1 /* Sort array of link maps according to dependencies.
2    Copyright (C) 2017-2022 Free Software Foundation, Inc.
3    This file is part of the GNU C Library.
4 
5    The GNU C Library is free software; you can redistribute it and/or
6    modify it under the terms of the GNU Lesser General Public
7    License as published by the Free Software Foundation; either
8    version 2.1 of the License, or (at your option) any later version.
9 
10    The GNU C Library is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13    Lesser General Public License for more details.
14 
15    You should have received a copy of the GNU Lesser General Public
16    License along with the GNU C Library; if not, see
17    <https://www.gnu.org/licenses/>.  */
18 
19 #include <assert.h>
20 #include <ldsodefs.h>
21 #include <elf/dl-tunables.h>
22 
23 /* Note: this is the older, "original" sorting algorithm, being used as
24    default up to 2.35.
25 
26    Sort array MAPS according to dependencies of the contained objects.
27    If FOR_FINI is true, this is called for finishing an object.  */
28 static void
_dl_sort_maps_original(struct link_map ** maps,unsigned int nmaps,unsigned int skip,bool for_fini)29 _dl_sort_maps_original (struct link_map **maps, unsigned int nmaps,
30 			unsigned int skip, bool for_fini)
31 {
32   /* Allows caller to do the common optimization of skipping the first map,
33      usually the main binary.  */
34   maps += skip;
35   nmaps -= skip;
36 
37   /* A list of one element need not be sorted.  */
38   if (nmaps <= 1)
39     return;
40 
41   unsigned int i = 0;
42   uint16_t seen[nmaps];
43   memset (seen, 0, nmaps * sizeof (seen[0]));
44   while (1)
45     {
46       /* Keep track of which object we looked at this round.  */
47       ++seen[i];
48       struct link_map *thisp = maps[i];
49 
50       if (__glibc_unlikely (for_fini))
51 	{
52 	  /* Do not handle ld.so in secondary namespaces and objects which
53 	     are not removed.  */
54 	  if (thisp != thisp->l_real || thisp->l_idx == -1)
55 	    goto skip;
56 	}
57 
58       /* Find the last object in the list for which the current one is
59 	 a dependency and move the current object behind the object
60 	 with the dependency.  */
61       unsigned int k = nmaps - 1;
62       while (k > i)
63 	{
64 	  struct link_map **runp = maps[k]->l_initfini;
65 	  if (runp != NULL)
66 	    /* Look through the dependencies of the object.  */
67 	    while (*runp != NULL)
68 	      if (__glibc_unlikely (*runp++ == thisp))
69 		{
70 		move:
71 		  /* Move the current object to the back past the last
72 		     object with it as the dependency.  */
73 		  memmove (&maps[i], &maps[i + 1],
74 			   (k - i) * sizeof (maps[0]));
75 		  maps[k] = thisp;
76 
77 		  if (seen[i + 1] > nmaps - i)
78 		    {
79 		      ++i;
80 		      goto next_clear;
81 		    }
82 
83 		  uint16_t this_seen = seen[i];
84 		  memmove (&seen[i], &seen[i + 1], (k - i) * sizeof (seen[0]));
85 		  seen[k] = this_seen;
86 
87 		  goto next;
88 		}
89 
90 	  if (__glibc_unlikely (for_fini && maps[k]->l_reldeps != NULL))
91 	    {
92 	      unsigned int m = maps[k]->l_reldeps->act;
93 	      struct link_map **relmaps = &maps[k]->l_reldeps->list[0];
94 
95 	      /* Look through the relocation dependencies of the object.  */
96 	      while (m-- > 0)
97 		if (__glibc_unlikely (relmaps[m] == thisp))
98 		  {
99 		    /* If a cycle exists with a link time dependency,
100 		       preserve the latter.  */
101 		    struct link_map **runp = thisp->l_initfini;
102 		    if (runp != NULL)
103 		      while (*runp != NULL)
104 			if (__glibc_unlikely (*runp++ == maps[k]))
105 			  goto ignore;
106 		    goto move;
107 		  }
108 	    ignore:;
109 	    }
110 
111 	  --k;
112 	}
113 
114     skip:
115       if (++i == nmaps)
116 	break;
117     next_clear:
118       memset (&seen[i], 0, (nmaps - i) * sizeof (seen[0]));
119 
120     next:;
121     }
122 }
123 
124 #if !HAVE_TUNABLES
125 /* In this case, just default to the original algorithm.  */
126 strong_alias (_dl_sort_maps_original, _dl_sort_maps);
127 #else
128 
129 /* We use a recursive function due to its better clarity and ease of
130    implementation, as well as faster execution speed. We already use
131    alloca() for list allocation during the breadth-first search of
132    dependencies in _dl_map_object_deps(), and this should be on the
133    same order of worst-case stack usage.
134 
135    Note: the '*rpo' parameter is supposed to point to one past the
136    last element of the array where we save the sort results, and is
137    decremented before storing the current map at each level.  */
138 
139 static void
dfs_traversal(struct link_map *** rpo,struct link_map * map,bool * do_reldeps)140 dfs_traversal (struct link_map ***rpo, struct link_map *map,
141 	       bool *do_reldeps)
142 {
143   /* _dl_map_object_deps ignores l_faked objects when calculating the
144      number of maps before calling _dl_sort_maps, ignore them as well.  */
145   if (map->l_visited || map->l_faked)
146     return;
147 
148   map->l_visited = 1;
149 
150   if (map->l_initfini)
151     {
152       for (int i = 0; map->l_initfini[i] != NULL; i++)
153 	{
154 	  struct link_map *dep = map->l_initfini[i];
155 	  if (dep->l_visited == 0
156 	      && dep->l_main_map == 0)
157 	    dfs_traversal (rpo, dep, do_reldeps);
158 	}
159     }
160 
161   if (__glibc_unlikely (do_reldeps != NULL && map->l_reldeps != NULL))
162     {
163       /* Indicate that we encountered relocation dependencies during
164 	 traversal.  */
165       *do_reldeps = true;
166 
167       for (int m = map->l_reldeps->act - 1; m >= 0; m--)
168 	{
169 	  struct link_map *dep = map->l_reldeps->list[m];
170 	  if (dep->l_visited == 0
171 	      && dep->l_main_map == 0)
172 	    dfs_traversal (rpo, dep, do_reldeps);
173 	}
174     }
175 
176   *rpo -= 1;
177   **rpo = map;
178 }
179 
180 /* Topologically sort array MAPS according to dependencies of the contained
181    objects.  */
182 
183 static void
_dl_sort_maps_dfs(struct link_map ** maps,unsigned int nmaps,unsigned int skip,bool for_fini)184 _dl_sort_maps_dfs (struct link_map **maps, unsigned int nmaps,
185 		   unsigned int skip __attribute__ ((unused)), bool for_fini)
186 {
187   for (int i = nmaps - 1; i >= 0; i--)
188     maps[i]->l_visited = 0;
189 
190   /* We apply DFS traversal for each of maps[i] until the whole total order
191      is found and we're at the start of the Reverse-Postorder (RPO) sequence,
192      which is a topological sort.
193 
194      We go from maps[nmaps - 1] backwards towards maps[0] at this level.
195      Due to the breadth-first search (BFS) ordering we receive, going
196      backwards usually gives a more shallow depth-first recursion depth,
197      adding more stack usage safety. Also, combined with the natural
198      processing order of l_initfini[] at each node during DFS, this maintains
199      an ordering closer to the original link ordering in the sorting results
200      under most simpler cases.
201 
202      Another reason we order the top level backwards, it that maps[0] is
203      usually exactly the main object of which we're in the midst of
204      _dl_map_object_deps() processing, and maps[0]->l_initfini[] is still
205      blank. If we start the traversal from maps[0], since having no
206      dependencies yet filled in, maps[0] will always be immediately
207      incorrectly placed at the last place in the order (first in reverse).
208      Adjusting the order so that maps[0] is last traversed naturally avoids
209      this problem.
210 
211      Further, the old "optimization" of skipping the main object at maps[0]
212      from the call-site (i.e. _dl_sort_maps(maps+1,nmaps-1)) is in general
213      no longer valid, since traversing along object dependency-links
214      may "find" the main object even when it is not included in the initial
215      order (e.g. a dlopen()'ed shared object can have circular dependencies
216      linked back to itself). In such a case, traversing N-1 objects will
217      create a N-object result, and raise problems.
218 
219      To summarize, just passing in the full list, and iterating from back
220      to front makes things much more straightforward.  */
221 
222   /* Array to hold RPO sorting results, before we copy back to maps[].  */
223   struct link_map *rpo[nmaps];
224 
225   /* The 'head' position during each DFS iteration. Note that we start at
226      one past the last element due to first-decrement-then-store (see the
227      bottom of above dfs_traversal() routine).  */
228   struct link_map **rpo_head = &rpo[nmaps];
229 
230   bool do_reldeps = false;
231   bool *do_reldeps_ref = (for_fini ? &do_reldeps : NULL);
232 
233   for (int i = nmaps - 1; i >= 0; i--)
234     {
235       dfs_traversal (&rpo_head, maps[i], do_reldeps_ref);
236 
237       /* We can break early if all objects are already placed.  */
238       if (rpo_head == rpo)
239 	goto end;
240     }
241   assert (rpo_head == rpo);
242 
243  end:
244   /* Here we may do a second pass of sorting, using only l_initfini[]
245      static dependency links. This is avoided if !FOR_FINI or if we didn't
246      find any reldeps in the first DFS traversal.
247 
248      The reason we do this is: while it is unspecified how circular
249      dependencies should be handled, the presumed reasonable behavior is to
250      have destructors to respect static dependency links as much as possible,
251      overriding reldeps if needed. And the first sorting pass, which takes
252      l_initfini/l_reldeps links equally, may not preserve this priority.
253 
254      Hence we do a 2nd sorting pass, taking only DT_NEEDED links into account
255      (see how the do_reldeps argument to dfs_traversal() is NULL below).  */
256   if (do_reldeps)
257     {
258       for (int i = nmaps - 1; i >= 0; i--)
259 	rpo[i]->l_visited = 0;
260 
261       struct link_map **maps_head = &maps[nmaps];
262       for (int i = nmaps - 1; i >= 0; i--)
263 	{
264 	  dfs_traversal (&maps_head, rpo[i], NULL);
265 
266 	  /* We can break early if all objects are already placed.
267 	     The below memcpy is not needed in the do_reldeps case here,
268 	     since we wrote back to maps[] during DFS traversal.  */
269 	  if (maps_head == maps)
270 	    return;
271 	}
272       assert (maps_head == maps);
273       return;
274     }
275 
276   memcpy (maps, rpo, sizeof (struct link_map *) * nmaps);
277 }
278 
279 void
_dl_sort_maps_init(void)280 _dl_sort_maps_init (void)
281 {
282   int32_t algorithm = TUNABLE_GET (glibc, rtld, dynamic_sort, int32_t, NULL);
283   GLRO(dl_dso_sort_algo) = algorithm == 1 ? dso_sort_algorithm_original
284 					  : dso_sort_algorithm_dfs;
285 }
286 
287 void
_dl_sort_maps(struct link_map ** maps,unsigned int nmaps,unsigned int skip,bool for_fini)288 _dl_sort_maps (struct link_map **maps, unsigned int nmaps,
289 	       unsigned int skip, bool for_fini)
290 {
291   /* It can be tempting to use a static function pointer to store and call
292      the current selected sorting algorithm routine, but experimentation
293      shows that current processors still do not handle indirect branches
294      that efficiently, plus a static function pointer will involve
295      PTR_MANGLE/DEMANGLE, further impairing performance of small, common
296      input cases. A simple if-case with direct function calls appears to
297      be the fastest.  */
298   if (__glibc_likely (GLRO(dl_dso_sort_algo) == dso_sort_algorithm_original))
299     _dl_sort_maps_original (maps, nmaps, skip, for_fini);
300   else
301     _dl_sort_maps_dfs (maps, nmaps, skip, for_fini);
302 }
303 
304 #endif /* HAVE_TUNABLES.  */
305