1 /* Complex cosine hyperbolic function for float types.
2    Copyright (C) 1997-2022 Free Software Foundation, Inc.
3    This file is part of the GNU C Library.
4 
5    The GNU C Library is free software; you can redistribute it and/or
6    modify it under the terms of the GNU Lesser General Public
7    License as published by the Free Software Foundation; either
8    version 2.1 of the License, or (at your option) any later version.
9 
10    The GNU C Library is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13    Lesser General Public License for more details.
14 
15    You should have received a copy of the GNU Lesser General Public
16    License along with the GNU C Library; if not, see
17    <https://www.gnu.org/licenses/>.  */
18 
19 #include <complex.h>
20 #include <fenv.h>
21 #include <math.h>
22 #include <math_private.h>
23 #include <math-underflow.h>
24 #include <float.h>
25 
26 CFLOAT
M_DECL_FUNC(__ccosh)27 M_DECL_FUNC (__ccosh) (CFLOAT x)
28 {
29   CFLOAT retval;
30   int rcls = fpclassify (__real__ x);
31   int icls = fpclassify (__imag__ x);
32 
33   if (__glibc_likely (rcls >= FP_ZERO))
34     {
35       /* Real part is finite.  */
36       if (__glibc_likely (icls >= FP_ZERO))
37 	{
38 	  /* Imaginary part is finite.  */
39 	  const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2));
40 	  FLOAT sinix, cosix;
41 
42 	  if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
43 	    {
44 	      M_SINCOS (__imag__ x, &sinix, &cosix);
45 	    }
46 	  else
47 	    {
48 	      sinix = __imag__ x;
49 	      cosix = 1;
50 	    }
51 
52 	  if (M_FABS (__real__ x) > t)
53 	    {
54 	      FLOAT exp_t = M_EXP (t);
55 	      FLOAT rx = M_FABS (__real__ x);
56 	      if (signbit (__real__ x))
57 		sinix = -sinix;
58 	      rx -= t;
59 	      sinix *= exp_t / 2;
60 	      cosix *= exp_t / 2;
61 	      if (rx > t)
62 		{
63 		  rx -= t;
64 		  sinix *= exp_t;
65 		  cosix *= exp_t;
66 		}
67 	      if (rx > t)
68 		{
69 		  /* Overflow (original real part of x > 3t).  */
70 		  __real__ retval = M_MAX * cosix;
71 		  __imag__ retval = M_MAX * sinix;
72 		}
73 	      else
74 		{
75 		  FLOAT exp_val = M_EXP (rx);
76 		  __real__ retval = exp_val * cosix;
77 		  __imag__ retval = exp_val * sinix;
78 		}
79 	    }
80 	  else
81 	    {
82 	      __real__ retval = M_COSH (__real__ x) * cosix;
83 	      __imag__ retval = M_SINH (__real__ x) * sinix;
84 	    }
85 
86 	  math_check_force_underflow_complex (retval);
87 	}
88       else
89 	{
90 	  __imag__ retval = __real__ x == 0 ? 0 : M_NAN;
91 	  __real__ retval = __imag__ x - __imag__ x;
92 	}
93     }
94   else if (rcls == FP_INFINITE)
95     {
96       /* Real part is infinite.  */
97       if (__glibc_likely (icls > FP_ZERO))
98 	{
99 	  /* Imaginary part is finite.  */
100 	  FLOAT sinix, cosix;
101 
102 	  if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
103 	    {
104 	      M_SINCOS (__imag__ x, &sinix, &cosix);
105 	    }
106 	  else
107 	    {
108 	      sinix = __imag__ x;
109 	      cosix = 1;
110 	    }
111 
112 	  __real__ retval = M_COPYSIGN (M_HUGE_VAL, cosix);
113 	  __imag__ retval = (M_COPYSIGN (M_HUGE_VAL, sinix)
114 			     * M_COPYSIGN (1, __real__ x));
115 	}
116       else if (icls == FP_ZERO)
117 	{
118 	  /* Imaginary part is 0.0.  */
119 	  __real__ retval = M_HUGE_VAL;
120 	  __imag__ retval = __imag__ x * M_COPYSIGN (1, __real__ x);
121 	}
122       else
123 	{
124 	  __real__ retval = M_HUGE_VAL;
125 	  __imag__ retval = __imag__ x - __imag__ x;
126 	}
127     }
128   else
129     {
130       __real__ retval = M_NAN;
131       __imag__ retval = __imag__ x == 0 ? __imag__ x : M_NAN;
132     }
133 
134   return retval;
135 }
136 
137 declare_mgen_alias (__ccosh, ccosh);
138