1# Begin of automatic generation
2
3# Maximal error of functions:
4Function: "acos":
5double: 1
6float: 1
7ldouble: 1
8
9Function: "acos_downward":
10double: 1
11float: 1
12ldouble: 1
13
14Function: "acos_towardzero":
15double: 1
16float: 1
17ldouble: 1
18
19Function: "acos_upward":
20double: 1
21float: 1
22ldouble: 1
23
24Function: "acosh":
25double: 2
26float: 2
27ldouble: 4
28
29Function: "acosh_downward":
30double: 2
31float: 2
32ldouble: 3
33
34Function: "acosh_towardzero":
35double: 2
36float: 2
37ldouble: 2
38
39Function: "acosh_upward":
40double: 2
41float: 2
42ldouble: 3
43
44Function: "asin":
45double: 1
46float: 1
47ldouble: 1
48
49Function: "asin_downward":
50double: 1
51float: 1
52ldouble: 2
53
54Function: "asin_towardzero":
55double: 1
56float: 1
57ldouble: 1
58
59Function: "asin_upward":
60double: 2
61float: 1
62ldouble: 2
63
64Function: "asinh":
65double: 2
66float: 2
67ldouble: 4
68
69Function: "asinh_downward":
70double: 3
71float: 3
72ldouble: 4
73
74Function: "asinh_towardzero":
75double: 2
76float: 2
77ldouble: 2
78
79Function: "asinh_upward":
80double: 3
81float: 3
82ldouble: 4
83
84Function: "atan":
85double: 1
86float: 1
87ldouble: 1
88
89Function: "atan2":
90float: 1
91ldouble: 2
92
93Function: "atan2_downward":
94double: 1
95float: 2
96ldouble: 2
97
98Function: "atan2_towardzero":
99double: 1
100float: 2
101ldouble: 3
102
103Function: "atan2_upward":
104double: 1
105float: 1
106ldouble: 2
107
108Function: "atan_downward":
109double: 1
110float: 2
111ldouble: 2
112
113Function: "atan_towardzero":
114double: 1
115float: 1
116ldouble: 1
117
118Function: "atan_upward":
119double: 1
120float: 2
121ldouble: 2
122
123Function: "atanh":
124double: 2
125float: 2
126ldouble: 4
127
128Function: "atanh_downward":
129double: 3
130float: 3
131ldouble: 4
132
133Function: "atanh_towardzero":
134double: 2
135float: 2
136ldouble: 2
137
138Function: "atanh_upward":
139double: 3
140float: 3
141ldouble: 4
142
143Function: "cabs":
144double: 1
145ldouble: 1
146
147Function: "cabs_downward":
148double: 1
149ldouble: 1
150
151Function: "cabs_towardzero":
152double: 1
153ldouble: 1
154
155Function: "cabs_upward":
156double: 1
157ldouble: 1
158
159Function: Real part of "cacos":
160double: 1
161float: 2
162ldouble: 2
163
164Function: Imaginary part of "cacos":
165double: 2
166float: 2
167ldouble: 2
168
169Function: Real part of "cacos_downward":
170double: 3
171float: 2
172ldouble: 3
173
174Function: Imaginary part of "cacos_downward":
175double: 5
176float: 3
177ldouble: 6
178
179Function: Real part of "cacos_towardzero":
180double: 3
181float: 2
182ldouble: 3
183
184Function: Imaginary part of "cacos_towardzero":
185double: 5
186float: 3
187ldouble: 5
188
189Function: Real part of "cacos_upward":
190double: 2
191float: 2
192ldouble: 3
193
194Function: Imaginary part of "cacos_upward":
195double: 5
196float: 5
197ldouble: 7
198
199Function: Real part of "cacosh":
200double: 2
201float: 2
202ldouble: 2
203
204Function: Imaginary part of "cacosh":
205double: 1
206float: 2
207ldouble: 2
208
209Function: Real part of "cacosh_downward":
210double: 5
211float: 3
212ldouble: 5
213
214Function: Imaginary part of "cacosh_downward":
215double: 3
216float: 3
217ldouble: 4
218
219Function: Real part of "cacosh_towardzero":
220double: 5
221float: 3
222ldouble: 5
223
224Function: Imaginary part of "cacosh_towardzero":
225double: 3
226float: 2
227ldouble: 3
228
229Function: Real part of "cacosh_upward":
230double: 4
231float: 4
232ldouble: 6
233
234Function: Imaginary part of "cacosh_upward":
235double: 3
236float: 2
237ldouble: 4
238
239Function: "carg":
240double: 1
241float: 1
242ldouble: 2
243
244Function: "carg_downward":
245double: 1
246float: 2
247ldouble: 2
248
249Function: "carg_towardzero":
250double: 1
251float: 2
252ldouble: 3
253
254Function: "carg_upward":
255double: 1
256float: 1
257ldouble: 2
258
259Function: Real part of "casin":
260double: 1
261float: 1
262ldouble: 2
263
264Function: Imaginary part of "casin":
265double: 2
266float: 2
267ldouble: 2
268
269Function: Real part of "casin_downward":
270double: 3
271float: 2
272ldouble: 3
273
274Function: Imaginary part of "casin_downward":
275double: 5
276float: 3
277ldouble: 6
278
279Function: Real part of "casin_towardzero":
280double: 3
281float: 1
282ldouble: 3
283
284Function: Imaginary part of "casin_towardzero":
285double: 5
286float: 3
287ldouble: 5
288
289Function: Real part of "casin_upward":
290double: 3
291float: 2
292ldouble: 3
293
294Function: Imaginary part of "casin_upward":
295double: 5
296float: 5
297ldouble: 7
298
299Function: Real part of "casinh":
300double: 2
301float: 2
302ldouble: 2
303
304Function: Imaginary part of "casinh":
305double: 1
306float: 1
307ldouble: 2
308
309Function: Real part of "casinh_downward":
310double: 5
311float: 3
312ldouble: 6
313
314Function: Imaginary part of "casinh_downward":
315double: 3
316float: 2
317ldouble: 3
318
319Function: Real part of "casinh_towardzero":
320double: 5
321float: 3
322ldouble: 5
323
324Function: Imaginary part of "casinh_towardzero":
325double: 3
326float: 1
327ldouble: 3
328
329Function: Real part of "casinh_upward":
330double: 5
331float: 5
332ldouble: 7
333
334Function: Imaginary part of "casinh_upward":
335double: 3
336float: 2
337ldouble: 3
338
339Function: Real part of "catan":
340double: 1
341float: 1
342ldouble: 1
343
344Function: Imaginary part of "catan":
345double: 1
346float: 1
347ldouble: 1
348
349Function: Real part of "catan_downward":
350double: 1
351float: 2
352ldouble: 2
353
354Function: Imaginary part of "catan_downward":
355double: 2
356float: 2
357ldouble: 3
358
359Function: Real part of "catan_towardzero":
360double: 1
361float: 2
362ldouble: 2
363
364Function: Imaginary part of "catan_towardzero":
365double: 2
366float: 2
367ldouble: 3
368
369Function: Real part of "catan_upward":
370double: 1
371float: 1
372ldouble: 2
373
374Function: Imaginary part of "catan_upward":
375double: 3
376float: 3
377ldouble: 3
378
379Function: Real part of "catanh":
380double: 1
381float: 1
382ldouble: 1
383
384Function: Imaginary part of "catanh":
385double: 1
386float: 1
387ldouble: 1
388
389Function: Real part of "catanh_downward":
390double: 2
391float: 2
392ldouble: 3
393
394Function: Imaginary part of "catanh_downward":
395double: 1
396float: 2
397ldouble: 2
398
399Function: Real part of "catanh_towardzero":
400double: 2
401float: 2
402ldouble: 3
403
404Function: Imaginary part of "catanh_towardzero":
405double: 1
406float: 2
407ldouble: 2
408
409Function: Real part of "catanh_upward":
410double: 4
411float: 4
412ldouble: 4
413
414Function: Imaginary part of "catanh_upward":
415double: 1
416float: 1
417ldouble: 2
418
419Function: "cbrt":
420double: 4
421float: 1
422ldouble: 1
423
424Function: "cbrt_downward":
425double: 4
426float: 1
427ldouble: 1
428
429Function: "cbrt_towardzero":
430double: 3
431float: 1
432ldouble: 1
433
434Function: "cbrt_upward":
435double: 5
436float: 1
437ldouble: 1
438
439Function: Real part of "ccos":
440double: 1
441float: 1
442ldouble: 1
443
444Function: Imaginary part of "ccos":
445double: 1
446float: 1
447ldouble: 1
448
449Function: Real part of "ccos_downward":
450double: 1
451float: 1
452ldouble: 2
453
454Function: Imaginary part of "ccos_downward":
455double: 3
456float: 3
457ldouble: 2
458
459Function: Real part of "ccos_towardzero":
460double: 1
461float: 2
462ldouble: 2
463
464Function: Imaginary part of "ccos_towardzero":
465double: 3
466float: 3
467ldouble: 2
468
469Function: Real part of "ccos_upward":
470double: 1
471float: 2
472ldouble: 3
473
474Function: Imaginary part of "ccos_upward":
475double: 2
476float: 2
477ldouble: 2
478
479Function: Real part of "ccosh":
480double: 1
481float: 1
482ldouble: 1
483
484Function: Imaginary part of "ccosh":
485double: 1
486float: 1
487ldouble: 1
488
489Function: Real part of "ccosh_downward":
490double: 2
491float: 3
492ldouble: 2
493
494Function: Imaginary part of "ccosh_downward":
495double: 3
496float: 3
497ldouble: 2
498
499Function: Real part of "ccosh_towardzero":
500double: 2
501float: 3
502ldouble: 2
503
504Function: Imaginary part of "ccosh_towardzero":
505double: 3
506float: 3
507ldouble: 2
508
509Function: Real part of "ccosh_upward":
510double: 1
511float: 2
512ldouble: 3
513
514Function: Imaginary part of "ccosh_upward":
515double: 2
516float: 2
517ldouble: 2
518
519Function: Real part of "cexp":
520double: 2
521float: 1
522ldouble: 1
523
524Function: Imaginary part of "cexp":
525double: 1
526float: 2
527ldouble: 1
528
529Function: Real part of "cexp_downward":
530double: 2
531float: 2
532ldouble: 2
533
534Function: Imaginary part of "cexp_downward":
535double: 3
536float: 3
537ldouble: 2
538
539Function: Real part of "cexp_towardzero":
540double: 2
541float: 2
542ldouble: 2
543
544Function: Imaginary part of "cexp_towardzero":
545double: 3
546float: 3
547ldouble: 2
548
549Function: Real part of "cexp_upward":
550double: 1
551float: 2
552ldouble: 3
553
554Function: Imaginary part of "cexp_upward":
555double: 3
556float: 2
557ldouble: 3
558
559Function: Real part of "clog":
560double: 3
561float: 3
562ldouble: 2
563
564Function: Imaginary part of "clog":
565double: 1
566float: 1
567ldouble: 1
568
569Function: Real part of "clog10":
570double: 3
571float: 4
572ldouble: 2
573
574Function: Imaginary part of "clog10":
575double: 2
576float: 2
577ldouble: 2
578
579Function: Real part of "clog10_downward":
580double: 5
581float: 5
582ldouble: 3
583
584Function: Imaginary part of "clog10_downward":
585double: 2
586float: 4
587ldouble: 3
588
589Function: Real part of "clog10_towardzero":
590double: 5
591float: 5
592ldouble: 4
593
594Function: Imaginary part of "clog10_towardzero":
595double: 2
596float: 4
597ldouble: 3
598
599Function: Real part of "clog10_upward":
600double: 6
601float: 5
602ldouble: 4
603
604Function: Imaginary part of "clog10_upward":
605double: 2
606float: 4
607ldouble: 3
608
609Function: Real part of "clog_downward":
610double: 4
611float: 3
612ldouble: 3
613
614Function: Imaginary part of "clog_downward":
615double: 1
616float: 2
617ldouble: 2
618
619Function: Real part of "clog_towardzero":
620double: 4
621float: 4
622ldouble: 3
623
624Function: Imaginary part of "clog_towardzero":
625double: 1
626float: 3
627ldouble: 2
628
629Function: Real part of "clog_upward":
630double: 4
631float: 3
632ldouble: 4
633
634Function: Imaginary part of "clog_upward":
635double: 1
636float: 2
637ldouble: 2
638
639Function: "cos":
640double: 1
641float: 1
642ldouble: 2
643
644Function: "cos_downward":
645double: 1
646float: 1
647ldouble: 3
648
649Function: "cos_towardzero":
650double: 1
651float: 1
652ldouble: 1
653
654Function: "cos_upward":
655double: 1
656float: 1
657ldouble: 2
658
659Function: "cosh":
660double: 2
661float: 2
662ldouble: 2
663
664Function: "cosh_downward":
665double: 3
666float: 1
667ldouble: 3
668
669Function: "cosh_towardzero":
670double: 3
671float: 1
672ldouble: 3
673
674Function: "cosh_upward":
675double: 2
676float: 2
677ldouble: 3
678
679Function: Real part of "cpow":
680double: 2
681float: 5
682ldouble: 4
683
684Function: Imaginary part of "cpow":
685float: 2
686ldouble: 1
687
688Function: Real part of "cpow_downward":
689double: 5
690float: 8
691ldouble: 6
692
693Function: Imaginary part of "cpow_downward":
694double: 1
695float: 2
696ldouble: 2
697
698Function: Real part of "cpow_towardzero":
699double: 5
700float: 8
701ldouble: 6
702
703Function: Imaginary part of "cpow_towardzero":
704double: 1
705float: 2
706ldouble: 2
707
708Function: Real part of "cpow_upward":
709double: 4
710float: 1
711ldouble: 3
712
713Function: Imaginary part of "cpow_upward":
714double: 1
715float: 2
716ldouble: 2
717
718Function: Real part of "csin":
719double: 1
720float: 1
721ldouble: 1
722
723Function: Imaginary part of "csin":
724ldouble: 1
725
726Function: Real part of "csin_downward":
727double: 3
728float: 3
729ldouble: 2
730
731Function: Imaginary part of "csin_downward":
732double: 1
733float: 1
734ldouble: 2
735
736Function: Real part of "csin_towardzero":
737double: 3
738float: 3
739ldouble: 2
740
741Function: Imaginary part of "csin_towardzero":
742double: 1
743float: 1
744ldouble: 2
745
746Function: Real part of "csin_upward":
747double: 2
748float: 2
749ldouble: 2
750
751Function: Imaginary part of "csin_upward":
752double: 1
753float: 2
754ldouble: 3
755
756Function: Real part of "csinh":
757float: 1
758ldouble: 1
759
760Function: Imaginary part of "csinh":
761double: 1
762float: 1
763ldouble: 1
764
765Function: Real part of "csinh_downward":
766double: 2
767float: 2
768ldouble: 2
769
770Function: Imaginary part of "csinh_downward":
771double: 3
772float: 3
773ldouble: 2
774
775Function: Real part of "csinh_towardzero":
776double: 2
777float: 2
778ldouble: 2
779
780Function: Imaginary part of "csinh_towardzero":
781double: 3
782float: 3
783ldouble: 2
784
785Function: Real part of "csinh_upward":
786double: 1
787float: 2
788ldouble: 3
789
790Function: Imaginary part of "csinh_upward":
791double: 2
792float: 2
793ldouble: 2
794
795Function: Real part of "csqrt":
796double: 2
797float: 2
798ldouble: 2
799
800Function: Imaginary part of "csqrt":
801double: 2
802float: 2
803ldouble: 2
804
805Function: Real part of "csqrt_downward":
806double: 5
807float: 4
808ldouble: 4
809
810Function: Imaginary part of "csqrt_downward":
811double: 4
812float: 3
813ldouble: 3
814
815Function: Real part of "csqrt_towardzero":
816double: 4
817float: 3
818ldouble: 3
819
820Function: Imaginary part of "csqrt_towardzero":
821double: 4
822float: 3
823ldouble: 3
824
825Function: Real part of "csqrt_upward":
826double: 5
827float: 4
828ldouble: 4
829
830Function: Imaginary part of "csqrt_upward":
831double: 3
832float: 3
833ldouble: 3
834
835Function: Real part of "ctan":
836double: 1
837float: 1
838ldouble: 3
839
840Function: Imaginary part of "ctan":
841double: 2
842float: 2
843ldouble: 3
844
845Function: Real part of "ctan_downward":
846double: 6
847float: 5
848ldouble: 4
849
850Function: Imaginary part of "ctan_downward":
851double: 2
852float: 2
853ldouble: 5
854
855Function: Real part of "ctan_towardzero":
856double: 5
857float: 3
858ldouble: 4
859
860Function: Imaginary part of "ctan_towardzero":
861double: 2
862float: 2
863ldouble: 5
864
865Function: Real part of "ctan_upward":
866double: 2
867float: 4
868ldouble: 5
869
870Function: Imaginary part of "ctan_upward":
871double: 2
872float: 3
873ldouble: 5
874
875Function: Real part of "ctanh":
876double: 2
877float: 2
878ldouble: 3
879
880Function: Imaginary part of "ctanh":
881double: 2
882float: 1
883ldouble: 3
884
885Function: Real part of "ctanh_downward":
886double: 4
887float: 2
888ldouble: 5
889
890Function: Imaginary part of "ctanh_downward":
891double: 6
892float: 5
893ldouble: 4
894
895Function: Real part of "ctanh_towardzero":
896double: 2
897float: 2
898ldouble: 5
899
900Function: Imaginary part of "ctanh_towardzero":
901double: 5
902float: 2
903ldouble: 3
904
905Function: Real part of "ctanh_upward":
906double: 2
907float: 3
908ldouble: 5
909
910Function: Imaginary part of "ctanh_upward":
911double: 2
912float: 3
913ldouble: 5
914
915Function: "erf":
916double: 1
917float: 1
918ldouble: 1
919
920Function: "erf_downward":
921double: 1
922float: 1
923ldouble: 2
924
925Function: "erf_towardzero":
926double: 1
927float: 1
928ldouble: 1
929
930Function: "erf_upward":
931double: 1
932float: 1
933ldouble: 2
934
935Function: "erfc":
936double: 2
937float: 2
938ldouble: 4
939
940Function: "erfc_downward":
941double: 4
942float: 4
943ldouble: 5
944
945Function: "erfc_towardzero":
946double: 3
947float: 3
948ldouble: 4
949
950Function: "erfc_upward":
951double: 4
952float: 4
953ldouble: 5
954
955Function: "exp":
956double: 1
957float: 1
958ldouble: 1
959
960Function: "exp10":
961double: 2
962float: 1
963ldouble: 2
964
965Function: "exp10_downward":
966double: 2
967float: 1
968ldouble: 3
969
970Function: "exp10_towardzero":
971double: 2
972float: 1
973ldouble: 3
974
975Function: "exp10_upward":
976double: 2
977float: 1
978ldouble: 3
979
980Function: "exp2":
981double: 1
982float: 1
983ldouble: 1
984
985Function: "exp2_downward":
986double: 1
987float: 1
988ldouble: 1
989
990Function: "exp2_towardzero":
991double: 1
992float: 1
993ldouble: 1
994
995Function: "exp2_upward":
996double: 1
997float: 1
998ldouble: 2
999
1000Function: "exp_downward":
1001double: 1
1002float: 1
1003
1004Function: "exp_towardzero":
1005double: 1
1006float: 1
1007
1008Function: "exp_upward":
1009double: 1
1010float: 1
1011
1012Function: "expm1":
1013double: 1
1014float: 1
1015ldouble: 2
1016
1017Function: "expm1_downward":
1018double: 1
1019float: 1
1020ldouble: 2
1021
1022Function: "expm1_towardzero":
1023double: 1
1024float: 2
1025ldouble: 4
1026
1027Function: "expm1_upward":
1028double: 1
1029float: 1
1030ldouble: 3
1031
1032Function: "gamma":
1033double: 3
1034float: 4
1035ldouble: 5
1036
1037Function: "gamma_downward":
1038double: 4
1039float: 4
1040ldouble: 8
1041
1042Function: "gamma_towardzero":
1043double: 4
1044float: 3
1045ldouble: 5
1046
1047Function: "gamma_upward":
1048double: 4
1049float: 5
1050ldouble: 8
1051
1052Function: "hypot":
1053double: 1
1054ldouble: 1
1055
1056Function: "hypot_downward":
1057double: 1
1058ldouble: 1
1059
1060Function: "hypot_towardzero":
1061double: 1
1062ldouble: 1
1063
1064Function: "hypot_upward":
1065double: 1
1066ldouble: 1
1067
1068Function: "j0":
1069double: 3
1070float: 9
1071ldouble: 2
1072
1073Function: "j0_downward":
1074double: 6
1075float: 9
1076ldouble: 9
1077
1078Function: "j0_towardzero":
1079double: 7
1080float: 9
1081ldouble: 9
1082
1083Function: "j0_upward":
1084double: 9
1085float: 9
1086ldouble: 7
1087
1088Function: "j1":
1089double: 4
1090float: 9
1091ldouble: 4
1092
1093Function: "j1_downward":
1094double: 3
1095float: 8
1096ldouble: 6
1097
1098Function: "j1_towardzero":
1099double: 4
1100float: 8
1101ldouble: 9
1102
1103Function: "j1_upward":
1104double: 9
1105float: 9
1106ldouble: 9
1107
1108Function: "jn":
1109double: 4
1110float: 4
1111ldouble: 7
1112
1113Function: "jn_downward":
1114double: 4
1115float: 5
1116ldouble: 8
1117
1118Function: "jn_towardzero":
1119double: 4
1120float: 5
1121ldouble: 8
1122
1123Function: "jn_upward":
1124double: 5
1125float: 4
1126ldouble: 7
1127
1128Function: "lgamma":
1129double: 3
1130float: 4
1131ldouble: 5
1132
1133Function: "lgamma_downward":
1134double: 4
1135float: 4
1136ldouble: 8
1137
1138Function: "lgamma_towardzero":
1139double: 4
1140float: 3
1141ldouble: 5
1142
1143Function: "lgamma_upward":
1144double: 4
1145float: 5
1146ldouble: 8
1147
1148Function: "log":
1149double: 1
1150float: 1
1151ldouble: 1
1152
1153Function: "log10":
1154double: 2
1155float: 2
1156ldouble: 2
1157
1158Function: "log10_downward":
1159double: 2
1160float: 3
1161ldouble: 1
1162
1163Function: "log10_towardzero":
1164double: 2
1165float: 2
1166ldouble: 1
1167
1168Function: "log10_upward":
1169double: 2
1170float: 2
1171ldouble: 1
1172
1173Function: "log1p":
1174double: 1
1175float: 1
1176ldouble: 3
1177
1178Function: "log1p_downward":
1179double: 1
1180float: 2
1181ldouble: 3
1182
1183Function: "log1p_towardzero":
1184double: 2
1185float: 2
1186ldouble: 3
1187
1188Function: "log1p_upward":
1189double: 2
1190float: 2
1191ldouble: 2
1192
1193Function: "log2":
1194double: 1
1195float: 1
1196ldouble: 3
1197
1198Function: "log2_downward":
1199double: 3
1200float: 3
1201ldouble: 3
1202
1203Function: "log2_towardzero":
1204double: 2
1205float: 2
1206ldouble: 1
1207
1208Function: "log2_upward":
1209double: 3
1210float: 3
1211ldouble: 1
1212
1213Function: "log_downward":
1214float: 2
1215ldouble: 1
1216
1217Function: "log_towardzero":
1218float: 2
1219ldouble: 2
1220
1221Function: "log_upward":
1222double: 1
1223float: 2
1224ldouble: 1
1225
1226Function: "pow":
1227double: 1
1228float: 1
1229ldouble: 2
1230
1231Function: "pow_downward":
1232double: 1
1233float: 1
1234ldouble: 2
1235
1236Function: "pow_towardzero":
1237double: 1
1238float: 1
1239ldouble: 2
1240
1241Function: "pow_upward":
1242double: 1
1243float: 1
1244ldouble: 2
1245
1246Function: "sin":
1247double: 1
1248float: 1
1249ldouble: 2
1250
1251Function: "sin_downward":
1252double: 1
1253float: 1
1254ldouble: 3
1255
1256Function: "sin_towardzero":
1257double: 1
1258float: 1
1259ldouble: 2
1260
1261Function: "sin_upward":
1262double: 1
1263float: 1
1264ldouble: 3
1265
1266Function: "sincos":
1267double: 1
1268float: 1
1269ldouble: 1
1270
1271Function: "sincos_downward":
1272double: 1
1273float: 1
1274ldouble: 3
1275
1276Function: "sincos_towardzero":
1277double: 1
1278float: 1
1279ldouble: 2
1280
1281Function: "sincos_upward":
1282double: 1
1283float: 1
1284ldouble: 3
1285
1286Function: "sinh":
1287double: 2
1288float: 2
1289ldouble: 2
1290
1291Function: "sinh_downward":
1292double: 3
1293float: 3
1294ldouble: 3
1295
1296Function: "sinh_towardzero":
1297double: 3
1298float: 2
1299ldouble: 3
1300
1301Function: "sinh_upward":
1302double: 3
1303float: 3
1304ldouble: 4
1305
1306Function: "tan":
1307float: 1
1308ldouble: 1
1309
1310Function: "tan_downward":
1311double: 1
1312float: 2
1313ldouble: 1
1314
1315Function: "tan_towardzero":
1316double: 1
1317float: 1
1318ldouble: 1
1319
1320Function: "tan_upward":
1321double: 1
1322float: 1
1323ldouble: 1
1324
1325Function: "tanh":
1326double: 2
1327float: 2
1328ldouble: 2
1329
1330Function: "tanh_downward":
1331double: 3
1332float: 3
1333ldouble: 4
1334
1335Function: "tanh_towardzero":
1336double: 2
1337float: 2
1338ldouble: 3
1339
1340Function: "tanh_upward":
1341double: 3
1342float: 3
1343ldouble: 3
1344
1345Function: "tgamma":
1346double: 9
1347float: 8
1348ldouble: 4
1349
1350Function: "tgamma_downward":
1351double: 9
1352float: 7
1353ldouble: 5
1354
1355Function: "tgamma_towardzero":
1356double: 9
1357float: 7
1358ldouble: 5
1359
1360Function: "tgamma_upward":
1361double: 9
1362float: 8
1363ldouble: 4
1364
1365Function: "y0":
1366double: 2
1367float: 8
1368ldouble: 3
1369
1370Function: "y0_downward":
1371double: 3
1372float: 8
1373ldouble: 7
1374
1375Function: "y0_towardzero":
1376double: 3
1377float: 8
1378ldouble: 3
1379
1380Function: "y0_upward":
1381double: 2
1382float: 8
1383ldouble: 4
1384
1385Function: "y1":
1386double: 3
1387float: 9
1388ldouble: 5
1389
1390Function: "y1_downward":
1391double: 6
1392float: 8
1393ldouble: 5
1394
1395Function: "y1_towardzero":
1396double: 3
1397float: 9
1398ldouble: 2
1399
1400Function: "y1_upward":
1401double: 6
1402float: 9
1403ldouble: 5
1404
1405Function: "yn":
1406double: 3
1407float: 3
1408ldouble: 5
1409
1410Function: "yn_downward":
1411double: 3
1412float: 4
1413ldouble: 5
1414
1415Function: "yn_towardzero":
1416double: 3
1417float: 3
1418ldouble: 5
1419
1420Function: "yn_upward":
1421double: 4
1422float: 5
1423ldouble: 5
1424
1425# end of automatic generation
1426