1 /*
2  * Copyright (C) 2018 Denys Vlasenko
3  *
4  * Licensed under GPLv2, see file LICENSE in this source tree.
5  */
6 #include "tls.h"
7 
8 typedef uint8_t  byte;
9 typedef uint16_t word16;
10 typedef uint32_t word32;
11 #define XMEMSET  memset
12 
13 #define F25519_SIZE CURVE25519_KEYSIZE
14 
15 /* The code below is taken from wolfssl-3.15.3/wolfcrypt/src/fe_low_mem.c
16  * Header comment is kept intact:
17  */
18 
19 /* fe_low_mem.c
20  *
21  * Copyright (C) 2006-2017 wolfSSL Inc.
22  *
23  * This file is part of wolfSSL.
24  *
25  * wolfSSL is free software; you can redistribute it and/or modify
26  * it under the terms of the GNU General Public License as published by
27  * the Free Software Foundation; either version 2 of the License, or
28  * (at your option) any later version.
29  *
30  * wolfSSL is distributed in the hope that it will be useful,
31  * but WITHOUT ANY WARRANTY; without even the implied warranty of
32  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
33  * GNU General Public License for more details.
34  *
35  * You should have received a copy of the GNU General Public License
36  * along with this program; if not, write to the Free Software
37  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
38  */
39 
40 
41 /* Based from Daniel Beer's public domain work. */
42 
43 #if 0 //UNUSED
44 static void fprime_copy(byte *x, const byte *a)
45 {
46 	memcpy(x, a, F25519_SIZE);
47 }
48 #endif
49 
lm_copy(byte * x,const byte * a)50 static void lm_copy(byte* x, const byte* a)
51 {
52 	memcpy(x, a, F25519_SIZE);
53 }
54 
55 #if 0 //UNUSED
56 static void fprime_select(byte *dst, const byte *zero, const byte *one, byte condition)
57 {
58 	const byte mask = -condition;
59 	int i;
60 
61 	for (i = 0; i < F25519_SIZE; i++)
62 		dst[i] = zero[i] ^ (mask & (one[i] ^ zero[i]));
63 }
64 #endif
65 
66 #if 0 /* constant-time */
67 static void fe_select(byte *dst,
68 		const byte *src,
69 		byte condition)
70 {
71 	const byte mask = -condition;
72 	int i;
73 
74 	for (i = 0; i < F25519_SIZE; i++)
75 		dst[i] = dst[i] ^ (mask & (src[i] ^ dst[i]));
76 }
77 #else
78 # define fe_select(dst, src, condition) do { \
79 	if (condition) lm_copy(dst, src); \
80 } while (0)
81 #endif
82 
83 #if 0 //UNUSED
84 static void raw_add(byte *x, const byte *p)
85 {
86 	word16 c = 0;
87 	int i;
88 
89 	for (i = 0; i < F25519_SIZE; i++) {
90 		c += ((word16)x[i]) + ((word16)p[i]);
91 		x[i] = (byte)c;
92 		c >>= 8;
93 	}
94 }
95 #endif
96 
97 #if 0 //UNUSED
98 static void raw_try_sub(byte *x, const byte *p)
99 {
100 	byte minusp[F25519_SIZE];
101 	word16 c = 0;
102 	int i;
103 
104 	for (i = 0; i < F25519_SIZE; i++) {
105 		c = ((word16)x[i]) - ((word16)p[i]) - c;
106 		minusp[i] = (byte)c;
107 		c = (c >> 8) & 1;
108 	}
109 
110 	fprime_select(x, minusp, x, (byte)c);
111 }
112 #endif
113 
114 #if 0 //UNUSED
115 static int prime_msb(const byte *p)
116 {
117 	int i;
118 	byte x;
119 	int shift = 1;
120 	int z     = F25519_SIZE - 1;
121 
122 	/*
123 	    Test for any hot bits.
124 	    As soon as one instance is encountered set shift to 0.
125 	 */
126 	for (i = F25519_SIZE - 1; i >= 0; i--) {
127 		shift &= ((shift ^ ((-p[i] | p[i]) >> 7)) & 1);
128 		z -= shift;
129 	}
130 	x = p[z];
131 	z <<= 3;
132 	shift = 1;
133 	for (i = 0; i < 8; i++) {
134 		shift &= ((-(x >> i) | (x >> i)) >> (7 - i) & 1);
135 		z += shift;
136 	}
137 
138 	return z - 1;
139 }
140 #endif
141 
142 #if 0 //UNUSED
143 static void fprime_add(byte *r, const byte *a, const byte *modulus)
144 {
145 	raw_add(r, a);
146 	raw_try_sub(r, modulus);
147 }
148 #endif
149 
150 #if 0 //UNUSED
151 static void fprime_sub(byte *r, const byte *a, const byte *modulus)
152 {
153 	raw_add(r, modulus);
154 	raw_try_sub(r, a);
155 	raw_try_sub(r, modulus);
156 }
157 #endif
158 
159 #if 0 //UNUSED
160 static void fprime_mul(byte *r, const byte *a, const byte *b,
161 		const byte *modulus)
162 {
163 	word16 c = 0;
164 	int i,j;
165 
166 	XMEMSET(r, 0, F25519_SIZE);
167 
168 	for (i = prime_msb(modulus); i >= 0; i--) {
169 		const byte bit = (b[i >> 3] >> (i & 7)) & 1;
170 		byte plusa[F25519_SIZE];
171 
172 		for (j = 0; j < F25519_SIZE; j++) {
173 			c |= ((word16)r[j]) << 1;
174 			r[j] = (byte)c;
175 			c >>= 8;
176 		}
177 		raw_try_sub(r, modulus);
178 
179 		fprime_copy(plusa, r);
180 		fprime_add(plusa, a, modulus);
181 
182 		fprime_select(r, r, plusa, bit);
183 	}
184 }
185 #endif
186 
187 #if 0 //UNUSED
188 static void fe_load(byte *x, word32 c)
189 {
190 	int i;
191 
192 	for (i = 0; i < sizeof(c); i++) {
193 		x[i] = c;
194 		c >>= 8;
195 	}
196 
197 	for (; i < F25519_SIZE; i++)
198 		x[i] = 0;
199 }
200 #endif
201 
fe_reduce(byte * x,word32 c)202 static void fe_reduce(byte *x, word32 c)
203 {
204 	int i;
205 
206 	/* Reduce using 2^255 = 19 mod p */
207 	x[31] = c & 127;
208 	c = (c >> 7) * 19;
209 
210 	for (i = 0; i < F25519_SIZE; i++) {
211 		c += x[i];
212 		x[i] = (byte)c;
213 		c >>= 8;
214 	}
215 }
216 
fe_normalize(byte * x)217 static void fe_normalize(byte *x)
218 {
219 	byte minusp[F25519_SIZE];
220 	unsigned c;
221 	int i;
222 
223 	/* Reduce using 2^255 = 19 mod p */
224 	fe_reduce(x, x[31]);
225 
226 	/* The number is now less than 2^255 + 18, and therefore less than
227 	 * 2p. Try subtracting p, and conditionally load the subtracted
228 	 * value if underflow did not occur.
229 	 */
230 	c = 19;
231 
232 	for (i = 0; i < F25519_SIZE - 1; i++) {
233 		c += x[i];
234 		minusp[i] = (byte)c;
235 		c >>= 8;
236 	}
237 
238 	c += ((unsigned)x[i]) - 128;
239 	minusp[31] = (byte)c;
240 
241 	/* Load x-p if no underflow */
242 	fe_select(x, minusp, !(c & (1<<15)));
243 }
244 
lm_add(byte * r,const byte * a,const byte * b)245 static void lm_add(byte* r, const byte* a, const byte* b)
246 {
247 	unsigned c = 0;
248 	int i;
249 
250 	/* Add */
251 	for (i = 0; i < F25519_SIZE; i++) {
252 		c >>= 8;
253 		c += ((unsigned)a[i]) + ((unsigned)b[i]);
254 		r[i] = (byte)c;
255 	}
256 
257 	/* Reduce with 2^255 = 19 mod p */
258 	fe_reduce(r, c);
259 }
260 
lm_sub(byte * r,const byte * a,const byte * b)261 static void lm_sub(byte* r, const byte* a, const byte* b)
262 {
263 	word32 c = 0;
264 	int i;
265 
266 	/* Calculate a + 2p - b, to avoid underflow */
267 	c = 218;
268 	for (i = 0; i < F25519_SIZE - 1; i++) {
269 		c += 65280 + ((word32)a[i]) - ((word32)b[i]);
270 		r[i] = c;
271 		c >>= 8;
272 	}
273 
274 	c += ((word32)a[31]) - ((word32)b[31]);
275 
276 	fe_reduce(r, c);
277 }
278 
279 #if 0 //UNUSED
280 static void lm_neg(byte* r, const byte* a)
281 {
282 	word32 c = 0;
283 	int i;
284 
285 	/* Calculate 2p - a, to avoid underflow */
286 	c = 218;
287 	for (i = 0; i < F25519_SIZE - 1; i++) {
288 		c += 65280 - ((word32)a[i]);
289 		r[i] = c;
290 		c >>= 8;
291 	}
292 
293 	c -= ((word32)a[31]);
294 
295 	fe_reduce(r, c);
296 }
297 #endif
298 
fe_mul__distinct(byte * r,const byte * a,const byte * b)299 static void fe_mul__distinct(byte *r, const byte *a, const byte *b)
300 {
301 	word32 c = 0;
302 	int i;
303 
304 	for (i = 0; i < F25519_SIZE; i++) {
305 		int j;
306 
307 		c >>= 8;
308 		for (j = 0; j <= i; j++)
309 			c += ((word32)a[j]) * ((word32)b[i - j]);
310 
311 		for (; j < F25519_SIZE; j++)
312 			c += ((word32)a[j]) *
313 				((word32)b[i + F25519_SIZE - j]) * 38;
314 
315 		r[i] = c;
316 	}
317 
318 	fe_reduce(r, c);
319 }
320 
321 #if 0 //UNUSED
322 static void lm_mul(byte *r, const byte* a, const byte *b)
323 {
324 	byte tmp[F25519_SIZE];
325 
326 	fe_mul__distinct(tmp, a, b);
327 	lm_copy(r, tmp);
328 }
329 #endif
330 
fe_mul_c(byte * r,const byte * a,word32 b)331 static void fe_mul_c(byte *r, const byte *a, word32 b)
332 {
333 	word32 c = 0;
334 	int i;
335 
336 	for (i = 0; i < F25519_SIZE; i++) {
337 		c >>= 8;
338 		c += b * ((word32)a[i]);
339 		r[i] = c;
340 	}
341 
342 	fe_reduce(r, c);
343 }
344 
fe_inv__distinct(byte * r,const byte * x)345 static void fe_inv__distinct(byte *r, const byte *x)
346 {
347 	byte s[F25519_SIZE];
348 	int i;
349 
350 	/* This is a prime field, so by Fermat's little theorem:
351 	 *
352 	 *     x^(p-1) = 1 mod p
353 	 *
354 	 * Therefore, raise to (p-2) = 2^255-21 to get a multiplicative
355 	 * inverse.
356 	 *
357 	 * This is a 255-bit binary number with the digits:
358 	 *
359 	 *     11111111... 01011
360 	 *
361 	 * We compute the result by the usual binary chain, but
362 	 * alternate between keeping the accumulator in r and s, so as
363 	 * to avoid copying temporaries.
364 	 */
365 
366 	lm_copy(r, x);
367 
368 	/* 1, 1 x 249 */
369 	for (i = 0; i < 249; i++) {
370 		fe_mul__distinct(s, r, r);
371 		fe_mul__distinct(r, s, x);
372 	}
373 
374 	/* 0 */
375 	fe_mul__distinct(s, r, r);
376 
377 	/* 1 */
378 	fe_mul__distinct(r, s, s);
379 	fe_mul__distinct(s, r, x);
380 
381 	/* 0 */
382 	fe_mul__distinct(r, s, s);
383 
384 	/* 1, 1 */
385 	for (i = 0; i < 2; i++) {
386 		fe_mul__distinct(s, r, r);
387 		fe_mul__distinct(r, s, x);
388 	}
389 }
390 
391 #if 0 //UNUSED
392 static void lm_invert(byte *r, const byte *x)
393 {
394 	byte tmp[F25519_SIZE];
395 
396 	fe_inv__distinct(tmp, x);
397 	lm_copy(r, tmp);
398 }
399 #endif
400 
401 #if 0 //UNUSED
402 /* Raise x to the power of (p-5)/8 = 2^252-3, using s for temporary
403  * storage.
404  */
405 static void exp2523(byte *r, const byte *x, byte *s)
406 {
407 	int i;
408 
409 	/* This number is a 252-bit number with the binary expansion:
410 	 *
411 	 *     111111... 01
412 	 */
413 
414 	lm_copy(s, x);
415 
416 	/* 1, 1 x 249 */
417 	for (i = 0; i < 249; i++) {
418 		fe_mul__distinct(r, s, s);
419 		fe_mul__distinct(s, r, x);
420 	}
421 
422 	/* 0 */
423 	fe_mul__distinct(r, s, s);
424 
425 	/* 1 */
426 	fe_mul__distinct(s, r, r);
427 	fe_mul__distinct(r, s, x);
428 }
429 #endif
430 
431 #if 0 //UNUSED
432 static void fe_sqrt(byte *r, const byte *a)
433 {
434 	byte v[F25519_SIZE];
435 	byte i[F25519_SIZE];
436 	byte x[F25519_SIZE];
437 	byte y[F25519_SIZE];
438 
439 	/* v = (2a)^((p-5)/8) [x = 2a] */
440 	fe_mul_c(x, a, 2);
441 	exp2523(v, x, y);
442 
443 	/* i = 2av^2 - 1 */
444 	fe_mul__distinct(y, v, v);
445 	fe_mul__distinct(i, x, y);
446 	fe_load(y, 1);
447 	lm_sub(i, i, y);
448 
449 	/* r = avi */
450 	fe_mul__distinct(x, v, a);
451 	fe_mul__distinct(r, x, i);
452 }
453 #endif
454 
455 /* Differential addition */
xc_diffadd(byte * x5,byte * z5,const byte * x1,const byte * z1,const byte * x2,const byte * z2,const byte * x3,const byte * z3)456 static void xc_diffadd(byte *x5, byte *z5,
457 		const byte *x1, const byte *z1,
458 		const byte *x2, const byte *z2,
459 		const byte *x3, const byte *z3)
460 {
461 	/* Explicit formulas database: dbl-1987-m3
462 	 *
463 	 * source 1987 Montgomery "Speeding the Pollard and elliptic curve
464 	 *   methods of factorization", page 261, fifth display, plus
465 	 *   common-subexpression elimination
466 	 * compute A = X2+Z2
467 	 * compute B = X2-Z2
468 	 * compute C = X3+Z3
469 	 * compute D = X3-Z3
470 	 * compute DA = D A
471 	 * compute CB = C B
472 	 * compute X5 = Z1(DA+CB)^2
473 	 * compute Z5 = X1(DA-CB)^2
474 	 */
475 	byte da[F25519_SIZE];
476 	byte cb[F25519_SIZE];
477 	byte a[F25519_SIZE];
478 	byte b[F25519_SIZE];
479 
480 	lm_add(a, x2, z2);
481 	lm_sub(b, x3, z3); /* D */
482 	fe_mul__distinct(da, a, b);
483 
484 	lm_sub(b, x2, z2);
485 	lm_add(a, x3, z3); /* C */
486 	fe_mul__distinct(cb, a, b);
487 
488 	lm_add(a, da, cb);
489 	fe_mul__distinct(b, a, a);
490 	fe_mul__distinct(x5, z1, b);
491 
492 	lm_sub(a, da, cb);
493 	fe_mul__distinct(b, a, a);
494 	fe_mul__distinct(z5, x1, b);
495 }
496 
497 /* Double an X-coordinate */
xc_double(byte * x3,byte * z3,const byte * x1,const byte * z1)498 static void xc_double(byte *x3, byte *z3,
499 		const byte *x1, const byte *z1)
500 {
501 	/* Explicit formulas database: dbl-1987-m
502 	 *
503 	 * source 1987 Montgomery "Speeding the Pollard and elliptic
504 	 *   curve methods of factorization", page 261, fourth display
505 	 * compute X3 = (X1^2-Z1^2)^2
506 	 * compute Z3 = 4 X1 Z1 (X1^2 + a X1 Z1 + Z1^2)
507 	 */
508 	byte x1sq[F25519_SIZE];
509 	byte z1sq[F25519_SIZE];
510 	byte x1z1[F25519_SIZE];
511 	byte a[F25519_SIZE];
512 
513 	fe_mul__distinct(x1sq, x1, x1);
514 	fe_mul__distinct(z1sq, z1, z1);
515 	fe_mul__distinct(x1z1, x1, z1);
516 
517 	lm_sub(a, x1sq, z1sq);
518 	fe_mul__distinct(x3, a, a);
519 
520 	fe_mul_c(a, x1z1, 486662);
521 	lm_add(a, x1sq, a);
522 	lm_add(a, z1sq, a);
523 	fe_mul__distinct(x1sq, x1z1, a);
524 	fe_mul_c(z3, x1sq, 4);
525 }
526 
curve25519(byte * result,const byte * e,const byte * q)527 static void curve25519(byte *result, const byte *e, const byte *q)
528 {
529 	int i;
530 
531 	struct Z {
532 		/* for bbox's special case of q == NULL meaning "use basepoint" */
533 		/*static const*/ uint8_t basepoint9[CURVE25519_KEYSIZE]; // = {9};
534 
535 		/* from wolfssl-3.15.3/wolfssl/wolfcrypt/fe_operations.h */
536 		/*static const*/ byte f25519_one[F25519_SIZE]; // = {1};
537 
538 		/* Predecessor: P_(m-1) */
539 		byte xm1[F25519_SIZE]; // = {1};
540 		byte zm1[F25519_SIZE]; // = {0};
541 		/* Current point: P_m */
542 		byte xm[F25519_SIZE];
543 		byte zm[F25519_SIZE]; // = {1};
544 		/* Temporaries */
545 		byte xms[F25519_SIZE];
546 		byte zms[F25519_SIZE];
547 	} z;
548 	uint8_t *XM1 = (uint8_t*)&z + offsetof(struct Z,xm1); // gcc 11.0.0 workaround
549 #define basepoint9 z.basepoint9
550 #define f25519_one z.f25519_one
551 #define xm1        z.xm1
552 #define zm1        z.zm1
553 #define xm         z.xm
554 #define zm         z.zm
555 #define xms        z.xms
556 #define zms        z.zms
557 	memset(&z, 0, sizeof(z));
558 	f25519_one[0] = 1;
559 	zm[0] = 1;
560 	xm1[0] = 1;
561 
562 	if (!q) {
563 		basepoint9[0] = 9;
564 		q = basepoint9;
565 	}
566 
567 	/* Note: bit 254 is assumed to be 1 */
568 	lm_copy(xm, q);
569 
570 	for (i = 253; i >= 0; i--) {
571 		const int bit = (e[i >> 3] >> (i & 7)) & 1;
572 //		byte xms[F25519_SIZE];
573 //		byte zms[F25519_SIZE];
574 
575 		/* From P_m and P_(m-1), compute P_(2m) and P_(2m-1) */
576 		xc_diffadd(xm1, zm1, q, f25519_one, xm, zm, xm1, zm1);
577 		xc_double(xm, zm, xm, zm);
578 
579 		/* Compute P_(2m+1) */
580 		xc_diffadd(xms, zms, xm1, zm1, xm, zm, q, f25519_one);
581 
582 		/* Select:
583 		 *   bit = 1 --> (P_(2m+1), P_(2m))
584 		 *   bit = 0 --> (P_(2m), P_(2m-1))
585 		 */
586 #if 0
587 		fe_select(xm1, xm, bit);
588 		fe_select(zm1, zm, bit);
589 		fe_select(xm, xms, bit);
590 		fe_select(zm, zms, bit);
591 #else
592 // same as above in about 50 bytes smaller code, but
593 // requires that in-memory order is exactly xm1,zm1,xm,zm,xms,zms
594 		if (bit) {
595 			//memcpy(xm1, xm, 4 * F25519_SIZE);
596 			//^^^ gcc 11.0.0 warns of overlapping memcpy
597 			//memmove(xm1, xm, 4 * F25519_SIZE);
598 			//^^^ gcc 11.0.0 warns of out-of-bounds access to xm1[]
599 			memmove(XM1, XM1 + 2 * F25519_SIZE, 4 * F25519_SIZE);
600 		}
601 #endif
602 	}
603 
604 	/* Freeze out of projective coordinates */
605 	fe_inv__distinct(zm1, zm);
606 	fe_mul__distinct(result, zm1, xm);
607 	fe_normalize(result);
608 }
609 
610 /* interface to bbox's TLS code: */
611 
curve_x25519_compute_pubkey_and_premaster(uint8_t * pubkey,uint8_t * premaster,const uint8_t * peerkey32)612 void FAST_FUNC curve_x25519_compute_pubkey_and_premaster(
613 		uint8_t *pubkey, uint8_t *premaster,
614 		const uint8_t *peerkey32)
615 {
616 	uint8_t privkey[CURVE25519_KEYSIZE]; //[32]
617 
618 	/* Generate random private key, see RFC 7748 */
619 	tls_get_random(privkey, sizeof(privkey));
620 	privkey[0] &= 0xf8;
621 	privkey[CURVE25519_KEYSIZE-1] = ((privkey[CURVE25519_KEYSIZE-1] & 0x7f) | 0x40);
622 
623 	/* Compute public key */
624 	curve25519(pubkey, privkey, NULL /* "use base point of x25519" */);
625 
626 	/* Compute premaster using peer's public key */
627 	curve25519(premaster, privkey, peerkey32);
628 }
629