1# Begin of automatic generation
2
3# Maximal error of functions:
4Function: "acos":
5double: 1
6float: 1
7ldouble: 1
8
9Function: "acos_downward":
10double: 1
11float: 1
12ldouble: 1
13
14Function: "acos_towardzero":
15double: 1
16float: 1
17ldouble: 1
18
19Function: "acos_upward":
20double: 1
21float: 1
22ldouble: 1
23
24Function: "acosh":
25double: 2
26float: 2
27ldouble: 4
28
29Function: "acosh_downward":
30double: 2
31float: 2
32ldouble: 3
33
34Function: "acosh_towardzero":
35double: 2
36float: 2
37ldouble: 2
38
39Function: "acosh_upward":
40double: 2
41float: 2
42ldouble: 3
43
44Function: "asin":
45double: 1
46float: 1
47ldouble: 1
48
49Function: "asin_downward":
50double: 1
51float: 1
52ldouble: 2
53
54Function: "asin_towardzero":
55double: 1
56float: 1
57ldouble: 1
58
59Function: "asin_upward":
60double: 2
61float: 1
62ldouble: 2
63
64Function: "asinh":
65double: 2
66float: 2
67ldouble: 4
68
69Function: "asinh_downward":
70double: 3
71float: 3
72ldouble: 4
73
74Function: "asinh_towardzero":
75double: 2
76float: 2
77ldouble: 2
78
79Function: "asinh_upward":
80double: 3
81float: 3
82ldouble: 4
83
84Function: "atan":
85double: 1
86float: 1
87ldouble: 1
88
89Function: "atan2":
90float: 2
91ldouble: 2
92
93Function: "atan2_downward":
94double: 1
95float: 2
96ldouble: 2
97
98Function: "atan2_towardzero":
99double: 1
100float: 2
101ldouble: 3
102
103Function: "atan2_upward":
104double: 1
105float: 2
106ldouble: 2
107
108Function: "atan_downward":
109double: 1
110float: 2
111ldouble: 2
112
113Function: "atan_towardzero":
114double: 1
115float: 1
116ldouble: 1
117
118Function: "atan_upward":
119double: 1
120float: 2
121ldouble: 2
122
123Function: "atanh":
124double: 2
125float: 2
126ldouble: 4
127
128Function: "atanh_downward":
129double: 3
130float: 3
131ldouble: 4
132
133Function: "atanh_towardzero":
134double: 2
135float: 2
136ldouble: 2
137
138Function: "atanh_upward":
139double: 3
140float: 3
141ldouble: 4
142
143Function: "cabs":
144double: 1
145ldouble: 1
146
147Function: "cabs_downward":
148double: 1
149ldouble: 1
150
151Function: "cabs_towardzero":
152double: 1
153ldouble: 1
154
155Function: "cabs_upward":
156double: 1
157ldouble: 1
158
159Function: Real part of "cacos":
160double: 1
161float: 2
162ldouble: 2
163
164Function: Imaginary part of "cacos":
165double: 2
166float: 2
167ldouble: 2
168
169Function: Real part of "cacos_downward":
170double: 3
171float: 2
172ldouble: 3
173
174Function: Imaginary part of "cacos_downward":
175double: 5
176float: 3
177ldouble: 6
178
179Function: Real part of "cacos_towardzero":
180double: 3
181float: 2
182ldouble: 3
183
184Function: Imaginary part of "cacos_towardzero":
185double: 5
186float: 3
187ldouble: 5
188
189Function: Real part of "cacos_upward":
190double: 2
191float: 2
192ldouble: 3
193
194Function: Imaginary part of "cacos_upward":
195double: 5
196float: 7
197ldouble: 7
198
199Function: Real part of "cacosh":
200double: 2
201float: 2
202ldouble: 2
203
204Function: Imaginary part of "cacosh":
205double: 1
206float: 2
207ldouble: 2
208
209Function: Real part of "cacosh_downward":
210double: 5
211float: 3
212ldouble: 5
213
214Function: Imaginary part of "cacosh_downward":
215double: 3
216float: 3
217ldouble: 4
218
219Function: Real part of "cacosh_towardzero":
220double: 5
221float: 3
222ldouble: 5
223
224Function: Imaginary part of "cacosh_towardzero":
225double: 3
226float: 2
227ldouble: 3
228
229Function: Real part of "cacosh_upward":
230double: 4
231float: 4
232ldouble: 6
233
234Function: Imaginary part of "cacosh_upward":
235double: 3
236float: 2
237ldouble: 4
238
239Function: "carg":
240float: 1
241ldouble: 2
242
243Function: "carg_downward":
244double: 1
245float: 2
246ldouble: 2
247
248Function: "carg_towardzero":
249double: 1
250float: 2
251ldouble: 3
252
253Function: "carg_upward":
254double: 1
255float: 2
256ldouble: 2
257
258Function: Real part of "casin":
259double: 1
260float: 1
261ldouble: 2
262
263Function: Imaginary part of "casin":
264double: 2
265float: 2
266ldouble: 2
267
268Function: Real part of "casin_downward":
269double: 3
270float: 2
271ldouble: 3
272
273Function: Imaginary part of "casin_downward":
274double: 5
275float: 3
276ldouble: 6
277
278Function: Real part of "casin_towardzero":
279double: 3
280float: 1
281ldouble: 3
282
283Function: Imaginary part of "casin_towardzero":
284double: 5
285float: 3
286ldouble: 5
287
288Function: Real part of "casin_upward":
289double: 3
290float: 2
291ldouble: 3
292
293Function: Imaginary part of "casin_upward":
294double: 5
295float: 7
296ldouble: 7
297
298Function: Real part of "casinh":
299double: 2
300float: 2
301ldouble: 2
302
303Function: Imaginary part of "casinh":
304double: 1
305float: 1
306ldouble: 2
307
308Function: Real part of "casinh_downward":
309double: 5
310float: 3
311ldouble: 6
312
313Function: Imaginary part of "casinh_downward":
314double: 3
315float: 2
316ldouble: 3
317
318Function: Real part of "casinh_towardzero":
319double: 5
320float: 3
321ldouble: 5
322
323Function: Imaginary part of "casinh_towardzero":
324double: 3
325float: 1
326ldouble: 3
327
328Function: Real part of "casinh_upward":
329double: 5
330float: 7
331ldouble: 7
332
333Function: Imaginary part of "casinh_upward":
334double: 3
335float: 2
336ldouble: 3
337
338Function: Real part of "catan":
339double: 1
340float: 1
341ldouble: 1
342
343Function: Imaginary part of "catan":
344double: 1
345float: 1
346ldouble: 1
347
348Function: Real part of "catan_downward":
349double: 1
350float: 2
351ldouble: 2
352
353Function: Imaginary part of "catan_downward":
354double: 2
355float: 2
356ldouble: 3
357
358Function: Real part of "catan_towardzero":
359double: 1
360float: 2
361ldouble: 2
362
363Function: Imaginary part of "catan_towardzero":
364double: 2
365float: 2
366ldouble: 3
367
368Function: Real part of "catan_upward":
369double: 1
370float: 1
371ldouble: 2
372
373Function: Imaginary part of "catan_upward":
374double: 3
375float: 3
376ldouble: 3
377
378Function: Real part of "catanh":
379double: 1
380float: 1
381ldouble: 1
382
383Function: Imaginary part of "catanh":
384double: 1
385float: 1
386ldouble: 1
387
388Function: Real part of "catanh_downward":
389double: 2
390float: 2
391ldouble: 3
392
393Function: Imaginary part of "catanh_downward":
394double: 1
395float: 2
396ldouble: 2
397
398Function: Real part of "catanh_towardzero":
399double: 2
400float: 2
401ldouble: 3
402
403Function: Imaginary part of "catanh_towardzero":
404double: 1
405float: 2
406ldouble: 2
407
408Function: Real part of "catanh_upward":
409double: 4
410float: 4
411ldouble: 4
412
413Function: Imaginary part of "catanh_upward":
414double: 1
415float: 1
416ldouble: 2
417
418Function: "cbrt":
419double: 4
420float: 1
421ldouble: 1
422
423Function: "cbrt_downward":
424double: 4
425float: 1
426ldouble: 1
427
428Function: "cbrt_towardzero":
429double: 3
430float: 1
431ldouble: 1
432
433Function: "cbrt_upward":
434double: 5
435float: 1
436ldouble: 1
437
438Function: Real part of "ccos":
439double: 1
440float: 1
441ldouble: 1
442
443Function: Imaginary part of "ccos":
444double: 1
445float: 1
446ldouble: 1
447
448Function: Real part of "ccos_downward":
449double: 1
450float: 1
451ldouble: 2
452
453Function: Imaginary part of "ccos_downward":
454double: 3
455float: 3
456ldouble: 2
457
458Function: Real part of "ccos_towardzero":
459double: 1
460float: 2
461ldouble: 2
462
463Function: Imaginary part of "ccos_towardzero":
464double: 3
465float: 3
466ldouble: 2
467
468Function: Real part of "ccos_upward":
469double: 1
470float: 2
471ldouble: 3
472
473Function: Imaginary part of "ccos_upward":
474double: 2
475float: 2
476ldouble: 2
477
478Function: Real part of "ccosh":
479double: 1
480float: 1
481ldouble: 1
482
483Function: Imaginary part of "ccosh":
484double: 1
485float: 1
486ldouble: 1
487
488Function: Real part of "ccosh_downward":
489double: 2
490float: 3
491ldouble: 2
492
493Function: Imaginary part of "ccosh_downward":
494double: 3
495float: 3
496ldouble: 2
497
498Function: Real part of "ccosh_towardzero":
499double: 2
500float: 3
501ldouble: 2
502
503Function: Imaginary part of "ccosh_towardzero":
504double: 3
505float: 3
506ldouble: 2
507
508Function: Real part of "ccosh_upward":
509double: 1
510float: 2
511ldouble: 3
512
513Function: Imaginary part of "ccosh_upward":
514double: 2
515float: 2
516ldouble: 2
517
518Function: Real part of "cexp":
519double: 2
520float: 1
521ldouble: 1
522
523Function: Imaginary part of "cexp":
524double: 1
525float: 2
526ldouble: 1
527
528Function: Real part of "cexp_downward":
529double: 2
530float: 2
531ldouble: 2
532
533Function: Imaginary part of "cexp_downward":
534double: 3
535float: 3
536ldouble: 2
537
538Function: Real part of "cexp_towardzero":
539double: 2
540float: 2
541ldouble: 2
542
543Function: Imaginary part of "cexp_towardzero":
544double: 3
545float: 3
546ldouble: 2
547
548Function: Real part of "cexp_upward":
549double: 1
550float: 2
551ldouble: 3
552
553Function: Imaginary part of "cexp_upward":
554double: 3
555float: 2
556ldouble: 3
557
558Function: Real part of "clog":
559double: 3
560float: 3
561ldouble: 2
562
563Function: Imaginary part of "clog":
564double: 1
565float: 1
566ldouble: 1
567
568Function: Real part of "clog10":
569double: 3
570float: 4
571ldouble: 2
572
573Function: Imaginary part of "clog10":
574double: 2
575float: 2
576ldouble: 2
577
578Function: Real part of "clog10_downward":
579double: 5
580float: 5
581ldouble: 3
582
583Function: Imaginary part of "clog10_downward":
584double: 2
585float: 4
586ldouble: 3
587
588Function: Real part of "clog10_towardzero":
589double: 5
590float: 5
591ldouble: 4
592
593Function: Imaginary part of "clog10_towardzero":
594double: 2
595float: 4
596ldouble: 3
597
598Function: Real part of "clog10_upward":
599double: 6
600float: 5
601ldouble: 4
602
603Function: Imaginary part of "clog10_upward":
604double: 2
605float: 4
606ldouble: 3
607
608Function: Real part of "clog_downward":
609double: 4
610float: 3
611ldouble: 3
612
613Function: Imaginary part of "clog_downward":
614double: 1
615float: 2
616ldouble: 2
617
618Function: Real part of "clog_towardzero":
619double: 4
620float: 4
621ldouble: 3
622
623Function: Imaginary part of "clog_towardzero":
624double: 1
625float: 3
626ldouble: 2
627
628Function: Real part of "clog_upward":
629double: 4
630float: 3
631ldouble: 4
632
633Function: Imaginary part of "clog_upward":
634double: 1
635float: 2
636ldouble: 2
637
638Function: "cos":
639double: 1
640float: 1
641ldouble: 2
642
643Function: "cos_downward":
644double: 1
645float: 2
646ldouble: 3
647
648Function: "cos_towardzero":
649double: 1
650float: 1
651ldouble: 1
652
653Function: "cos_upward":
654double: 1
655float: 2
656ldouble: 2
657
658Function: "cosh":
659double: 2
660float: 2
661ldouble: 2
662
663Function: "cosh_downward":
664double: 3
665float: 1
666ldouble: 3
667
668Function: "cosh_towardzero":
669double: 3
670float: 1
671ldouble: 3
672
673Function: "cosh_upward":
674double: 2
675float: 2
676ldouble: 3
677
678Function: Real part of "cpow":
679double: 2
680float: 5
681ldouble: 4
682
683Function: Imaginary part of "cpow":
684float: 2
685ldouble: 1
686
687Function: Real part of "cpow_downward":
688double: 5
689float: 8
690ldouble: 6
691
692Function: Imaginary part of "cpow_downward":
693double: 1
694float: 2
695ldouble: 2
696
697Function: Real part of "cpow_towardzero":
698double: 5
699float: 8
700ldouble: 6
701
702Function: Imaginary part of "cpow_towardzero":
703double: 1
704float: 2
705ldouble: 2
706
707Function: Real part of "cpow_upward":
708double: 4
709float: 1
710ldouble: 3
711
712Function: Imaginary part of "cpow_upward":
713double: 1
714float: 2
715ldouble: 2
716
717Function: Real part of "csin":
718double: 1
719float: 1
720ldouble: 1
721
722Function: Imaginary part of "csin":
723ldouble: 1
724
725Function: Real part of "csin_downward":
726double: 3
727float: 3
728ldouble: 2
729
730Function: Imaginary part of "csin_downward":
731double: 1
732float: 1
733ldouble: 2
734
735Function: Real part of "csin_towardzero":
736double: 3
737float: 3
738ldouble: 2
739
740Function: Imaginary part of "csin_towardzero":
741double: 1
742float: 1
743ldouble: 2
744
745Function: Real part of "csin_upward":
746double: 2
747float: 2
748ldouble: 2
749
750Function: Imaginary part of "csin_upward":
751double: 1
752float: 2
753ldouble: 3
754
755Function: Real part of "csinh":
756float: 1
757ldouble: 1
758
759Function: Imaginary part of "csinh":
760double: 1
761float: 1
762ldouble: 1
763
764Function: Real part of "csinh_downward":
765double: 2
766float: 2
767ldouble: 2
768
769Function: Imaginary part of "csinh_downward":
770double: 3
771float: 3
772ldouble: 2
773
774Function: Real part of "csinh_towardzero":
775double: 2
776float: 2
777ldouble: 2
778
779Function: Imaginary part of "csinh_towardzero":
780double: 3
781float: 3
782ldouble: 2
783
784Function: Real part of "csinh_upward":
785double: 1
786float: 2
787ldouble: 3
788
789Function: Imaginary part of "csinh_upward":
790double: 2
791float: 2
792ldouble: 2
793
794Function: Real part of "csqrt":
795double: 2
796float: 2
797ldouble: 2
798
799Function: Imaginary part of "csqrt":
800double: 2
801float: 2
802ldouble: 2
803
804Function: Real part of "csqrt_downward":
805double: 5
806float: 4
807ldouble: 4
808
809Function: Imaginary part of "csqrt_downward":
810double: 4
811float: 3
812ldouble: 3
813
814Function: Real part of "csqrt_towardzero":
815double: 4
816float: 3
817ldouble: 3
818
819Function: Imaginary part of "csqrt_towardzero":
820double: 4
821float: 3
822ldouble: 3
823
824Function: Real part of "csqrt_upward":
825double: 5
826float: 4
827ldouble: 4
828
829Function: Imaginary part of "csqrt_upward":
830double: 3
831float: 3
832ldouble: 3
833
834Function: Real part of "ctan":
835double: 1
836float: 1
837ldouble: 3
838
839Function: Imaginary part of "ctan":
840double: 2
841float: 2
842ldouble: 3
843
844Function: Real part of "ctan_downward":
845double: 6
846float: 5
847ldouble: 4
848
849Function: Imaginary part of "ctan_downward":
850double: 2
851float: 2
852ldouble: 5
853
854Function: Real part of "ctan_towardzero":
855double: 5
856float: 3
857ldouble: 4
858
859Function: Imaginary part of "ctan_towardzero":
860double: 2
861float: 2
862ldouble: 5
863
864Function: Real part of "ctan_upward":
865double: 2
866float: 4
867ldouble: 5
868
869Function: Imaginary part of "ctan_upward":
870double: 2
871float: 3
872ldouble: 5
873
874Function: Real part of "ctanh":
875double: 2
876float: 2
877ldouble: 3
878
879Function: Imaginary part of "ctanh":
880double: 2
881float: 2
882ldouble: 3
883
884Function: Real part of "ctanh_downward":
885double: 4
886float: 2
887ldouble: 5
888
889Function: Imaginary part of "ctanh_downward":
890double: 6
891float: 5
892ldouble: 4
893
894Function: Real part of "ctanh_towardzero":
895double: 2
896float: 2
897ldouble: 5
898
899Function: Imaginary part of "ctanh_towardzero":
900double: 5
901float: 3
902ldouble: 3
903
904Function: Real part of "ctanh_upward":
905double: 2
906float: 3
907ldouble: 5
908
909Function: Imaginary part of "ctanh_upward":
910double: 2
911float: 3
912ldouble: 5
913
914Function: "erf":
915double: 1
916float: 1
917ldouble: 1
918
919Function: "erf_downward":
920double: 1
921float: 1
922ldouble: 2
923
924Function: "erf_towardzero":
925double: 1
926float: 1
927ldouble: 1
928
929Function: "erf_upward":
930double: 1
931float: 1
932ldouble: 2
933
934Function: "erfc":
935double: 5
936float: 3
937ldouble: 4
938
939Function: "erfc_downward":
940double: 5
941float: 6
942ldouble: 5
943
944Function: "erfc_towardzero":
945double: 3
946float: 4
947ldouble: 4
948
949Function: "erfc_upward":
950double: 5
951float: 6
952ldouble: 5
953
954Function: "exp":
955double: 1
956float: 1
957ldouble: 1
958
959Function: "exp10":
960double: 2
961float: 1
962ldouble: 2
963
964Function: "exp10_downward":
965double: 3
966float: 1
967ldouble: 3
968
969Function: "exp10_towardzero":
970double: 3
971float: 1
972ldouble: 3
973
974Function: "exp10_upward":
975double: 2
976float: 1
977ldouble: 3
978
979Function: "exp2":
980double: 1
981float: 1
982ldouble: 1
983
984Function: "exp2_downward":
985double: 1
986float: 1
987ldouble: 1
988
989Function: "exp2_towardzero":
990double: 1
991float: 1
992ldouble: 1
993
994Function: "exp2_upward":
995double: 1
996float: 1
997ldouble: 2
998
999Function: "exp_downward":
1000double: 1
1001float: 1
1002
1003Function: "exp_towardzero":
1004double: 1
1005float: 1
1006
1007Function: "exp_upward":
1008double: 1
1009float: 1
1010
1011Function: "expm1":
1012double: 1
1013float: 1
1014ldouble: 2
1015
1016Function: "expm1_downward":
1017double: 1
1018float: 1
1019ldouble: 2
1020
1021Function: "expm1_towardzero":
1022double: 1
1023float: 2
1024ldouble: 4
1025
1026Function: "expm1_upward":
1027double: 1
1028float: 1
1029ldouble: 3
1030
1031Function: "gamma":
1032double: 4
1033float: 7
1034ldouble: 5
1035
1036Function: "gamma_downward":
1037double: 5
1038float: 7
1039ldouble: 8
1040
1041Function: "gamma_towardzero":
1042double: 5
1043float: 6
1044ldouble: 5
1045
1046Function: "gamma_upward":
1047double: 5
1048float: 6
1049ldouble: 8
1050
1051Function: "hypot":
1052double: 1
1053ldouble: 1
1054
1055Function: "hypot_downward":
1056double: 1
1057ldouble: 1
1058
1059Function: "hypot_towardzero":
1060double: 1
1061ldouble: 1
1062
1063Function: "hypot_upward":
1064double: 1
1065ldouble: 1
1066
1067Function: "j0":
1068double: 2
1069float: 9
1070ldouble: 2
1071
1072Function: "j0_downward":
1073double: 5
1074float: 9
1075ldouble: 9
1076
1077Function: "j0_towardzero":
1078double: 6
1079float: 9
1080ldouble: 9
1081
1082Function: "j0_upward":
1083double: 9
1084float: 9
1085ldouble: 7
1086
1087Function: "j1":
1088double: 4
1089float: 9
1090ldouble: 4
1091
1092Function: "j1_downward":
1093double: 5
1094float: 8
1095ldouble: 4
1096
1097Function: "j1_towardzero":
1098double: 4
1099float: 8
1100ldouble: 4
1101
1102Function: "j1_upward":
1103double: 9
1104float: 9
1105ldouble: 3
1106
1107Function: "jn":
1108double: 4
1109float: 4
1110ldouble: 7
1111
1112Function: "jn_downward":
1113double: 5
1114float: 5
1115ldouble: 8
1116
1117Function: "jn_towardzero":
1118double: 5
1119float: 5
1120ldouble: 8
1121
1122Function: "jn_upward":
1123double: 5
1124float: 5
1125ldouble: 7
1126
1127Function: "lgamma":
1128double: 4
1129float: 7
1130ldouble: 5
1131
1132Function: "lgamma_downward":
1133double: 5
1134float: 7
1135ldouble: 8
1136
1137Function: "lgamma_towardzero":
1138double: 5
1139float: 6
1140ldouble: 5
1141
1142Function: "lgamma_upward":
1143double: 5
1144float: 6
1145ldouble: 8
1146
1147Function: "log":
1148float: 1
1149ldouble: 1
1150
1151Function: "log10":
1152double: 2
1153float: 2
1154ldouble: 2
1155
1156Function: "log10_downward":
1157double: 2
1158float: 3
1159ldouble: 1
1160
1161Function: "log10_towardzero":
1162double: 2
1163float: 2
1164ldouble: 1
1165
1166Function: "log10_upward":
1167double: 2
1168float: 2
1169ldouble: 1
1170
1171Function: "log1p":
1172double: 1
1173float: 1
1174ldouble: 3
1175
1176Function: "log1p_downward":
1177double: 2
1178float: 2
1179ldouble: 3
1180
1181Function: "log1p_towardzero":
1182double: 2
1183float: 2
1184ldouble: 3
1185
1186Function: "log1p_upward":
1187double: 2
1188float: 2
1189ldouble: 2
1190
1191Function: "log2":
1192double: 2
1193float: 1
1194ldouble: 3
1195
1196Function: "log2_downward":
1197double: 3
1198float: 3
1199ldouble: 3
1200
1201Function: "log2_towardzero":
1202double: 2
1203float: 2
1204ldouble: 1
1205
1206Function: "log2_upward":
1207double: 3
1208float: 3
1209ldouble: 1
1210
1211Function: "log_downward":
1212float: 2
1213ldouble: 1
1214
1215Function: "log_towardzero":
1216float: 2
1217ldouble: 2
1218
1219Function: "log_upward":
1220double: 1
1221float: 2
1222ldouble: 1
1223
1224Function: "pow":
1225double: 1
1226float: 1
1227ldouble: 2
1228
1229Function: "pow_downward":
1230double: 1
1231float: 1
1232ldouble: 2
1233
1234Function: "pow_towardzero":
1235double: 1
1236float: 1
1237ldouble: 2
1238
1239Function: "pow_upward":
1240double: 1
1241float: 1
1242ldouble: 2
1243
1244Function: "sin":
1245double: 1
1246float: 1
1247ldouble: 2
1248
1249Function: "sin_downward":
1250double: 1
1251float: 2
1252ldouble: 3
1253
1254Function: "sin_towardzero":
1255double: 1
1256float: 1
1257ldouble: 2
1258
1259Function: "sin_upward":
1260double: 1
1261float: 2
1262ldouble: 3
1263
1264Function: "sincos":
1265double: 1
1266float: 1
1267ldouble: 1
1268
1269Function: "sincos_downward":
1270double: 1
1271float: 2
1272ldouble: 3
1273
1274Function: "sincos_towardzero":
1275double: 1
1276float: 1
1277ldouble: 2
1278
1279Function: "sincos_upward":
1280double: 1
1281float: 2
1282ldouble: 3
1283
1284Function: "sinh":
1285double: 2
1286float: 2
1287ldouble: 2
1288
1289Function: "sinh_downward":
1290double: 3
1291float: 3
1292ldouble: 3
1293
1294Function: "sinh_towardzero":
1295double: 3
1296float: 2
1297ldouble: 3
1298
1299Function: "sinh_upward":
1300double: 3
1301float: 3
1302ldouble: 4
1303
1304Function: "tan":
1305float: 1
1306ldouble: 1
1307
1308Function: "tan_downward":
1309double: 1
1310float: 2
1311ldouble: 1
1312
1313Function: "tan_towardzero":
1314double: 1
1315float: 1
1316ldouble: 1
1317
1318Function: "tan_upward":
1319double: 1
1320float: 1
1321ldouble: 1
1322
1323Function: "tanh":
1324double: 2
1325float: 2
1326ldouble: 2
1327
1328Function: "tanh_downward":
1329double: 3
1330float: 3
1331ldouble: 4
1332
1333Function: "tanh_towardzero":
1334double: 2
1335float: 2
1336ldouble: 3
1337
1338Function: "tanh_upward":
1339double: 3
1340float: 3
1341ldouble: 3
1342
1343Function: "tgamma":
1344double: 9
1345float: 8
1346ldouble: 4
1347
1348Function: "tgamma_downward":
1349double: 9
1350float: 7
1351ldouble: 5
1352
1353Function: "tgamma_towardzero":
1354double: 9
1355float: 7
1356ldouble: 5
1357
1358Function: "tgamma_upward":
1359double: 9
1360float: 8
1361ldouble: 4
1362
1363Function: "y0":
1364double: 3
1365float: 9
1366ldouble: 3
1367
1368Function: "y0_downward":
1369double: 3
1370float: 9
1371ldouble: 7
1372
1373Function: "y0_towardzero":
1374double: 4
1375float: 9
1376ldouble: 3
1377
1378Function: "y0_upward":
1379double: 3
1380float: 9
1381ldouble: 4
1382
1383Function: "y1":
1384double: 3
1385float: 9
1386ldouble: 5
1387
1388Function: "y1_downward":
1389double: 6
1390float: 9
1391ldouble: 5
1392
1393Function: "y1_towardzero":
1394double: 3
1395float: 9
1396ldouble: 2
1397
1398Function: "y1_upward":
1399double: 7
1400float: 9
1401ldouble: 5
1402
1403Function: "yn":
1404double: 3
1405float: 3
1406ldouble: 5
1407
1408Function: "yn_downward":
1409double: 3
1410float: 4
1411ldouble: 5
1412
1413Function: "yn_towardzero":
1414double: 3
1415float: 3
1416ldouble: 5
1417
1418Function: "yn_upward":
1419double: 4
1420float: 5
1421ldouble: 5
1422
1423# end of automatic generation
1424