1# Begin of automatic generation 2 3# Maximal error of functions: 4Function: "acos": 5double: 1 6float: 1 7ldouble: 1 8 9Function: "acos_downward": 10double: 1 11float: 1 12ldouble: 1 13 14Function: "acos_towardzero": 15double: 1 16float: 1 17ldouble: 1 18 19Function: "acos_upward": 20double: 1 21float: 1 22ldouble: 1 23 24Function: "acosh": 25double: 2 26float: 2 27ldouble: 4 28 29Function: "acosh_downward": 30double: 2 31float: 2 32ldouble: 3 33 34Function: "acosh_towardzero": 35double: 2 36float: 2 37ldouble: 2 38 39Function: "acosh_upward": 40double: 2 41float: 2 42ldouble: 3 43 44Function: "asin": 45double: 1 46float: 1 47ldouble: 1 48 49Function: "asin_downward": 50double: 1 51float: 1 52ldouble: 2 53 54Function: "asin_towardzero": 55double: 1 56float: 1 57ldouble: 1 58 59Function: "asin_upward": 60double: 2 61float: 1 62ldouble: 2 63 64Function: "asinh": 65double: 2 66float: 2 67ldouble: 4 68 69Function: "asinh_downward": 70double: 3 71float: 3 72ldouble: 4 73 74Function: "asinh_towardzero": 75double: 2 76float: 2 77ldouble: 2 78 79Function: "asinh_upward": 80double: 3 81float: 3 82ldouble: 4 83 84Function: "atan": 85double: 1 86float: 1 87ldouble: 1 88 89Function: "atan2": 90float: 1 91ldouble: 2 92 93Function: "atan2_downward": 94double: 1 95float: 2 96ldouble: 2 97 98Function: "atan2_towardzero": 99double: 1 100float: 2 101ldouble: 3 102 103Function: "atan2_upward": 104double: 1 105float: 1 106ldouble: 2 107 108Function: "atan_downward": 109double: 1 110float: 2 111ldouble: 2 112 113Function: "atan_towardzero": 114double: 1 115float: 1 116ldouble: 1 117 118Function: "atan_upward": 119double: 1 120float: 2 121ldouble: 2 122 123Function: "atanh": 124double: 2 125float: 2 126ldouble: 4 127 128Function: "atanh_downward": 129double: 3 130float: 3 131ldouble: 4 132 133Function: "atanh_towardzero": 134double: 2 135float: 2 136ldouble: 2 137 138Function: "atanh_upward": 139double: 3 140float: 3 141ldouble: 4 142 143Function: "cabs": 144double: 1 145ldouble: 1 146 147Function: "cabs_downward": 148double: 1 149ldouble: 1 150 151Function: "cabs_towardzero": 152double: 1 153ldouble: 1 154 155Function: "cabs_upward": 156double: 1 157ldouble: 1 158 159Function: Real part of "cacos": 160double: 1 161float: 2 162ldouble: 2 163 164Function: Imaginary part of "cacos": 165double: 2 166float: 2 167ldouble: 2 168 169Function: Real part of "cacos_downward": 170double: 3 171float: 2 172ldouble: 3 173 174Function: Imaginary part of "cacos_downward": 175double: 5 176float: 3 177ldouble: 6 178 179Function: Real part of "cacos_towardzero": 180double: 3 181float: 2 182ldouble: 3 183 184Function: Imaginary part of "cacos_towardzero": 185double: 5 186float: 3 187ldouble: 5 188 189Function: Real part of "cacos_upward": 190double: 2 191float: 2 192ldouble: 3 193 194Function: Imaginary part of "cacos_upward": 195double: 5 196float: 5 197ldouble: 7 198 199Function: Real part of "cacosh": 200double: 2 201float: 2 202ldouble: 2 203 204Function: Imaginary part of "cacosh": 205double: 1 206float: 2 207ldouble: 2 208 209Function: Real part of "cacosh_downward": 210double: 5 211float: 3 212ldouble: 5 213 214Function: Imaginary part of "cacosh_downward": 215double: 3 216float: 3 217ldouble: 4 218 219Function: Real part of "cacosh_towardzero": 220double: 5 221float: 3 222ldouble: 5 223 224Function: Imaginary part of "cacosh_towardzero": 225double: 3 226float: 2 227ldouble: 3 228 229Function: Real part of "cacosh_upward": 230double: 4 231float: 4 232ldouble: 6 233 234Function: Imaginary part of "cacosh_upward": 235double: 3 236float: 2 237ldouble: 4 238 239Function: "carg": 240double: 1 241float: 1 242ldouble: 2 243 244Function: "carg_downward": 245double: 1 246float: 2 247ldouble: 2 248 249Function: "carg_towardzero": 250double: 1 251float: 2 252ldouble: 3 253 254Function: "carg_upward": 255double: 1 256float: 1 257ldouble: 2 258 259Function: Real part of "casin": 260double: 1 261float: 1 262ldouble: 2 263 264Function: Imaginary part of "casin": 265double: 2 266float: 2 267ldouble: 2 268 269Function: Real part of "casin_downward": 270double: 3 271float: 2 272ldouble: 3 273 274Function: Imaginary part of "casin_downward": 275double: 5 276float: 3 277ldouble: 6 278 279Function: Real part of "casin_towardzero": 280double: 3 281float: 1 282ldouble: 3 283 284Function: Imaginary part of "casin_towardzero": 285double: 5 286float: 3 287ldouble: 5 288 289Function: Real part of "casin_upward": 290double: 3 291float: 2 292ldouble: 3 293 294Function: Imaginary part of "casin_upward": 295double: 5 296float: 5 297ldouble: 7 298 299Function: Real part of "casinh": 300double: 2 301float: 2 302ldouble: 2 303 304Function: Imaginary part of "casinh": 305double: 1 306float: 1 307ldouble: 2 308 309Function: Real part of "casinh_downward": 310double: 5 311float: 3 312ldouble: 6 313 314Function: Imaginary part of "casinh_downward": 315double: 3 316float: 2 317ldouble: 3 318 319Function: Real part of "casinh_towardzero": 320double: 5 321float: 3 322ldouble: 5 323 324Function: Imaginary part of "casinh_towardzero": 325double: 3 326float: 1 327ldouble: 3 328 329Function: Real part of "casinh_upward": 330double: 5 331float: 5 332ldouble: 7 333 334Function: Imaginary part of "casinh_upward": 335double: 3 336float: 2 337ldouble: 3 338 339Function: Real part of "catan": 340double: 1 341float: 1 342ldouble: 1 343 344Function: Imaginary part of "catan": 345double: 1 346float: 1 347ldouble: 1 348 349Function: Real part of "catan_downward": 350double: 1 351float: 2 352ldouble: 2 353 354Function: Imaginary part of "catan_downward": 355double: 2 356float: 2 357ldouble: 3 358 359Function: Real part of "catan_towardzero": 360double: 1 361float: 2 362ldouble: 2 363 364Function: Imaginary part of "catan_towardzero": 365double: 2 366float: 2 367ldouble: 3 368 369Function: Real part of "catan_upward": 370double: 1 371float: 1 372ldouble: 2 373 374Function: Imaginary part of "catan_upward": 375double: 3 376float: 3 377ldouble: 3 378 379Function: Real part of "catanh": 380double: 1 381float: 1 382ldouble: 1 383 384Function: Imaginary part of "catanh": 385double: 1 386float: 1 387ldouble: 1 388 389Function: Real part of "catanh_downward": 390double: 2 391float: 2 392ldouble: 3 393 394Function: Imaginary part of "catanh_downward": 395double: 1 396float: 2 397ldouble: 2 398 399Function: Real part of "catanh_towardzero": 400double: 2 401float: 2 402ldouble: 3 403 404Function: Imaginary part of "catanh_towardzero": 405double: 1 406float: 2 407ldouble: 2 408 409Function: Real part of "catanh_upward": 410double: 4 411float: 4 412ldouble: 4 413 414Function: Imaginary part of "catanh_upward": 415double: 1 416float: 1 417ldouble: 2 418 419Function: "cbrt": 420double: 4 421float: 1 422ldouble: 1 423 424Function: "cbrt_downward": 425double: 4 426float: 1 427ldouble: 1 428 429Function: "cbrt_towardzero": 430double: 3 431float: 1 432ldouble: 1 433 434Function: "cbrt_upward": 435double: 5 436float: 1 437ldouble: 1 438 439Function: Real part of "ccos": 440double: 1 441float: 1 442ldouble: 1 443 444Function: Imaginary part of "ccos": 445double: 1 446float: 1 447ldouble: 1 448 449Function: Real part of "ccos_downward": 450double: 1 451float: 1 452ldouble: 2 453 454Function: Imaginary part of "ccos_downward": 455double: 3 456float: 3 457ldouble: 2 458 459Function: Real part of "ccos_towardzero": 460double: 1 461float: 2 462ldouble: 2 463 464Function: Imaginary part of "ccos_towardzero": 465double: 3 466float: 3 467ldouble: 2 468 469Function: Real part of "ccos_upward": 470double: 1 471float: 2 472ldouble: 3 473 474Function: Imaginary part of "ccos_upward": 475double: 2 476float: 2 477ldouble: 2 478 479Function: Real part of "ccosh": 480double: 1 481float: 1 482ldouble: 1 483 484Function: Imaginary part of "ccosh": 485double: 1 486float: 1 487ldouble: 1 488 489Function: Real part of "ccosh_downward": 490double: 2 491float: 3 492ldouble: 2 493 494Function: Imaginary part of "ccosh_downward": 495double: 3 496float: 3 497ldouble: 2 498 499Function: Real part of "ccosh_towardzero": 500double: 2 501float: 3 502ldouble: 2 503 504Function: Imaginary part of "ccosh_towardzero": 505double: 3 506float: 3 507ldouble: 2 508 509Function: Real part of "ccosh_upward": 510double: 1 511float: 2 512ldouble: 3 513 514Function: Imaginary part of "ccosh_upward": 515double: 2 516float: 2 517ldouble: 2 518 519Function: Real part of "cexp": 520double: 2 521float: 1 522ldouble: 1 523 524Function: Imaginary part of "cexp": 525double: 1 526float: 2 527ldouble: 1 528 529Function: Real part of "cexp_downward": 530double: 2 531float: 2 532ldouble: 2 533 534Function: Imaginary part of "cexp_downward": 535double: 3 536float: 3 537ldouble: 2 538 539Function: Real part of "cexp_towardzero": 540double: 2 541float: 2 542ldouble: 2 543 544Function: Imaginary part of "cexp_towardzero": 545double: 3 546float: 3 547ldouble: 2 548 549Function: Real part of "cexp_upward": 550double: 1 551float: 2 552ldouble: 3 553 554Function: Imaginary part of "cexp_upward": 555double: 3 556float: 2 557ldouble: 3 558 559Function: Real part of "clog": 560double: 3 561float: 3 562ldouble: 2 563 564Function: Imaginary part of "clog": 565double: 1 566float: 1 567ldouble: 1 568 569Function: Real part of "clog10": 570double: 3 571float: 4 572ldouble: 2 573 574Function: Imaginary part of "clog10": 575double: 2 576float: 2 577ldouble: 2 578 579Function: Real part of "clog10_downward": 580double: 5 581float: 5 582ldouble: 3 583 584Function: Imaginary part of "clog10_downward": 585double: 2 586float: 4 587ldouble: 3 588 589Function: Real part of "clog10_towardzero": 590double: 5 591float: 5 592ldouble: 4 593 594Function: Imaginary part of "clog10_towardzero": 595double: 2 596float: 4 597ldouble: 3 598 599Function: Real part of "clog10_upward": 600double: 6 601float: 5 602ldouble: 4 603 604Function: Imaginary part of "clog10_upward": 605double: 2 606float: 4 607ldouble: 3 608 609Function: Real part of "clog_downward": 610double: 4 611float: 3 612ldouble: 3 613 614Function: Imaginary part of "clog_downward": 615double: 1 616float: 2 617ldouble: 2 618 619Function: Real part of "clog_towardzero": 620double: 4 621float: 4 622ldouble: 3 623 624Function: Imaginary part of "clog_towardzero": 625double: 1 626float: 3 627ldouble: 2 628 629Function: Real part of "clog_upward": 630double: 4 631float: 3 632ldouble: 4 633 634Function: Imaginary part of "clog_upward": 635double: 1 636float: 2 637ldouble: 2 638 639Function: "cos": 640double: 1 641float: 1 642ldouble: 2 643 644Function: "cos_downward": 645double: 1 646float: 1 647ldouble: 3 648 649Function: "cos_towardzero": 650double: 1 651float: 1 652ldouble: 1 653 654Function: "cos_upward": 655double: 1 656float: 1 657ldouble: 2 658 659Function: "cosh": 660double: 2 661float: 2 662ldouble: 2 663 664Function: "cosh_downward": 665double: 3 666float: 1 667ldouble: 3 668 669Function: "cosh_towardzero": 670double: 3 671float: 1 672ldouble: 3 673 674Function: "cosh_upward": 675double: 2 676float: 2 677ldouble: 3 678 679Function: Real part of "cpow": 680double: 2 681float: 5 682ldouble: 4 683 684Function: Imaginary part of "cpow": 685float: 2 686ldouble: 1 687 688Function: Real part of "cpow_downward": 689double: 5 690float: 8 691ldouble: 6 692 693Function: Imaginary part of "cpow_downward": 694double: 1 695float: 2 696ldouble: 2 697 698Function: Real part of "cpow_towardzero": 699double: 5 700float: 8 701ldouble: 6 702 703Function: Imaginary part of "cpow_towardzero": 704double: 1 705float: 2 706ldouble: 2 707 708Function: Real part of "cpow_upward": 709double: 4 710float: 1 711ldouble: 3 712 713Function: Imaginary part of "cpow_upward": 714double: 1 715float: 2 716ldouble: 2 717 718Function: Real part of "csin": 719double: 1 720float: 1 721ldouble: 1 722 723Function: Imaginary part of "csin": 724ldouble: 1 725 726Function: Real part of "csin_downward": 727double: 3 728float: 3 729ldouble: 2 730 731Function: Imaginary part of "csin_downward": 732double: 1 733float: 1 734ldouble: 2 735 736Function: Real part of "csin_towardzero": 737double: 3 738float: 3 739ldouble: 2 740 741Function: Imaginary part of "csin_towardzero": 742double: 1 743float: 1 744ldouble: 2 745 746Function: Real part of "csin_upward": 747double: 2 748float: 2 749ldouble: 2 750 751Function: Imaginary part of "csin_upward": 752double: 1 753float: 2 754ldouble: 3 755 756Function: Real part of "csinh": 757float: 1 758ldouble: 1 759 760Function: Imaginary part of "csinh": 761double: 1 762float: 1 763ldouble: 1 764 765Function: Real part of "csinh_downward": 766double: 2 767float: 2 768ldouble: 2 769 770Function: Imaginary part of "csinh_downward": 771double: 3 772float: 3 773ldouble: 2 774 775Function: Real part of "csinh_towardzero": 776double: 2 777float: 2 778ldouble: 2 779 780Function: Imaginary part of "csinh_towardzero": 781double: 3 782float: 3 783ldouble: 2 784 785Function: Real part of "csinh_upward": 786double: 1 787float: 2 788ldouble: 3 789 790Function: Imaginary part of "csinh_upward": 791double: 2 792float: 2 793ldouble: 2 794 795Function: Real part of "csqrt": 796double: 2 797float: 2 798ldouble: 2 799 800Function: Imaginary part of "csqrt": 801double: 2 802float: 2 803ldouble: 2 804 805Function: Real part of "csqrt_downward": 806double: 5 807float: 4 808ldouble: 4 809 810Function: Imaginary part of "csqrt_downward": 811double: 4 812float: 3 813ldouble: 3 814 815Function: Real part of "csqrt_towardzero": 816double: 4 817float: 3 818ldouble: 3 819 820Function: Imaginary part of "csqrt_towardzero": 821double: 4 822float: 3 823ldouble: 3 824 825Function: Real part of "csqrt_upward": 826double: 5 827float: 4 828ldouble: 4 829 830Function: Imaginary part of "csqrt_upward": 831double: 3 832float: 3 833ldouble: 3 834 835Function: Real part of "ctan": 836double: 1 837float: 1 838ldouble: 3 839 840Function: Imaginary part of "ctan": 841double: 2 842float: 2 843ldouble: 3 844 845Function: Real part of "ctan_downward": 846double: 6 847float: 5 848ldouble: 4 849 850Function: Imaginary part of "ctan_downward": 851double: 2 852float: 2 853ldouble: 5 854 855Function: Real part of "ctan_towardzero": 856double: 5 857float: 3 858ldouble: 4 859 860Function: Imaginary part of "ctan_towardzero": 861double: 2 862float: 2 863ldouble: 5 864 865Function: Real part of "ctan_upward": 866double: 2 867float: 4 868ldouble: 5 869 870Function: Imaginary part of "ctan_upward": 871double: 2 872float: 3 873ldouble: 5 874 875Function: Real part of "ctanh": 876double: 2 877float: 2 878ldouble: 3 879 880Function: Imaginary part of "ctanh": 881double: 2 882float: 1 883ldouble: 3 884 885Function: Real part of "ctanh_downward": 886double: 4 887float: 2 888ldouble: 5 889 890Function: Imaginary part of "ctanh_downward": 891double: 6 892float: 5 893ldouble: 4 894 895Function: Real part of "ctanh_towardzero": 896double: 2 897float: 2 898ldouble: 5 899 900Function: Imaginary part of "ctanh_towardzero": 901double: 5 902float: 2 903ldouble: 3 904 905Function: Real part of "ctanh_upward": 906double: 2 907float: 3 908ldouble: 5 909 910Function: Imaginary part of "ctanh_upward": 911double: 2 912float: 3 913ldouble: 5 914 915Function: "erf": 916double: 1 917float: 1 918ldouble: 1 919 920Function: "erf_downward": 921double: 1 922float: 1 923ldouble: 2 924 925Function: "erf_towardzero": 926double: 1 927float: 1 928ldouble: 1 929 930Function: "erf_upward": 931double: 1 932float: 1 933ldouble: 2 934 935Function: "erfc": 936double: 2 937float: 2 938ldouble: 4 939 940Function: "erfc_downward": 941double: 4 942float: 4 943ldouble: 5 944 945Function: "erfc_towardzero": 946double: 3 947float: 3 948ldouble: 4 949 950Function: "erfc_upward": 951double: 4 952float: 4 953ldouble: 5 954 955Function: "exp": 956double: 1 957float: 1 958ldouble: 1 959 960Function: "exp10": 961double: 2 962float: 1 963ldouble: 2 964 965Function: "exp10_downward": 966double: 2 967float: 1 968ldouble: 3 969 970Function: "exp10_towardzero": 971double: 2 972float: 1 973ldouble: 3 974 975Function: "exp10_upward": 976double: 2 977float: 1 978ldouble: 3 979 980Function: "exp2": 981double: 1 982float: 1 983ldouble: 1 984 985Function: "exp2_downward": 986double: 1 987float: 1 988ldouble: 1 989 990Function: "exp2_towardzero": 991double: 1 992float: 1 993ldouble: 1 994 995Function: "exp2_upward": 996double: 1 997float: 1 998ldouble: 2 999 1000Function: "exp_downward": 1001double: 1 1002float: 1 1003 1004Function: "exp_towardzero": 1005double: 1 1006float: 1 1007 1008Function: "exp_upward": 1009double: 1 1010float: 1 1011 1012Function: "expm1": 1013double: 1 1014float: 1 1015ldouble: 2 1016 1017Function: "expm1_downward": 1018double: 1 1019float: 1 1020ldouble: 2 1021 1022Function: "expm1_towardzero": 1023double: 1 1024float: 2 1025ldouble: 4 1026 1027Function: "expm1_upward": 1028double: 1 1029float: 1 1030ldouble: 3 1031 1032Function: "gamma": 1033double: 3 1034float: 4 1035ldouble: 5 1036 1037Function: "gamma_downward": 1038double: 4 1039float: 4 1040ldouble: 8 1041 1042Function: "gamma_towardzero": 1043double: 4 1044float: 3 1045ldouble: 5 1046 1047Function: "gamma_upward": 1048double: 4 1049float: 5 1050ldouble: 8 1051 1052Function: "hypot": 1053double: 1 1054ldouble: 1 1055 1056Function: "hypot_downward": 1057double: 1 1058ldouble: 1 1059 1060Function: "hypot_towardzero": 1061double: 1 1062ldouble: 1 1063 1064Function: "hypot_upward": 1065double: 1 1066ldouble: 1 1067 1068Function: "j0": 1069double: 3 1070float: 9 1071ldouble: 2 1072 1073Function: "j0_downward": 1074double: 6 1075float: 9 1076ldouble: 9 1077 1078Function: "j0_towardzero": 1079double: 7 1080float: 9 1081ldouble: 9 1082 1083Function: "j0_upward": 1084double: 9 1085float: 9 1086ldouble: 7 1087 1088Function: "j1": 1089double: 4 1090float: 9 1091ldouble: 4 1092 1093Function: "j1_downward": 1094double: 3 1095float: 8 1096ldouble: 6 1097 1098Function: "j1_towardzero": 1099double: 4 1100float: 8 1101ldouble: 9 1102 1103Function: "j1_upward": 1104double: 9 1105float: 9 1106ldouble: 9 1107 1108Function: "jn": 1109double: 4 1110float: 4 1111ldouble: 7 1112 1113Function: "jn_downward": 1114double: 4 1115float: 5 1116ldouble: 8 1117 1118Function: "jn_towardzero": 1119double: 4 1120float: 5 1121ldouble: 8 1122 1123Function: "jn_upward": 1124double: 5 1125float: 4 1126ldouble: 7 1127 1128Function: "lgamma": 1129double: 3 1130float: 4 1131ldouble: 5 1132 1133Function: "lgamma_downward": 1134double: 4 1135float: 4 1136ldouble: 8 1137 1138Function: "lgamma_towardzero": 1139double: 4 1140float: 3 1141ldouble: 5 1142 1143Function: "lgamma_upward": 1144double: 4 1145float: 5 1146ldouble: 8 1147 1148Function: "log": 1149double: 1 1150float: 1 1151ldouble: 1 1152 1153Function: "log10": 1154double: 2 1155float: 2 1156ldouble: 2 1157 1158Function: "log10_downward": 1159double: 2 1160float: 3 1161ldouble: 1 1162 1163Function: "log10_towardzero": 1164double: 2 1165float: 2 1166ldouble: 1 1167 1168Function: "log10_upward": 1169double: 2 1170float: 2 1171ldouble: 1 1172 1173Function: "log1p": 1174double: 1 1175float: 1 1176ldouble: 3 1177 1178Function: "log1p_downward": 1179double: 1 1180float: 2 1181ldouble: 3 1182 1183Function: "log1p_towardzero": 1184double: 2 1185float: 2 1186ldouble: 3 1187 1188Function: "log1p_upward": 1189double: 2 1190float: 2 1191ldouble: 2 1192 1193Function: "log2": 1194double: 1 1195float: 1 1196ldouble: 3 1197 1198Function: "log2_downward": 1199double: 3 1200float: 3 1201ldouble: 3 1202 1203Function: "log2_towardzero": 1204double: 2 1205float: 2 1206ldouble: 1 1207 1208Function: "log2_upward": 1209double: 3 1210float: 3 1211ldouble: 1 1212 1213Function: "log_downward": 1214float: 2 1215ldouble: 1 1216 1217Function: "log_towardzero": 1218float: 2 1219ldouble: 2 1220 1221Function: "log_upward": 1222double: 1 1223float: 2 1224ldouble: 1 1225 1226Function: "pow": 1227double: 1 1228float: 1 1229ldouble: 2 1230 1231Function: "pow_downward": 1232double: 1 1233float: 1 1234ldouble: 2 1235 1236Function: "pow_towardzero": 1237double: 1 1238float: 1 1239ldouble: 2 1240 1241Function: "pow_upward": 1242double: 1 1243float: 1 1244ldouble: 2 1245 1246Function: "sin": 1247double: 1 1248float: 1 1249ldouble: 2 1250 1251Function: "sin_downward": 1252double: 1 1253float: 1 1254ldouble: 3 1255 1256Function: "sin_towardzero": 1257double: 1 1258float: 1 1259ldouble: 2 1260 1261Function: "sin_upward": 1262double: 1 1263float: 1 1264ldouble: 3 1265 1266Function: "sincos": 1267double: 1 1268float: 1 1269ldouble: 1 1270 1271Function: "sincos_downward": 1272double: 1 1273float: 1 1274ldouble: 3 1275 1276Function: "sincos_towardzero": 1277double: 1 1278float: 1 1279ldouble: 2 1280 1281Function: "sincos_upward": 1282double: 1 1283float: 1 1284ldouble: 3 1285 1286Function: "sinh": 1287double: 2 1288float: 2 1289ldouble: 2 1290 1291Function: "sinh_downward": 1292double: 3 1293float: 3 1294ldouble: 3 1295 1296Function: "sinh_towardzero": 1297double: 3 1298float: 2 1299ldouble: 3 1300 1301Function: "sinh_upward": 1302double: 3 1303float: 3 1304ldouble: 4 1305 1306Function: "tan": 1307float: 1 1308ldouble: 1 1309 1310Function: "tan_downward": 1311double: 1 1312float: 2 1313ldouble: 1 1314 1315Function: "tan_towardzero": 1316double: 1 1317float: 1 1318ldouble: 1 1319 1320Function: "tan_upward": 1321double: 1 1322float: 1 1323ldouble: 1 1324 1325Function: "tanh": 1326double: 2 1327float: 2 1328ldouble: 2 1329 1330Function: "tanh_downward": 1331double: 3 1332float: 3 1333ldouble: 4 1334 1335Function: "tanh_towardzero": 1336double: 2 1337float: 2 1338ldouble: 3 1339 1340Function: "tanh_upward": 1341double: 3 1342float: 3 1343ldouble: 3 1344 1345Function: "tgamma": 1346double: 9 1347float: 8 1348ldouble: 4 1349 1350Function: "tgamma_downward": 1351double: 9 1352float: 7 1353ldouble: 5 1354 1355Function: "tgamma_towardzero": 1356double: 9 1357float: 7 1358ldouble: 5 1359 1360Function: "tgamma_upward": 1361double: 9 1362float: 8 1363ldouble: 4 1364 1365Function: "y0": 1366double: 2 1367float: 8 1368ldouble: 3 1369 1370Function: "y0_downward": 1371double: 3 1372float: 8 1373ldouble: 7 1374 1375Function: "y0_towardzero": 1376double: 3 1377float: 8 1378ldouble: 3 1379 1380Function: "y0_upward": 1381double: 2 1382float: 8 1383ldouble: 4 1384 1385Function: "y1": 1386double: 3 1387float: 9 1388ldouble: 5 1389 1390Function: "y1_downward": 1391double: 6 1392float: 8 1393ldouble: 5 1394 1395Function: "y1_towardzero": 1396double: 3 1397float: 9 1398ldouble: 2 1399 1400Function: "y1_upward": 1401double: 6 1402float: 9 1403ldouble: 5 1404 1405Function: "yn": 1406double: 3 1407float: 3 1408ldouble: 5 1409 1410Function: "yn_downward": 1411double: 3 1412float: 4 1413ldouble: 5 1414 1415Function: "yn_towardzero": 1416double: 3 1417float: 3 1418ldouble: 5 1419 1420Function: "yn_upward": 1421double: 4 1422float: 5 1423ldouble: 5 1424 1425# end of automatic generation 1426