1 use log::debug; 2 use system_error::SystemError; 3 4 use super::{vcpu::Vcpu, vm}; 5 use crate::mm::{kernel_mapper::KernelMapper, page::EntryFlags, VirtAddr}; 6 7 /* 8 * Address types: 9 * 10 * gva - guest virtual address 11 * gpa - guest physical address 12 * gfn - guest frame number 13 * hva - host virtual address 14 * hpa - host physical address 15 * hfn - host frame number 16 */ 17 pub const KVM_USER_MEM_SLOTS: u32 = 16; 18 pub const KVM_PRIVATE_MEM_SLOTS: u32 = 3; 19 pub const KVM_MEM_SLOTS_NUM: u32 = KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS; 20 pub const KVM_ADDRESS_SPACE_NUM: usize = 2; 21 22 pub const KVM_MEM_LOG_DIRTY_PAGES: u32 = 1 << 0; 23 pub const KVM_MEM_READONLY: u32 = 1 << 1; 24 pub const KVM_MEM_MAX_NR_PAGES: u32 = (1 << 31) - 1; 25 26 /* 27 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 28 * in kvm, other bits are visible for userspace which are defined in 29 * include/linux/kvm_h. 30 */ 31 pub const KVM_MEMSLOT_INVALID: u32 = 1 << 16; 32 // pub const KVM_MEMSLOT_INCOHERENT:u32 = 1 << 17; 33 34 // pub const KVM_PERMILLE_MMU_PAGES: u32 = 20; // the proportion of MMU pages required per thousand (out of 1000) memory pages. 35 // pub const KVM_MIN_ALLOC_MMU_PAGES: u32 = 64; 36 37 pub const PAGE_SHIFT: u32 = 12; 38 pub const PAGE_SIZE: u32 = 1 << PAGE_SHIFT; 39 pub const PAGE_MASK: u32 = !(PAGE_SIZE - 1); 40 41 /// 通过这个结构可以将虚拟机的物理地址对应到用户进程的虚拟地址 42 /// 用来表示虚拟机的一段物理内存 43 #[repr(C)] 44 #[derive(Default)] 45 pub struct KvmUserspaceMemoryRegion { 46 pub slot: u32, // 要在哪个slot上注册内存区间 47 // flags有两个取值,KVM_MEM_LOG_DIRTY_PAGES和KVM_MEM_READONLY,用来指示kvm针对这段内存应该做的事情。 48 // KVM_MEM_LOG_DIRTY_PAGES用来开启内存脏页,KVM_MEM_READONLY用来开启内存只读。 49 pub flags: u32, 50 pub guest_phys_addr: u64, // 虚机内存区间起始物理地址 51 pub memory_size: u64, // 虚机内存区间大小 52 pub userspace_addr: u64, // 虚机内存区间对应的主机虚拟地址 53 } 54 55 #[derive(Default, Clone, Copy, Debug)] 56 pub struct KvmMemorySlot { 57 pub base_gfn: u64, // 虚机内存区间起始物理页框号 58 pub npages: u64, // 虚机内存区间页数,即内存区间的大小 59 pub userspace_addr: u64, // 虚机内存区间对应的主机虚拟地址 60 pub flags: u32, // 虚机内存区间属性 61 pub id: u16, // 虚机内存区间id 62 // 用来记录虚机内存区间的脏页信息,每个bit对应一个页,如果bit为1,表示对应的页是脏页,如果bit为0,表示对应的页是干净页。 63 // pub dirty_bitmap: *mut u8, 64 // unsigned long *rmap[KVM_NR_PAGE_SIZES]; 反向映射相关的结构, 创建EPT页表项时就记录GPA对应的页表项地址(GPA-->页表项地址),暂时不需要 65 } 66 67 #[derive(Default, Clone, Copy, Debug)] 68 pub struct KvmMemorySlots { 69 pub memslots: [KvmMemorySlot; KVM_MEM_SLOTS_NUM as usize], // 虚机内存区间数组 70 pub used_slots: u32, // 已经使用的slot数量 71 } 72 73 #[derive(PartialEq, Eq, Debug)] 74 pub enum KvmMemoryChange { 75 Create, 76 Delete, 77 Move, 78 FlagsOnly, 79 } 80 81 pub fn kvm_vcpu_memslots(_vcpu: &mut dyn Vcpu) -> KvmMemorySlots { 82 let kvm = vm(0).unwrap(); 83 let as_id = 0; 84 return kvm.memslots[as_id]; 85 } 86 87 fn __gfn_to_memslot(slots: KvmMemorySlots, gfn: u64) -> Option<KvmMemorySlot> { 88 debug!("__gfn_to_memslot"); 89 // TODO: 使用二分查找的方式优化 90 for i in 0..slots.used_slots { 91 let memslot = slots.memslots[i as usize]; 92 if gfn >= memslot.base_gfn && gfn < memslot.base_gfn + memslot.npages { 93 return Some(memslot); 94 } 95 } 96 return None; 97 } 98 99 fn __gfn_to_hva(slot: KvmMemorySlot, gfn: u64) -> u64 { 100 return slot.userspace_addr + (gfn - slot.base_gfn) * (PAGE_SIZE as u64); 101 } 102 fn __gfn_to_hva_many( 103 slot: Option<KvmMemorySlot>, 104 gfn: u64, 105 nr_pages: Option<&mut u64>, 106 write: bool, 107 ) -> Result<u64, SystemError> { 108 debug!("__gfn_to_hva_many"); 109 if slot.is_none() { 110 return Err(SystemError::KVM_HVA_ERR_BAD); 111 } 112 let slot = slot.unwrap(); 113 if slot.flags & KVM_MEMSLOT_INVALID != 0 || (slot.flags & KVM_MEM_READONLY != 0) && write { 114 return Err(SystemError::KVM_HVA_ERR_BAD); 115 } 116 117 if let Some(nr_pages) = nr_pages { 118 *nr_pages = slot.npages - (gfn - slot.base_gfn); 119 } 120 121 return Ok(__gfn_to_hva(slot, gfn)); 122 } 123 124 /* From Linux kernel 125 * Pin guest page in memory and return its pfn. 126 * @addr: host virtual address which maps memory to the guest 127 * @atomic: whether this function can sleep 128 * @async: whether this function need to wait IO complete if the 129 * host page is not in the memory 130 * @write_fault: whether we should get a writable host page 131 * @writable: whether it allows to map a writable host page for !@write_fault 132 * 133 * The function will map a writable host page for these two cases: 134 * 1): @write_fault = true 135 * 2): @write_fault = false && @writable, @writable will tell the caller 136 * whether the mapping is writable. 137 */ 138 // 计算 HVA 对应的 pfn,同时确保该物理页在内存中 139 // host端虚拟地址到物理地址的转换,有两种方式,hva_to_pfn_fast、hva_to_pfn_slow 140 // 正确性待验证 141 fn hva_to_pfn(addr: u64, _atomic: bool, _writable: &mut bool) -> Result<u64, SystemError> { 142 debug!("hva_to_pfn"); 143 unsafe { 144 let raw = addr as *const i32; 145 debug!("raw={:x}", *raw); 146 } 147 // let hpa = MMArch::virt_2_phys(VirtAddr::new(addr)).unwrap().data() as u64; 148 let hva = VirtAddr::new(addr as usize); 149 let mut mapper = KernelMapper::lock(); 150 let mapper = mapper.as_mut().unwrap(); 151 if let Some((hpa, _)) = mapper.translate(hva) { 152 return Ok(hpa.data() as u64 >> PAGE_SHIFT); 153 } 154 unsafe { 155 mapper.map(hva, EntryFlags::mmio_flags()); 156 } 157 let (hpa, _) = mapper.translate(hva).unwrap(); 158 return Ok(hpa.data() as u64 >> PAGE_SHIFT); 159 } 160 161 pub fn __gfn_to_pfn( 162 slot: Option<KvmMemorySlot>, 163 gfn: u64, 164 atomic: bool, 165 write: bool, 166 writable: &mut bool, 167 ) -> Result<u64, SystemError> { 168 debug!("__gfn_to_pfn"); 169 let mut nr_pages = 0; 170 let addr = __gfn_to_hva_many(slot, gfn, Some(&mut nr_pages), write)?; 171 let pfn = hva_to_pfn(addr, atomic, writable)?; 172 debug!("hva={}, pfn={}", addr, pfn); 173 return Ok(pfn); 174 } 175 176 pub fn kvm_vcpu_gfn_to_memslot(vcpu: &mut dyn Vcpu, gfn: u64) -> Option<KvmMemorySlot> { 177 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 178 } 179