1 /* Copyright (C) 1991-2022 Free Software Foundation, Inc.
2    This file is part of the GNU C Library.
3 
4    The GNU C Library is free software; you can redistribute it and/or
5    modify it under the terms of the GNU Lesser General Public
6    License as published by the Free Software Foundation; either
7    version 2.1 of the License, or (at your option) any later version.
8 
9    The GNU C Library is distributed in the hope that it will be useful,
10    but WITHOUT ANY WARRANTY; without even the implied warranty of
11    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12    Lesser General Public License for more details.
13 
14    You should have received a copy of the GNU Lesser General Public
15    License along with the GNU C Library; if not, see
16    <https://www.gnu.org/licenses/>.  */
17 
18 /* If you consider tuning this algorithm, you should consult first:
19    Engineering a sort function; Jon Bentley and M. Douglas McIlroy;
20    Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993.  */
21 
22 #include <alloca.h>
23 #include <limits.h>
24 #include <stdlib.h>
25 #include <string.h>
26 
27 /* Byte-wise swap two items of size SIZE. */
28 #define SWAP(a, b, size)						      \
29   do									      \
30     {									      \
31       size_t __size = (size);						      \
32       char *__a = (a), *__b = (b);					      \
33       do								      \
34 	{								      \
35 	  char __tmp = *__a;						      \
36 	  *__a++ = *__b;						      \
37 	  *__b++ = __tmp;						      \
38 	} while (--__size > 0);						      \
39     } while (0)
40 
41 /* Discontinue quicksort algorithm when partition gets below this size.
42    This particular magic number was chosen to work best on a Sun 4/260. */
43 #define MAX_THRESH 4
44 
45 /* Stack node declarations used to store unfulfilled partition obligations. */
46 typedef struct
47   {
48     char *lo;
49     char *hi;
50   } stack_node;
51 
52 /* The next 4 #defines implement a very fast in-line stack abstraction. */
53 /* The stack needs log (total_elements) entries (we could even subtract
54    log(MAX_THRESH)).  Since total_elements has type size_t, we get as
55    upper bound for log (total_elements):
56    bits per byte (CHAR_BIT) * sizeof(size_t).  */
57 #define STACK_SIZE	(CHAR_BIT * sizeof (size_t))
58 #define PUSH(low, high)	((void) ((top->lo = (low)), (top->hi = (high)), ++top))
59 #define	POP(low, high)	((void) (--top, (low = top->lo), (high = top->hi)))
60 #define	STACK_NOT_EMPTY	(stack < top)
61 
62 
63 /* Order size using quicksort.  This implementation incorporates
64    four optimizations discussed in Sedgewick:
65 
66    1. Non-recursive, using an explicit stack of pointer that store the
67       next array partition to sort.  To save time, this maximum amount
68       of space required to store an array of SIZE_MAX is allocated on the
69       stack.  Assuming a 32-bit (64 bit) integer for size_t, this needs
70       only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).
71       Pretty cheap, actually.
72 
73    2. Chose the pivot element using a median-of-three decision tree.
74       This reduces the probability of selecting a bad pivot value and
75       eliminates certain extraneous comparisons.
76 
77    3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
78       insertion sort to order the MAX_THRESH items within each partition.
79       This is a big win, since insertion sort is faster for small, mostly
80       sorted array segments.
81 
82    4. The larger of the two sub-partitions is always pushed onto the
83       stack first, with the algorithm then concentrating on the
84       smaller partition.  This *guarantees* no more than log (total_elems)
85       stack size is needed (actually O(1) in this case)!  */
86 
87 void
_quicksort(void * const pbase,size_t total_elems,size_t size,__compar_d_fn_t cmp,void * arg)88 _quicksort (void *const pbase, size_t total_elems, size_t size,
89 	    __compar_d_fn_t cmp, void *arg)
90 {
91   char *base_ptr = (char *) pbase;
92 
93   const size_t max_thresh = MAX_THRESH * size;
94 
95   if (total_elems == 0)
96     /* Avoid lossage with unsigned arithmetic below.  */
97     return;
98 
99   if (total_elems > MAX_THRESH)
100     {
101       char *lo = base_ptr;
102       char *hi = &lo[size * (total_elems - 1)];
103       stack_node stack[STACK_SIZE];
104       stack_node *top = stack;
105 
106       PUSH (NULL, NULL);
107 
108       while (STACK_NOT_EMPTY)
109         {
110           char *left_ptr;
111           char *right_ptr;
112 
113 	  /* Select median value from among LO, MID, and HI. Rearrange
114 	     LO and HI so the three values are sorted. This lowers the
115 	     probability of picking a pathological pivot value and
116 	     skips a comparison for both the LEFT_PTR and RIGHT_PTR in
117 	     the while loops. */
118 
119 	  char *mid = lo + size * ((hi - lo) / size >> 1);
120 
121 	  if ((*cmp) ((void *) mid, (void *) lo, arg) < 0)
122 	    SWAP (mid, lo, size);
123 	  if ((*cmp) ((void *) hi, (void *) mid, arg) < 0)
124 	    SWAP (mid, hi, size);
125 	  else
126 	    goto jump_over;
127 	  if ((*cmp) ((void *) mid, (void *) lo, arg) < 0)
128 	    SWAP (mid, lo, size);
129 	jump_over:;
130 
131 	  left_ptr  = lo + size;
132 	  right_ptr = hi - size;
133 
134 	  /* Here's the famous ``collapse the walls'' section of quicksort.
135 	     Gotta like those tight inner loops!  They are the main reason
136 	     that this algorithm runs much faster than others. */
137 	  do
138 	    {
139 	      while ((*cmp) ((void *) left_ptr, (void *) mid, arg) < 0)
140 		left_ptr += size;
141 
142 	      while ((*cmp) ((void *) mid, (void *) right_ptr, arg) < 0)
143 		right_ptr -= size;
144 
145 	      if (left_ptr < right_ptr)
146 		{
147 		  SWAP (left_ptr, right_ptr, size);
148 		  if (mid == left_ptr)
149 		    mid = right_ptr;
150 		  else if (mid == right_ptr)
151 		    mid = left_ptr;
152 		  left_ptr += size;
153 		  right_ptr -= size;
154 		}
155 	      else if (left_ptr == right_ptr)
156 		{
157 		  left_ptr += size;
158 		  right_ptr -= size;
159 		  break;
160 		}
161 	    }
162 	  while (left_ptr <= right_ptr);
163 
164           /* Set up pointers for next iteration.  First determine whether
165              left and right partitions are below the threshold size.  If so,
166              ignore one or both.  Otherwise, push the larger partition's
167              bounds on the stack and continue sorting the smaller one. */
168 
169           if ((size_t) (right_ptr - lo) <= max_thresh)
170             {
171               if ((size_t) (hi - left_ptr) <= max_thresh)
172 		/* Ignore both small partitions. */
173                 POP (lo, hi);
174               else
175 		/* Ignore small left partition. */
176                 lo = left_ptr;
177             }
178           else if ((size_t) (hi - left_ptr) <= max_thresh)
179 	    /* Ignore small right partition. */
180             hi = right_ptr;
181           else if ((right_ptr - lo) > (hi - left_ptr))
182             {
183 	      /* Push larger left partition indices. */
184               PUSH (lo, right_ptr);
185               lo = left_ptr;
186             }
187           else
188             {
189 	      /* Push larger right partition indices. */
190               PUSH (left_ptr, hi);
191               hi = right_ptr;
192             }
193         }
194     }
195 
196   /* Once the BASE_PTR array is partially sorted by quicksort the rest
197      is completely sorted using insertion sort, since this is efficient
198      for partitions below MAX_THRESH size. BASE_PTR points to the beginning
199      of the array to sort, and END_PTR points at the very last element in
200      the array (*not* one beyond it!). */
201 
202 #define min(x, y) ((x) < (y) ? (x) : (y))
203 
204   {
205     char *const end_ptr = &base_ptr[size * (total_elems - 1)];
206     char *tmp_ptr = base_ptr;
207     char *thresh = min(end_ptr, base_ptr + max_thresh);
208     char *run_ptr;
209 
210     /* Find smallest element in first threshold and place it at the
211        array's beginning.  This is the smallest array element,
212        and the operation speeds up insertion sort's inner loop. */
213 
214     for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
215       if ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, arg) < 0)
216         tmp_ptr = run_ptr;
217 
218     if (tmp_ptr != base_ptr)
219       SWAP (tmp_ptr, base_ptr, size);
220 
221     /* Insertion sort, running from left-hand-side up to right-hand-side.  */
222 
223     run_ptr = base_ptr + size;
224     while ((run_ptr += size) <= end_ptr)
225       {
226 	tmp_ptr = run_ptr - size;
227 	while ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, arg) < 0)
228 	  tmp_ptr -= size;
229 
230 	tmp_ptr += size;
231         if (tmp_ptr != run_ptr)
232           {
233             char *trav;
234 
235 	    trav = run_ptr + size;
236 	    while (--trav >= run_ptr)
237               {
238                 char c = *trav;
239                 char *hi, *lo;
240 
241                 for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
242                   *hi = *lo;
243                 *hi = c;
244               }
245           }
246       }
247   }
248 }
249