1 /* Return arc hyperbolic sine for a complex float type, with the
2    imaginary part of the result possibly adjusted for use in
3    computing other functions.
4    Copyright (C) 1997-2022 Free Software Foundation, Inc.
5    This file is part of the GNU C Library.
6 
7    The GNU C Library is free software; you can redistribute it and/or
8    modify it under the terms of the GNU Lesser General Public
9    License as published by the Free Software Foundation; either
10    version 2.1 of the License, or (at your option) any later version.
11 
12    The GNU C Library is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15    Lesser General Public License for more details.
16 
17    You should have received a copy of the GNU Lesser General Public
18    License along with the GNU C Library; if not, see
19    <https://www.gnu.org/licenses/>.  */
20 
21 #include <complex.h>
22 #include <math.h>
23 #include <math_private.h>
24 #include <math-underflow.h>
25 #include <float.h>
26 
27 /* Return the complex inverse hyperbolic sine of finite nonzero Z,
28    with the imaginary part of the result subtracted from pi/2 if ADJ
29    is nonzero.  */
30 
31 CFLOAT
M_DECL_FUNC(__kernel_casinh)32 M_DECL_FUNC (__kernel_casinh) (CFLOAT x, int adj)
33 {
34   CFLOAT res;
35   FLOAT rx, ix;
36   CFLOAT y;
37 
38   /* Avoid cancellation by reducing to the first quadrant.  */
39   rx = M_FABS (__real__ x);
40   ix = M_FABS (__imag__ x);
41 
42   if (rx >= 1 / M_EPSILON || ix >= 1 / M_EPSILON)
43     {
44       /* For large x in the first quadrant, x + csqrt (1 + x * x)
45 	 is sufficiently close to 2 * x to make no significant
46 	 difference to the result; avoid possible overflow from
47 	 the squaring and addition.  */
48       __real__ y = rx;
49       __imag__ y = ix;
50 
51       if (adj)
52 	{
53 	  FLOAT t = __real__ y;
54 	  __real__ y = M_COPYSIGN (__imag__ y, __imag__ x);
55 	  __imag__ y = t;
56 	}
57 
58       res = M_SUF (__clog) (y);
59       __real__ res += M_MLIT (M_LN2);
60     }
61   else if (rx >= M_LIT (0.5) && ix < M_EPSILON / 8)
62     {
63       FLOAT s = M_HYPOT (1, rx);
64 
65       __real__ res = M_LOG (rx + s);
66       if (adj)
67 	__imag__ res = M_ATAN2 (s, __imag__ x);
68       else
69 	__imag__ res = M_ATAN2 (ix, s);
70     }
71   else if (rx < M_EPSILON / 8 && ix >= M_LIT (1.5))
72     {
73       FLOAT s = M_SQRT ((ix + 1) * (ix - 1));
74 
75       __real__ res = M_LOG (ix + s);
76       if (adj)
77 	__imag__ res = M_ATAN2 (rx, M_COPYSIGN (s, __imag__ x));
78       else
79 	__imag__ res = M_ATAN2 (s, rx);
80     }
81   else if (ix > 1 && ix < M_LIT (1.5) && rx < M_LIT (0.5))
82     {
83       if (rx < M_EPSILON * M_EPSILON)
84 	{
85 	  FLOAT ix2m1 = (ix + 1) * (ix - 1);
86 	  FLOAT s = M_SQRT (ix2m1);
87 
88 	  __real__ res = M_LOG1P (2 * (ix2m1 + ix * s)) / 2;
89 	  if (adj)
90 	    __imag__ res = M_ATAN2 (rx, M_COPYSIGN (s, __imag__ x));
91 	  else
92 	    __imag__ res = M_ATAN2 (s, rx);
93 	}
94       else
95 	{
96 	  FLOAT ix2m1 = (ix + 1) * (ix - 1);
97 	  FLOAT rx2 = rx * rx;
98 	  FLOAT f = rx2 * (2 + rx2 + 2 * ix * ix);
99 	  FLOAT d = M_SQRT (ix2m1 * ix2m1 + f);
100 	  FLOAT dp = d + ix2m1;
101 	  FLOAT dm = f / dp;
102 	  FLOAT r1 = M_SQRT ((dm + rx2) / 2);
103 	  FLOAT r2 = rx * ix / r1;
104 
105 	  __real__ res = M_LOG1P (rx2 + dp + 2 * (rx * r1 + ix * r2)) / 2;
106 	  if (adj)
107 	    __imag__ res = M_ATAN2 (rx + r1, M_COPYSIGN (ix + r2, __imag__ x));
108 	  else
109 	    __imag__ res = M_ATAN2 (ix + r2, rx + r1);
110 	}
111     }
112   else if (ix == 1 && rx < M_LIT (0.5))
113     {
114       if (rx < M_EPSILON / 8)
115 	{
116 	  __real__ res = M_LOG1P (2 * (rx + M_SQRT (rx))) / 2;
117 	  if (adj)
118 	    __imag__ res = M_ATAN2 (M_SQRT (rx), M_COPYSIGN (1, __imag__ x));
119 	  else
120 	    __imag__ res = M_ATAN2 (1, M_SQRT (rx));
121 	}
122       else
123 	{
124 	  FLOAT d = rx * M_SQRT (4 + rx * rx);
125 	  FLOAT s1 = M_SQRT ((d + rx * rx) / 2);
126 	  FLOAT s2 = M_SQRT ((d - rx * rx) / 2);
127 
128 	  __real__ res = M_LOG1P (rx * rx + d + 2 * (rx * s1 + s2)) / 2;
129 	  if (adj)
130 	    __imag__ res = M_ATAN2 (rx + s1, M_COPYSIGN (1 + s2, __imag__ x));
131 	  else
132 	    __imag__ res = M_ATAN2 (1 + s2, rx + s1);
133 	}
134     }
135   else if (ix < 1 && rx < M_LIT (0.5))
136     {
137       if (ix >= M_EPSILON)
138 	{
139 	  if (rx < M_EPSILON * M_EPSILON)
140 	    {
141 	      FLOAT onemix2 = (1 + ix) * (1 - ix);
142 	      FLOAT s = M_SQRT (onemix2);
143 
144 	      __real__ res = M_LOG1P (2 * rx / s) / 2;
145 	      if (adj)
146 		__imag__ res = M_ATAN2 (s, __imag__ x);
147 	      else
148 		__imag__ res = M_ATAN2 (ix, s);
149 	    }
150 	  else
151 	    {
152 	      FLOAT onemix2 = (1 + ix) * (1 - ix);
153 	      FLOAT rx2 = rx * rx;
154 	      FLOAT f = rx2 * (2 + rx2 + 2 * ix * ix);
155 	      FLOAT d = M_SQRT (onemix2 * onemix2 + f);
156 	      FLOAT dp = d + onemix2;
157 	      FLOAT dm = f / dp;
158 	      FLOAT r1 = M_SQRT ((dp + rx2) / 2);
159 	      FLOAT r2 = rx * ix / r1;
160 
161 	      __real__ res = M_LOG1P (rx2 + dm + 2 * (rx * r1 + ix * r2)) / 2;
162 	      if (adj)
163 		__imag__ res = M_ATAN2 (rx + r1, M_COPYSIGN (ix + r2,
164 							     __imag__ x));
165 	      else
166 		__imag__ res = M_ATAN2 (ix + r2, rx + r1);
167 	    }
168 	}
169       else
170 	{
171 	  FLOAT s = M_HYPOT (1, rx);
172 
173 	  __real__ res = M_LOG1P (2 * rx * (rx + s)) / 2;
174 	  if (adj)
175 	    __imag__ res = M_ATAN2 (s, __imag__ x);
176 	  else
177 	    __imag__ res = M_ATAN2 (ix, s);
178 	}
179       math_check_force_underflow_nonneg (__real__ res);
180     }
181   else
182     {
183       __real__ y = (rx - ix) * (rx + ix) + 1;
184       __imag__ y = 2 * rx * ix;
185 
186       y = M_SUF (__csqrt) (y);
187 
188       __real__ y += rx;
189       __imag__ y += ix;
190 
191       if (adj)
192 	{
193 	  FLOAT t = __real__ y;
194 	  __real__ y = M_COPYSIGN (__imag__ y, __imag__ x);
195 	  __imag__ y = t;
196 	}
197 
198       res = M_SUF (__clog) (y);
199     }
200 
201   /* Give results the correct sign for the original argument.  */
202   __real__ res = M_COPYSIGN (__real__ res, __real__ x);
203   __imag__ res = M_COPYSIGN (__imag__ res, (adj ? 1 : __imag__ x));
204 
205   return res;
206 }
207