 2 137 138Function: "atanh_upward": 139double: 3 140float: 3 141ldouble: 4 142 143Function: "cabs": 144double: 1 145ldouble: 1 146 147Function: "cabs_downward": 148double: 1 149ldouble: 1 150 151Function: "cabs_towardzero": 152double: 1 153ldouble: 1 154 155Function: "cabs_upward": 156double: 1 157ldouble: 1 158 159Function: Real part of "cacos": 160double: 1 161float: 2 162ldouble: 2 163 164Function: Imaginary part of "cacos": 165double: 2 166float: 2 167ldouble: 2 168 169Function: Real part of "cacos_downward": 170double: 3 171float: 2 172ldouble: 3 173 174Function: Imaginary part of "cacos_downward": 175double: 5 176float: 3 177ldouble: 6 178 179Function: Real part of "cacos_towardzero": 180double: 3 181float: 2 182ldouble: 3 183 184Function: Imaginary part of "cacos_towardzero": 185double: 5 186float: 3 187ldouble: 5 188 189Function: Real part of "cacos_upward": 190double: 2 191float: 2 192ldouble: 3 193 194Function: Imaginary part of "cacos_upward": 195double: 5 196float: 7 197ldouble: 7 198 199Function: Real part of "cacosh": 200double: 2 201float: 2 202ldouble: 2 203 204Function: Imaginary part of "cacosh": 205double: 1 206float: 2 207ldouble: 2 208 209Function: Real part of "cacosh_downward": 210double: 5 211float: 3 212ldouble: 5 213 214Function: Imaginary part of "cacosh_downward": 215double: 3 216float: 3 217ldouble: 4 218 219Function: Real part of "cacosh_towardzero": 220double: 5 221float: 3 222ldouble: 5 223 224Function: Imaginary part of "cacosh_towardzero": 225double: 3 226float: 2 227ldouble: 3 228 229Function: Real part of "cacosh_upward": 230double: 4 231float: 4 232ldouble: 6 233 234Function: Imaginary part of "cacosh_upward": 235double: 3 236float: 2 237ldouble: 4 238 239Function: "carg": 240float: 1 241ldouble: 2 242 243Function: "carg_downward": 244double: 1 245float: 2 246ldouble: 2 247 248Function: "carg_towardzero": 249double: 1 250float: 2 251ldouble: 3 252 253Function: "carg_upward": 254double: 1 255float: 2 256ldouble: 2 257 258Function: Real part of "casin": 259double: 1 260float: 1 261ldouble: 2 262 263Function: Imaginary part of "casin": 264double: 2 265float: 2 266ldouble: 2 267 268Function: Real part of "casin_downward": 269double: 3 270float: 2 271ldouble: 3 272 273Function: Imaginary part of "casin_downward": 274double: 5 275float: 3 276ldouble: 6 277 278Function: Real part of "casin_towardzero": 279double: 3 280float: 1 281ldouble: 3 282 283Function: Imaginary part of "casin_towardzero": 284double: 5 285float: 3 286ldouble: 5 287 288Function: Real part of "casin_upward": 289double: 3 290float: 2 291ldouble: 3 292 293Function: Imaginary part of "casin_upward": 294double: 5 295float: 7 296ldouble: 7 297 298Function: Real part of "casinh": 299double: 2 300float: 2 301ldouble: 2 302 303Function: Imaginary part of "casinh": 304double: 1 305float: 1 306ldouble: 2 307 308Function: Real part of "casinh_downward": 309double: 5 310float: 3 311ldouble: 6 312 313Function: Imaginary part of "casinh_downward": 314double: 3 315float: 2 316ldouble: 3 317 318Function: Real part of "casinh_towardzero": 319double: 5 320float: 3 321ldouble: 5 322 323Function: Imaginary part of "casinh_towardzero": 324double: 3 325float: 1 326ldouble: 3 327 328Function: Real part of "casinh_upward": 329double: 5 330float: 7 331ldouble: 7 332 333Function: Imaginary part of "casinh_upward": 334double: 3 335float: 2 336ldouble: 3 337 338Function: Real part of "catan": 339double: 1 340float: 1 341ldouble: 1 342 343Function: Imaginary part of "catan": 344double: 1 345float: 1 346ldouble: 1 347 348Function: Real part of "catan_downward": 349double: 1 350float: 2 351ldouble: 2 352 353Function: Imaginary part of "catan_downward": 354double: 2 355float: 2 356ldouble: 3 357 358Function: Real part of "catan_towardzero": 359double: 1 360float: 2 361ldouble: 2 362 363Function: Imaginary part of "catan_towardzero": 364double: 2 365float: 2 366ldouble: 3 367 368Function: Real part of "catan_upward": 369double: 1 370float: 1 371ldouble: 2 372 373Function: Imaginary part of "catan_upward": 374double: 3 375float: 3 376ldouble: 3 377 378Function: Real part of "catanh": 379double: 1 380float: 1 381ldouble: 1 382 383Function: Imaginary part of "catanh": 384double: 1 385float: 1 386ldouble: 1 387 388Function: Real part of "catanh_downward": 389double: 2 390float: 2 391ldouble: 3 392 393Function: Imaginary part of "catanh_downward": 394double: 1 395float: 2 396ldouble: 2 397 398Function: Real part of "catanh_towardzero": 399double: 2 400float: 2 401ldouble: 3 402 403Function: Imaginary part of "catanh_towardzero": 404double: 1 405float: 2 406ldouble: 2 407 408Function: Real part of "catanh_upward": 409double: 4 410float: 4 411ldouble: 4 412 413Function: Imaginary part of "catanh_upward": 414double: 1 415float: 1 416ldouble: 2 417 418Function: "cbrt": 419double: 4 420float: 1 421ldouble: 1 422 423Function: "cbrt_downward": 424double: 4 425float: 1 426ldouble: 1 427 428Function: "cbrt_towardzero": 429double: 3 430float: 1 431ldouble: 1 432 433Function: "cbrt_upward": 434double: 5 435float: 1 436ldouble: 1 437 438Function: Real part of "ccos": 439double: 1 440float: 1 441ldouble: 1 442 443Function: Imaginary part of "ccos": 444double: 1 445float: 1 446ldouble: 1 447 448Function: Real part of "ccos_downward": 449double: 1 450float: 1 451ldouble: 2 452 453Function: Imaginary part of "ccos_downward": 454double: 3 455float: 3 456ldouble: 2 457 458Function: Real part of "ccos_towardzero": 459double: 1 460float: 2 461ldouble: 2 462 463Function: Imaginary part of "ccos_towardzero": 464double: 3 465float: 3 466ldouble: 2 467 468Function: Real part of "ccos_upward": 469double: 1 470float: 2 471ldouble: 3 472 473Function: Imaginary part of "ccos_upward": 474double: 2 475float: 2 476ldouble: 2 477 478Function: Real part of "ccosh": 479double: 1 480float: 1 481ldouble: 1 482 483Function: Imaginary part of "ccosh": 484double: 1 485float: 1 486ldouble: 1 487 488Function: Real part of "ccosh_downward": 489double: 2 490float: 3 491ldouble: 2 492 493Function: Imaginary part of "ccosh_downward": 494double: 3 495float: 3 496ldouble: 2 497 498Function: Real part of "ccosh_towardzero": 499double: 2 500float: 3 501ldouble: 2 502 503Function: Imaginary part of "ccosh_towardzero": 504double: 3 505float: 3 506ldouble: 2 507 508Function: Real part of "ccosh_upward": 509double: 1 510float: 2 511ldouble: 3 512 513Function: Imaginary part of "ccosh_upward": 514double: 2 515float: 2 516ldouble: 2 517 518Function: Real part of "cexp": 519double: 2 520float: 1 521ldouble: 1 522 523Function: Imaginary part of "cexp": 524double: 1 525float: 2 526ldouble: 1 527 528Function: Real part of "cexp_downward": 529double: 2 530float: 2 531ldouble: 2 532 533Function: Imaginary part of "cexp_downward": 534double: 3 535float: 3 536ldouble: 2 537 538Function: Real part of "cexp_towardzero": 539double: 2 540float: 2 541ldouble: 2 542 543Function: Imaginary part of "cexp_towardzero": 544double: 3 545float: 3 546ldouble: 2 547 548Function: Real part of "cexp_upward": 549double: 1 550float: 2 551ldouble: 3 552 553Function: Imaginary part of "cexp_upward": 554double: 3 555float: 2 556ldouble: 3 557 558Function: Real part of "clog": 559double: 3 560float: 3 561ldouble: 2 562 563Function: Imaginary part of "clog": 564double: 1 565float: 1 566ldouble: 1 567 568Function: Real part of "clog10": 569double: 3 570float: 4 571ldouble: 2 572 573Function: Imaginary part of "clog10": 574double: 2 575float: 2 576ldouble: 2 577 578Function: Real part of "clog10_downward": 579double: 5 580float: 5 581ldouble: 3 582 583Function: Imaginary part of "clog10_downward": 584double: 2 585float: 4 586ldouble: 3 587 588Function: Real part of "clog10_towardzero": 589double: 5 590float: 5 591ldouble: 4 592 593Function: Imaginary part of "clog10_towardzero": 594double: 2 595float: 4 596ldouble: 3 597 598Function: Real part of "clog10_upward": 599double: 6 600float: 5 601ldouble: 4 602 603Function: Imaginary part of "clog10_upward": 604double: 2 605float: 4 606ldouble: 3 607 608Function: Real part of "clog_downward": 609double: 4 610float: 3 611ldouble: 3 612 613Function: Imaginary part of "clog_downward": 614double: 1 615float: 2 616ldouble: 2 617 618Function: Real part of "clog_towardzero": 619double: 4 620float: 4 621ldouble: 3 622 623Function: Imaginary part of "clog_towardzero": 624double: 1 625float: 3 626ldouble: 2 627 628Function: Real part of "clog_upward": 629double: 4 630float: 3 631ldouble: 4 632 633Function: Imaginary part of "clog_upward": 634double: 1 635float: 2 636ldouble: 2 637 638Function: "cos": 639double: 1 640float: 1 641ldouble: 2 642 643Function: "cos_downward": 644double: 1 645float: 2 646ldouble: 3 647 648Function: "cos_towardzero": 649double: 1 650float: 1 651ldouble: 1 652 653Function: "cos_upward": 654double: 1 655float: 2 656ldouble: 2 657 658Function: "cosh": 659double: 2 660float: 2 661ldouble: 2 662 663Function: "cosh_downward": 664double: 3 665float: 1 666ldouble: 3 667 668Function: "cosh_towardzero": 669double: 3 670float: 1 671ldouble: 3 672 673Function: "cosh_upward": 674double: 2 675float: 2 676ldouble: 3 677 678Function: Real part of "cpow": 679double: 2 680float: 5 681ldouble: 4 682 683Function: Imaginary part of "cpow": 684float: 2 685ldouble: 1 686 687Function: Real part of "cpow_downward": 688double: 5 689float: 8 690ldouble: 6 691 692Function: Imaginary part of "cpow_downward": 693double: 1 694float: 2 695ldouble: 2 696 697Function: Real part of "cpow_towardzero": 698double: 5 699float: 8 700ldouble: 6 701 702Function: Imaginary part of "cpow_towardzero": 703double: 1 704float: 2 705ldouble: 2 706 707Function: Real part of "cpow_upward": 708double: 4 709float: 1 710ldouble: 3 711 712Function: Imaginary part of "cpow_upward": 713double: 1 714float: 2 715ldouble: 2 716 717Function: Real part of "csin": 718double: 1 719float: 1 720ldouble: 1 721 722Function: Imaginary part of "csin": 723ldouble: 1 724 725Function: Real part of "csin_downward": 726double: 3 727float: 3 728ldouble: 2 729 730Function: Imaginary part of "csin_downward": 731double: 1 732float: 1 733ldouble: 2 734 735Function: Real part of "csin_towardzero": 736double: 3 737float: 3 738ldouble: 2 739 740Function: Imaginary part of "csin_towardzero": 741double: 1 742float: 1 743ldouble: 2 744 745Function: Real part of "csin_upward": 746double: 2 747float: 2 748ldouble: 2 749 750Function: Imaginary part of "csin_upward": 751double: 1 752float: 2 753ldouble: 3 754 755Function: Real part of "csinh": 756float: 1 757ldouble: 1 758 759Function: Imaginary part of "csinh": 760double: 1 761float: 1 762ldouble: 1 763 764Function: Real part of "csinh_downward": 765double: 2 766float: 2 767ldouble: 2 768 769Function: Imaginary part of "csinh_downward": 770double: 3 771float: 3 772ldouble: 2 773 774Function: Real part of "csinh_towardzero": 775double: 2 776float: 2 777ldouble: 2 778 779Function: Imaginary part of "csinh_towardzero": 780double: 3 781float: 3 782ldouble: 2 783 784Function: Real part of "csinh_upward": 785double: 1 786float: 2 787ldouble: 3 788 789Function: Imaginary part of "csinh_upward": 790double: 2 791float: 2 792ldouble: 2 793 794Function: Real part of "csqrt": 795double: 2 796float: 2 797ldouble: 2 798 799Function: Imaginary part of "csqrt": 800double: 2 801float: 2 802ldouble: 2 803 804Function: Real part of "csqrt_downward": 805double: 5 806float: 4 807ldouble: 4 808 809Function: Imaginary part of "csqrt_downward": 810double: 4 811float: 3 812ldouble: 3 813 814Function: Real part of "csqrt_towardzero": 815double: 4 816float: 3 817ldouble: 3 818 819Function: Imaginary part of "csqrt_towardzero": 820double: 4 821float: 3 822ldouble: 3 823 824Function: Real part of "csqrt_upward": 825double: 5 826float: 4 827ldouble: 4 828 829Function: Imaginary part of "csqrt_upward": 830double: 3 831float: 3 832ldouble: 3 833 834Function: Real part of "ctan": 835double: 1 836float: 1 837ldouble: 3 838 839Function: Imaginary part of "ctan": 840double: 2 841float: 2 842ldouble: 3 843 844Function: Real part of "ctan_downward": 845double: 6 846float: 5 847ldouble: 4 848 849Function: Imaginary part of "ctan_downward": 850double: 2 851float: 2 852ldouble: 5 853 854Function: Real part of "ctan_towardzero": 855double: 5 856float: 3 857ldouble: 4 858 859Function: Imaginary part of "ctan_towardzero": 860double: 2 861float: 2 862ldouble: 5 863 864Function: Real part of "ctan_upward": 865double: 2 866float: 4 867ldouble: 5 868 869Function: Imaginary part of "ctan_upward": 870double: 2 871float: 3 872ldouble: 5 873 874Function: Real part of "ctanh": 875double: 2 876float: 2 877ldouble: 3 878 879Function: Imaginary part of "ctanh": 880double: 2 881float: 2 882ldouble: 3 883 884Function: Real part of "ctanh_downward": 885double: 4 886float: 2 887ldouble: 5 888 889Function: Imaginary part of "ctanh_downward": 890double: 6 891float: 5 892ldouble: 4 893 894Function: Real part of "ctanh_towardzero": 895double: 2 896float: 2 897ldouble: 5 898 899Function: Imaginary part of "ctanh_towardzero": 900double: 5 901float: 3 902ldouble: 3 903 904Function: Real part of "ctanh_upward": 905double: 2 906float: 3 907ldouble: 5 908 909Function: Imaginary part of "ctanh_upward": 910double: 2 911float: 3 912ldouble: 5 913 914Function: "erf": 915double: 1 916float: 1 917ldouble: 1 918 919Function: "erf_downward": 920double: 1 921float: 1 922ldouble: 2 923 924Function: "erf_towardzero": 925double: 1 926float: 1 927ldouble: 1 928 929Function: "erf_upward": 930double: 1 931float: 1 932ldouble: 2 933 934Function: "erfc": 935double: 5 936float: 3 937ldouble: 4 938 939Function: "erfc_downward": 940double: 5 941float: 6 942ldouble: 5 943 944Function: "erfc_towardzero": 945double: 3 946float: 4 947ldouble: 4 948 949Function: "erfc_upward": 950double: 5 951float: 6 952ldouble: 5 953 954Function: "exp": 955double: 1 956float: 1 957ldouble: 1 958 959Function: "exp10": 960double: 2 961float: 1 962ldouble: 2 963 964Function: "exp10_downward": 965double: 3 966float: 1 967ldouble: 3 968 969Function: "exp10_towardzero": 970double: 3 971float: 1 972ldouble: 3 973 974Function: "exp10_upward": 975double: 2 976float: 1 977ldouble: 3 978 979Function: "exp2": 980double: 1 981float: 1 982ldouble: 1 983 984Function: "exp2_downward": 985double: 1 986float: 1 987ldouble: 1 988 989Function: "exp2_towardzero": 990double: 1 991float: 1 992ldouble: 1 993 994Function: "exp2_upward": 995double: 1 996float: 1 997ldouble: 2 998 999Function: "exp_downward": 1000double: 1 1001float: 1 1002 1003Function: "exp_towardzero": 1004double: 1 1005float: 1 1006 1007Function: "exp_upward": 1008double: 1 1009float: 1 1010 1011Function: "expm1": 1012double: 1 1013float: 1 1014ldouble: 2 1015 1016Function: "expm1_downward": 1017double: 1 1018float: 1 1019ldouble: 2 1020 1021Function: "expm1_towardzero": 1022double: 1 1023float: 2 1024ldouble: 4 1025 1026Function: "expm1_upward": 1027double: 1 1028float: 1 1029ldouble: 3 1030 1031Function: "gamma": 1032double: 4 1033float: 7 1034ldouble: 5 1035 1036Function: "gamma_downward": 1037double: 5 1038float: 7 1039ldouble: 8 1040 1041Function: "gamma_towardzero": 1042double: 5 1043float: 6 1044ldouble: 5 1045 1046Function: "gamma_upward": 1047double: 5 1048float: 6 1049ldouble: 8 1050 1051Function: "hypot": 1052double: 1 1053ldouble: 1 1054 1055Function: "hypot_downward": 1056double: 1 1057ldouble: 1 1058 1059Function: "hypot_towardzero": 1060double: 1 1061ldouble: 1 1062 1063Function: "hypot_upward": 1064double: 1 1065ldouble: 1 1066 1067Function: "j0": 1068double: 2 1069float: 9 1070ldouble: 2 1071 1072Function: "j0_downward": 1073double: 5 1074float: 9 1075ldouble: 9 1076 1077Function: "j0_towardzero": 1078double: 6 1079float: 9 1080ldouble: 9 1081 1082Function: "j0_upward": 1083double: 9 1084float: 9 1085ldouble: 7 1086 1087Function: "j1": 1088double: 4 1089float: 9 1090ldouble: 4 1091 1092Function: "j1_downward": 1093double: 5 1094float: 8 1095ldouble: 4 1096 1097Function: "j1_towardzero": 1098double: 4 1099float: 8 1100ldouble: 4 1101 1102Function: "j1_upward": 1103double: 9 1104float: 9 1105ldouble: 3 1106 1107Function: "jn": 1108double: 4 1109float: 4 1110ldouble: 7 1111 1112Function: "jn_downward": 1113double: 5 1114float: 5 1115ldouble: 8 1116 1117Function: "jn_towardzero": 1118double: 5 1119float: 5 1120ldouble: 8 1121 1122Function: "jn_upward": 1123double: 5 1124float: 5 1125ldouble: 7 1126 1127Function: "lgamma": 1128double: 4 1129float: 7 1130ldouble: 5 1131 1132Function: "lgamma_downward": 1133double: 5 1134float: 7 1135ldouble: 8 1136 1137Function: "lgamma_towardzero": 1138double: 5 1139float: 6 1140ldouble: 5 1141 1142Function: "lgamma_upward": 1143double: 5 1144float: 6 1145ldouble: 8 1146 1147Function: "log": 1148float: 1 1149ldouble: 1 1150 1151Function: "log10": 1152double: 2 1153float: 2 1154ldouble: 2 1155 1156Function: "log10_downward": 1157double: 2 1158float: 3 1159ldouble: 1 1160 1161Function: "log10_towardzero": 1162double: 2 1163float: 2 1164ldouble: 1 1165 1166Function: "log10_upward": 1167double: 2 1168float: 2 1169ldouble: 1 1170 1171Function: "log1p": 1172double: 1 1173float: 1 1174ldouble: 3 1175 1176Function: "log1p_downward": 1177double: 2 1178float: 2 1179ldouble: 3 1180 1181Function: "log1p_towardzero": 1182double: 2 1183float: 2 1184ldouble: 3 1185 1186Function: "log1p_upward": 1187double: 2 1188float: 2 1189ldouble: 2 1190 1191Function: "log2": 1192double: 2 1193float: 1 1194ldouble: 3 1195 1196Function: "log2_downward": 1197double: 3 1198float: 3 1199ldouble: 3 1200 1201Function: "log2_towardzero": 1202double: 2 1203float: 2 1204ldouble: 1 1205 1206Function: "log2_upward": 1207double: 3 1208float: 3 1209ldouble: 1 1210 1211Function: "log_downward": 1212float: 2 1213ldouble: 1 1214 1215Function: "log_towardzero": 1216float: 2 1217ldouble: 2 1218 1219Function: "log_upward": 1220double: 1 1221float: 2 1222ldouble: 1 1223 1224Function: "pow": 1225double: 1 1226float: 1 1227ldouble: 2 1228 1229Function: "pow_downward": 1230double: 1 1231float: 1 1232ldouble: 2 1233 1234Function: "pow_towardzero": 1235double: 1 1236float: 1 1237ldouble: 2 1238 1239Function: "pow_upward": 1240double: 1 1241float: 1 1242ldouble: 2 1243 1244Function: "sin": 1245double: 1 1246float: 1 1247ldouble: 2 1248 1249Function: "sin_downward": 1250double: 1 1251float: 2 1252ldouble: 3 1253 1254Function: "sin_towardzero": 1255double: 1 1256float: 1 1257ldouble: 2 1258 1259Function: "sin_upward": 1260double: 1 1261float: 2 1262ldouble: 3 1263 1264Function: "sincos": 1265double: 1 1266float: 1 1267ldouble: 1 1268 1269Function: "sincos_downward": 1270double: 1 1271float: 2 1272ldouble: 3 1273 1274Function: "sincos_towardzero": 1275double: 1 1276float: 1 1277ldouble: 2 1278 1279Function: "sincos_upward": 1280double: 1 1281float: 2 1282ldouble: 3 1283 1284Function: "sinh": 1285double: 2 1286float: 2 1287ldouble: 2 1288 1289Function: "sinh_downward": 1290double: 3 1291float: 3 1292ldouble: 3 1293 1294Function: "sinh_towardzero": 1295double: 3 1296float: 2 1297ldouble: 3 1298 1299Function: "sinh_upward": 1300double: 3 1301float: 3 1302ldouble: 4 1303 1304Function: "tan": 1305float: 1 1306ldouble: 1 1307 1308Function: "tan_downward": 1309double: 1 1310float: 2 1311ldouble: 1 1312 1313Function: "tan_towardzero": 1314double: 1 1315float: 1 1316ldouble: 1 1317 1318Function: "tan_upward": 1319double: 1 1320float: 1 1321ldouble: 1 1322 1323Function: "tanh": 1324double: 2 1325float: 2 1326ldouble: 2 1327 1328Function: "tanh_downward": 1329double: 3 1330float: 3 1331ldouble: 4 1332 1333Function: "tanh_towardzero": 1334double: 2 1335float: 2 1336ldouble: 3 1337 1338Function: "tanh_upward": 1339double: 3 1340float: 3 1341ldouble: 3 1342 1343Function: "tgamma": 1344double: 9 1345float: 8 1346ldouble: 4 1347 1348Function: "tgamma_downward": 1349double: 9 1350float: 7 1351ldouble: 5 1352 1353Function: "tgamma_towardzero": 1354double: 9 1355float: 7 1356ldouble: 5 1357 1358Function: "tgamma_upward": 1359double: 9 1360float: 8 1361ldouble: 4 1362 1363Function: "y0": 1364double: 3 1365float: 9 1366ldouble: 3 1367 1368Function: "y0_downward": 1369double: 3 1370float: 9 1371ldouble: 7 1372 1373Function: "y0_towardzero": 1374double: 4 1375float: 9 1376ldouble: 3 1377 1378Function: "y0_upward": 1379double: 3 1380float: 9 1381ldouble: 4 1382 1383Function: "y1": 1384double: 3 1385float: 9 1386ldouble: 5 1387 1388Function: "y1_downward": 1389double: 6 1390float: 9 1391ldouble: 5 1392 1393Function: "y1_towardzero": 1394double: 3 1395float: 9 1396ldouble: 2 1397 1398Function: "y1_upward": 1399double: 7 1400float: 9 1401ldouble: 5 1402 1403Function: "yn": 1404double: 3 1405float: 3 1406ldouble: 5 1407 1408Function: "yn_downward": 1409double: 3 1410float: 4 1411ldouble: 5 1412 1413Function: "yn_towardzero": 1414double: 3 1415float: 3 1416ldouble: 5 1417 1418Function: "yn_upward": 1419double: 4 1420float: 5 1421ldouble: 5 1422 1423# end of automatic generation 1424