1 /* Byte-wise substring search, using the Two-Way algorithm.
2    Copyright (C) 2008-2022 Free Software Foundation, Inc.
3    This file is part of the GNU C Library.
4    Written by Eric Blake <ebb9@byu.net>, 2008.
5 
6    The GNU C Library is free software; you can redistribute it and/or
7    modify it under the terms of the GNU Lesser General Public
8    License as published by the Free Software Foundation; either
9    version 2.1 of the License, or (at your option) any later version.
10 
11    The GNU C Library is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14    Lesser General Public License for more details.
15 
16    You should have received a copy of the GNU Lesser General Public
17    License along with the GNU C Library; if not, see
18    <https://www.gnu.org/licenses/>.  */
19 
20 /* Before including this file, you need to include <string.h> (and
21    <config.h> before that, if not part of libc), and define:
22      RETURN_TYPE             A macro that expands to the return type.
23      AVAILABLE(h, h_l, j, n_l)
24 			     A macro that returns nonzero if there are
25 			     at least N_L bytes left starting at H[J].
26 			     H is 'unsigned char *', H_L, J, and N_L
27 			     are 'size_t'; H_L is an lvalue.  For
28 			     NUL-terminated searches, H_L can be
29 			     modified each iteration to avoid having
30 			     to compute the end of H up front.
31 
32   For case-insensitivity, you may optionally define:
33      CMP_FUNC(p1, p2, l)     A macro that returns 0 iff the first L
34 			     characters of P1 and P2 are equal.
35      CANON_ELEMENT(c)        A macro that canonicalizes an element right after
36 			     it has been fetched from one of the two strings.
37 			     The argument is an 'unsigned char'; the result
38 			     must be an 'unsigned char' as well.
39 
40   Other macros you may optionally define:
41      RET0_IF_0(a)            Documented below at default definition.
42      CHECK_EOL               Same.
43 
44   This file undefines the macros listed above, and defines
45   LONG_NEEDLE_THRESHOLD.
46 */
47 
48 #include <limits.h>
49 #include <stdint.h>
50 #include <sys/param.h>                  /* Defines MAX.  */
51 
52 /* We use the Two-Way string matching algorithm, which guarantees
53    linear complexity with constant space.  Additionally, for long
54    needles, we also use a bad character shift table similar to the
55    Boyer-Moore algorithm to achieve improved (potentially sub-linear)
56    performance.
57 
58    See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260
59    and http://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm
60 */
61 
62 /* Point at which computing a bad-byte shift table is likely to be
63    worthwhile.  Small needles should not compute a table, since it
64    adds (1 << CHAR_BIT) + NEEDLE_LEN computations of preparation for a
65    speedup no greater than a factor of NEEDLE_LEN.  The larger the
66    needle, the better the potential performance gain.  On the other
67    hand, on non-POSIX systems with CHAR_BIT larger than eight, the
68    memory required for the table is prohibitive.  */
69 #if CHAR_BIT < 10
70 # define LONG_NEEDLE_THRESHOLD 32U
71 #else
72 # define LONG_NEEDLE_THRESHOLD SIZE_MAX
73 #endif
74 
75 #ifndef CANON_ELEMENT
76 # define CANON_ELEMENT(c) c
77 #endif
78 #ifndef CMP_FUNC
79 # define CMP_FUNC memcmp
80 #endif
81 
82 /* Check for end-of-line in strstr and strcasestr routines.
83    We piggy-back matching procedure for detecting EOL where possible,
84    and use AVAILABLE macro otherwise.  */
85 #ifndef CHECK_EOL
86 # define CHECK_EOL (0)
87 #endif
88 
89 /* Return NULL if argument is '\0'.  */
90 #ifndef RET0_IF_0
91 # define RET0_IF_0(a) /* nothing */
92 #endif
93 
94 /* Perform a critical factorization of NEEDLE, of length NEEDLE_LEN.
95    Return the index of the first byte in the right half, and set
96    *PERIOD to the global period of the right half.
97 
98    The global period of a string is the smallest index (possibly its
99    length) at which all remaining bytes in the string are repetitions
100    of the prefix (the last repetition may be a subset of the prefix).
101 
102    When NEEDLE is factored into two halves, a local period is the
103    length of the smallest word that shares a suffix with the left half
104    and shares a prefix with the right half.  All factorizations of a
105    non-empty NEEDLE have a local period of at least 1 and no greater
106    than NEEDLE_LEN.
107 
108    A critical factorization has the property that the local period
109    equals the global period.  All strings have at least one critical
110    factorization with the left half smaller than the global period.
111 
112    Given an ordered alphabet, a critical factorization can be computed
113    in linear time, with 2 * NEEDLE_LEN comparisons, by computing the
114    larger of two ordered maximal suffixes.  The ordered maximal
115    suffixes are determined by lexicographic comparison of
116    periodicity.  */
117 static size_t
critical_factorization(const unsigned char * needle,size_t needle_len,size_t * period)118 critical_factorization (const unsigned char *needle, size_t needle_len,
119 			size_t *period)
120 {
121   /* Index of last byte of left half, or SIZE_MAX.  */
122   size_t max_suffix, max_suffix_rev;
123   size_t j; /* Index into NEEDLE for current candidate suffix.  */
124   size_t k; /* Offset into current period.  */
125   size_t p; /* Intermediate period.  */
126   unsigned char a, b; /* Current comparison bytes.  */
127 
128   /* Invariants:
129      0 <= j < NEEDLE_LEN - 1
130      -1 <= max_suffix{,_rev} < j (treating SIZE_MAX as if it were signed)
131      min(max_suffix, max_suffix_rev) < global period of NEEDLE
132      1 <= p <= global period of NEEDLE
133      p == global period of the substring NEEDLE[max_suffix{,_rev}+1...j]
134      1 <= k <= p
135   */
136 
137   /* Perform lexicographic search.  */
138   max_suffix = SIZE_MAX;
139   j = 0;
140   k = p = 1;
141   while (j + k < needle_len)
142     {
143       a = CANON_ELEMENT (needle[j + k]);
144       b = CANON_ELEMENT (needle[max_suffix + k]);
145       if (a < b)
146 	{
147 	  /* Suffix is smaller, period is entire prefix so far.  */
148 	  j += k;
149 	  k = 1;
150 	  p = j - max_suffix;
151 	}
152       else if (a == b)
153 	{
154 	  /* Advance through repetition of the current period.  */
155 	  if (k != p)
156 	    ++k;
157 	  else
158 	    {
159 	      j += p;
160 	      k = 1;
161 	    }
162 	}
163       else /* b < a */
164 	{
165 	  /* Suffix is larger, start over from current location.  */
166 	  max_suffix = j++;
167 	  k = p = 1;
168 	}
169     }
170   *period = p;
171 
172   /* Perform reverse lexicographic search.  */
173   max_suffix_rev = SIZE_MAX;
174   j = 0;
175   k = p = 1;
176   while (j + k < needle_len)
177     {
178       a = CANON_ELEMENT (needle[j + k]);
179       b = CANON_ELEMENT (needle[max_suffix_rev + k]);
180       if (b < a)
181 	{
182 	  /* Suffix is smaller, period is entire prefix so far.  */
183 	  j += k;
184 	  k = 1;
185 	  p = j - max_suffix_rev;
186 	}
187       else if (a == b)
188 	{
189 	  /* Advance through repetition of the current period.  */
190 	  if (k != p)
191 	    ++k;
192 	  else
193 	    {
194 	      j += p;
195 	      k = 1;
196 	    }
197 	}
198       else /* a < b */
199 	{
200 	  /* Suffix is larger, start over from current location.  */
201 	  max_suffix_rev = j++;
202 	  k = p = 1;
203 	}
204     }
205 
206   /* Choose the longer suffix.  Return the first byte of the right
207      half, rather than the last byte of the left half.  */
208   if (max_suffix_rev + 1 < max_suffix + 1)
209     return max_suffix + 1;
210   *period = p;
211   return max_suffix_rev + 1;
212 }
213 
214 /* Return the first location of non-empty NEEDLE within HAYSTACK, or
215    NULL.  HAYSTACK_LEN is the minimum known length of HAYSTACK.  This
216    method is optimized for NEEDLE_LEN < LONG_NEEDLE_THRESHOLD.
217    Performance is guaranteed to be linear, with an initialization cost
218    of 2 * NEEDLE_LEN comparisons.
219 
220    If AVAILABLE does not modify HAYSTACK_LEN (as in memmem), then at
221    most 2 * HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching.
222    If AVAILABLE modifies HAYSTACK_LEN (as in strstr), then at most 3 *
223    HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching.  */
224 static inline RETURN_TYPE
two_way_short_needle(const unsigned char * haystack,size_t haystack_len,const unsigned char * needle,size_t needle_len)225 two_way_short_needle (const unsigned char *haystack, size_t haystack_len,
226 		      const unsigned char *needle, size_t needle_len)
227 {
228   size_t i; /* Index into current byte of NEEDLE.  */
229   size_t j; /* Index into current window of HAYSTACK.  */
230   size_t period; /* The period of the right half of needle.  */
231   size_t suffix; /* The index of the right half of needle.  */
232 
233   /* Factor the needle into two halves, such that the left half is
234      smaller than the global period, and the right half is
235      periodic (with a period as large as NEEDLE_LEN - suffix).  */
236   suffix = critical_factorization (needle, needle_len, &period);
237 
238   /* Perform the search.  Each iteration compares the right half
239      first.  */
240   if (CMP_FUNC (needle, needle + period, suffix) == 0)
241     {
242       /* Entire needle is periodic; a mismatch can only advance by the
243 	 period, so use memory to avoid rescanning known occurrences
244 	 of the period.  */
245       size_t memory = 0;
246       j = 0;
247       while (AVAILABLE (haystack, haystack_len, j, needle_len))
248 	{
249 	  const unsigned char *pneedle;
250 	  const unsigned char *phaystack;
251 
252 	  /* Scan for matches in right half.  */
253 	  i = MAX (suffix, memory);
254 	  pneedle = &needle[i];
255 	  phaystack = &haystack[i + j];
256 	  while (i < needle_len && (CANON_ELEMENT (*pneedle++)
257 				    == CANON_ELEMENT (*phaystack++)))
258 	    ++i;
259 	  if (needle_len <= i)
260 	    {
261 	      /* Scan for matches in left half.  */
262 	      i = suffix - 1;
263 	      pneedle = &needle[i];
264 	      phaystack = &haystack[i + j];
265 	      while (memory < i + 1 && (CANON_ELEMENT (*pneedle--)
266 					== CANON_ELEMENT (*phaystack--)))
267 		--i;
268 	      if (i + 1 < memory + 1)
269 		return (RETURN_TYPE) (haystack + j);
270 	      /* No match, so remember how many repetitions of period
271 		 on the right half were scanned.  */
272 	      j += period;
273 	      memory = needle_len - period;
274 	    }
275 	  else
276 	    {
277 	      j += i - suffix + 1;
278 	      memory = 0;
279 	    }
280 	}
281     }
282   else
283     {
284       const unsigned char *phaystack;
285       /* The comparison always starts from needle[suffix], so cache it
286 	 and use an optimized first-character loop.  */
287       unsigned char needle_suffix = CANON_ELEMENT (needle[suffix]);
288 
289       /* The two halves of needle are distinct; no extra memory is
290 	 required, and any mismatch results in a maximal shift.  */
291       period = MAX (suffix, needle_len - suffix) + 1;
292       j = 0;
293       while (AVAILABLE (haystack, haystack_len, j, needle_len))
294 	{
295 	  unsigned char haystack_char;
296 	  const unsigned char *pneedle;
297 
298 	  phaystack = &haystack[suffix + j];
299 
300 #ifdef FASTSEARCH
301 	  if (*phaystack++ != needle_suffix)
302 	    {
303 	      phaystack = FASTSEARCH (phaystack, needle_suffix,
304 				      haystack_len - needle_len - j);
305 	      if (phaystack == NULL)
306 		goto ret0;
307 	      j = phaystack - &haystack[suffix];
308 	      phaystack++;
309 	    }
310 #else
311 	  while (needle_suffix
312 	      != (haystack_char = CANON_ELEMENT (*phaystack++)))
313 	    {
314 	      RET0_IF_0 (haystack_char);
315 # if !CHECK_EOL
316 	      ++j;
317 	      if (!AVAILABLE (haystack, haystack_len, j, needle_len))
318 		goto ret0;
319 # endif
320 	    }
321 
322 # if CHECK_EOL
323 	  /* Calculate J if it wasn't kept up-to-date in the first-character
324 	     loop.  */
325 	  j = phaystack - &haystack[suffix] - 1;
326 # endif
327 #endif
328 	  /* Scan for matches in right half.  */
329 	  i = suffix + 1;
330 	  pneedle = &needle[i];
331 	  while (i < needle_len)
332 	    {
333 	      if (CANON_ELEMENT (*pneedle++)
334 		  != (haystack_char = CANON_ELEMENT (*phaystack++)))
335 		{
336 		  RET0_IF_0 (haystack_char);
337 		  break;
338 		}
339 	      ++i;
340 	    }
341 #if CHECK_EOL
342 	  /* Update minimal length of haystack.  */
343 	  if (phaystack > haystack + haystack_len)
344 	    haystack_len = phaystack - haystack;
345 #endif
346 	  if (needle_len <= i)
347 	    {
348 	      /* Scan for matches in left half.  */
349 	      i = suffix - 1;
350 	      pneedle = &needle[i];
351 	      phaystack = &haystack[i + j];
352 	      while (i != SIZE_MAX)
353 		{
354 		  if (CANON_ELEMENT (*pneedle--)
355 		      != (haystack_char = CANON_ELEMENT (*phaystack--)))
356 		    {
357 		      RET0_IF_0 (haystack_char);
358 		      break;
359 		    }
360 		  --i;
361 		}
362 	      if (i == SIZE_MAX)
363 		return (RETURN_TYPE) (haystack + j);
364 	      j += period;
365 	    }
366 	  else
367 	    j += i - suffix + 1;
368 	}
369     }
370  ret0: __attribute__ ((unused))
371   return NULL;
372 }
373 
374 /* Return the first location of non-empty NEEDLE within HAYSTACK, or
375    NULL.  HAYSTACK_LEN is the minimum known length of HAYSTACK.  This
376    method is optimized for LONG_NEEDLE_THRESHOLD <= NEEDLE_LEN.
377    Performance is guaranteed to be linear, with an initialization cost
378    of 3 * NEEDLE_LEN + (1 << CHAR_BIT) operations.
379 
380    If AVAILABLE does not modify HAYSTACK_LEN (as in memmem), then at
381    most 2 * HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching,
382    and sublinear performance O(HAYSTACK_LEN / NEEDLE_LEN) is possible.
383    If AVAILABLE modifies HAYSTACK_LEN (as in strstr), then at most 3 *
384    HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching, and
385    sublinear performance is not possible.
386 
387    Since this function is large and complex, block inlining to avoid
388    slowing down the common case of small needles.  */
389 __attribute__((noinline)) static RETURN_TYPE
two_way_long_needle(const unsigned char * haystack,size_t haystack_len,const unsigned char * needle,size_t needle_len)390 two_way_long_needle (const unsigned char *haystack, size_t haystack_len,
391 		     const unsigned char *needle, size_t needle_len)
392 {
393   size_t i; /* Index into current byte of NEEDLE.  */
394   size_t j; /* Index into current window of HAYSTACK.  */
395   size_t period; /* The period of the right half of needle.  */
396   size_t suffix; /* The index of the right half of needle.  */
397   size_t shift_table[1U << CHAR_BIT]; /* See below.  */
398 
399   /* Factor the needle into two halves, such that the left half is
400      smaller than the global period, and the right half is
401      periodic (with a period as large as NEEDLE_LEN - suffix).  */
402   suffix = critical_factorization (needle, needle_len, &period);
403 
404   /* Populate shift_table.  For each possible byte value c,
405      shift_table[c] is the distance from the last occurrence of c to
406      the end of NEEDLE, or NEEDLE_LEN if c is absent from the NEEDLE.
407      shift_table[NEEDLE[NEEDLE_LEN - 1]] contains the only 0.  */
408   for (i = 0; i < 1U << CHAR_BIT; i++)
409     shift_table[i] = needle_len;
410   for (i = 0; i < needle_len; i++)
411     shift_table[CANON_ELEMENT (needle[i])] = needle_len - i - 1;
412 
413   /* Perform the search.  Each iteration compares the right half
414      first.  */
415   if (CMP_FUNC (needle, needle + period, suffix) == 0)
416     {
417       /* Entire needle is periodic; a mismatch can only advance by the
418 	 period, so use memory to avoid rescanning known occurrences
419 	 of the period.  */
420       size_t memory = 0;
421       size_t shift;
422       j = 0;
423       while (AVAILABLE (haystack, haystack_len, j, needle_len))
424 	{
425 	  const unsigned char *pneedle;
426 	  const unsigned char *phaystack;
427 
428 	  /* Check the last byte first; if it does not match, then
429 	     shift to the next possible match location.  */
430 	  shift = shift_table[CANON_ELEMENT (haystack[j + needle_len - 1])];
431 	  if (0 < shift)
432 	    {
433 	      if (memory && shift < period)
434 		{
435 		  /* Since needle is periodic, but the last period has
436 		     a byte out of place, there can be no match until
437 		     after the mismatch.  */
438 		  shift = needle_len - period;
439 		}
440 	      memory = 0;
441 	      j += shift;
442 	      continue;
443 	    }
444 	  /* Scan for matches in right half.  The last byte has
445 	     already been matched, by virtue of the shift table.  */
446 	  i = MAX (suffix, memory);
447 	  pneedle = &needle[i];
448 	  phaystack = &haystack[i + j];
449 	  while (i < needle_len - 1 && (CANON_ELEMENT (*pneedle++)
450 					== CANON_ELEMENT (*phaystack++)))
451 	    ++i;
452 	  if (needle_len - 1 <= i)
453 	    {
454 	      /* Scan for matches in left half.  */
455 	      i = suffix - 1;
456 	      pneedle = &needle[i];
457 	      phaystack = &haystack[i + j];
458 	      while (memory < i + 1 && (CANON_ELEMENT (*pneedle--)
459 					== CANON_ELEMENT (*phaystack--)))
460 		--i;
461 	      if (i + 1 < memory + 1)
462 		return (RETURN_TYPE) (haystack + j);
463 	      /* No match, so remember how many repetitions of period
464 		 on the right half were scanned.  */
465 	      j += period;
466 	      memory = needle_len - period;
467 	    }
468 	  else
469 	    {
470 	      j += i - suffix + 1;
471 	      memory = 0;
472 	    }
473 	}
474     }
475   else
476     {
477       /* The two halves of needle are distinct; no extra memory is
478 	 required, and any mismatch results in a maximal shift.  */
479       size_t shift;
480       period = MAX (suffix, needle_len - suffix) + 1;
481       j = 0;
482       while (AVAILABLE (haystack, haystack_len, j, needle_len))
483 	{
484 	  const unsigned char *pneedle;
485 	  const unsigned char *phaystack;
486 
487 	  /* Check the last byte first; if it does not match, then
488 	     shift to the next possible match location.  */
489 	  shift = shift_table[CANON_ELEMENT (haystack[j + needle_len - 1])];
490 	  if (0 < shift)
491 	    {
492 	      j += shift;
493 	      continue;
494 	    }
495 	  /* Scan for matches in right half.  The last byte has
496 	     already been matched, by virtue of the shift table.  */
497 	  i = suffix;
498 	  pneedle = &needle[i];
499 	  phaystack = &haystack[i + j];
500 	  while (i < needle_len - 1 && (CANON_ELEMENT (*pneedle++)
501 					== CANON_ELEMENT (*phaystack++)))
502 	    ++i;
503 	  if (needle_len - 1 <= i)
504 	    {
505 	      /* Scan for matches in left half.  */
506 	      i = suffix - 1;
507 	      pneedle = &needle[i];
508 	      phaystack = &haystack[i + j];
509 	      while (i != SIZE_MAX && (CANON_ELEMENT (*pneedle--)
510 				       == CANON_ELEMENT (*phaystack--)))
511 		--i;
512 	      if (i == SIZE_MAX)
513 		return (RETURN_TYPE) (haystack + j);
514 	      j += period;
515 	    }
516 	  else
517 	    j += i - suffix + 1;
518 	}
519     }
520   return NULL;
521 }
522 
523 #undef AVAILABLE
524 #undef CANON_ELEMENT
525 #undef CMP_FUNC
526 #undef RET0_IF_0
527 #undef RETURN_TYPE
528 #undef CHECK_EOL
529