1 use log::debug;
2 use system_error::SystemError;
3
4 use super::{vcpu::Vcpu, vm};
5 use crate::mm::{kernel_mapper::KernelMapper, page::EntryFlags, VirtAddr};
6
7 /*
8 * Address types:
9 *
10 * gva - guest virtual address
11 * gpa - guest physical address
12 * gfn - guest frame number
13 * hva - host virtual address
14 * hpa - host physical address
15 * hfn - host frame number
16 */
17 pub const KVM_USER_MEM_SLOTS: u32 = 16;
18 pub const KVM_PRIVATE_MEM_SLOTS: u32 = 3;
19 pub const KVM_MEM_SLOTS_NUM: u32 = KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS;
20 pub const KVM_ADDRESS_SPACE_NUM: usize = 2;
21
22 pub const KVM_MEM_LOG_DIRTY_PAGES: u32 = 1 << 0;
23 pub const KVM_MEM_READONLY: u32 = 1 << 1;
24 pub const KVM_MEM_MAX_NR_PAGES: u32 = (1 << 31) - 1;
25
26 /*
27 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
28 * in kvm, other bits are visible for userspace which are defined in
29 * include/linux/kvm_h.
30 */
31 pub const KVM_MEMSLOT_INVALID: u32 = 1 << 16;
32 // pub const KVM_MEMSLOT_INCOHERENT:u32 = 1 << 17;
33
34 // pub const KVM_PERMILLE_MMU_PAGES: u32 = 20; // the proportion of MMU pages required per thousand (out of 1000) memory pages.
35 // pub const KVM_MIN_ALLOC_MMU_PAGES: u32 = 64;
36
37 pub const PAGE_SHIFT: u32 = 12;
38 pub const PAGE_SIZE: u32 = 1 << PAGE_SHIFT;
39 pub const PAGE_MASK: u32 = !(PAGE_SIZE - 1);
40
41 /// 通过这个结构可以将虚拟机的物理地址对应到用户进程的虚拟地址
42 /// 用来表示虚拟机的一段物理内存
43 #[repr(C)]
44 #[derive(Default)]
45 pub struct KvmUserspaceMemoryRegion {
46 pub slot: u32, // 要在哪个slot上注册内存区间
47 // flags有两个取值,KVM_MEM_LOG_DIRTY_PAGES和KVM_MEM_READONLY,用来指示kvm针对这段内存应该做的事情。
48 // KVM_MEM_LOG_DIRTY_PAGES用来开启内存脏页,KVM_MEM_READONLY用来开启内存只读。
49 pub flags: u32,
50 pub guest_phys_addr: u64, // 虚机内存区间起始物理地址
51 pub memory_size: u64, // 虚机内存区间大小
52 pub userspace_addr: u64, // 虚机内存区间对应的主机虚拟地址
53 }
54
55 #[derive(Default, Clone, Copy, Debug)]
56 pub struct KvmMemorySlot {
57 pub base_gfn: u64, // 虚机内存区间起始物理页框号
58 pub npages: u64, // 虚机内存区间页数,即内存区间的大小
59 pub userspace_addr: u64, // 虚机内存区间对应的主机虚拟地址
60 pub flags: u32, // 虚机内存区间属性
61 pub id: u16, // 虚机内存区间id
62 // 用来记录虚机内存区间的脏页信息,每个bit对应一个页,如果bit为1,表示对应的页是脏页,如果bit为0,表示对应的页是干净页。
63 // pub dirty_bitmap: *mut u8,
64 // unsigned long *rmap[KVM_NR_PAGE_SIZES]; 反向映射相关的结构, 创建EPT页表项时就记录GPA对应的页表项地址(GPA-->页表项地址),暂时不需要
65 }
66
67 #[derive(Default, Clone, Copy, Debug)]
68 pub struct KvmMemorySlots {
69 pub memslots: [KvmMemorySlot; KVM_MEM_SLOTS_NUM as usize], // 虚机内存区间数组
70 pub used_slots: u32, // 已经使用的slot数量
71 }
72
73 #[derive(PartialEq, Eq, Debug)]
74 pub enum KvmMemoryChange {
75 Create,
76 Delete,
77 Move,
78 FlagsOnly,
79 }
80
kvm_vcpu_memslots(_vcpu: &mut dyn Vcpu) -> KvmMemorySlots81 pub fn kvm_vcpu_memslots(_vcpu: &mut dyn Vcpu) -> KvmMemorySlots {
82 let kvm = vm(0).unwrap();
83 let as_id = 0;
84 return kvm.memslots[as_id];
85 }
86
__gfn_to_memslot(slots: KvmMemorySlots, gfn: u64) -> Option<KvmMemorySlot>87 fn __gfn_to_memslot(slots: KvmMemorySlots, gfn: u64) -> Option<KvmMemorySlot> {
88 debug!("__gfn_to_memslot");
89 // TODO: 使用二分查找的方式优化
90 for i in 0..slots.used_slots {
91 let memslot = slots.memslots[i as usize];
92 if gfn >= memslot.base_gfn && gfn < memslot.base_gfn + memslot.npages {
93 return Some(memslot);
94 }
95 }
96 return None;
97 }
98
__gfn_to_hva(slot: KvmMemorySlot, gfn: u64) -> u6499 fn __gfn_to_hva(slot: KvmMemorySlot, gfn: u64) -> u64 {
100 return slot.userspace_addr + (gfn - slot.base_gfn) * (PAGE_SIZE as u64);
101 }
__gfn_to_hva_many( slot: Option<KvmMemorySlot>, gfn: u64, nr_pages: Option<&mut u64>, write: bool, ) -> Result<u64, SystemError>102 fn __gfn_to_hva_many(
103 slot: Option<KvmMemorySlot>,
104 gfn: u64,
105 nr_pages: Option<&mut u64>,
106 write: bool,
107 ) -> Result<u64, SystemError> {
108 debug!("__gfn_to_hva_many");
109 if slot.is_none() {
110 return Err(SystemError::KVM_HVA_ERR_BAD);
111 }
112 let slot = slot.unwrap();
113 if slot.flags & KVM_MEMSLOT_INVALID != 0 || (slot.flags & KVM_MEM_READONLY != 0) && write {
114 return Err(SystemError::KVM_HVA_ERR_BAD);
115 }
116
117 if let Some(nr_pages) = nr_pages {
118 *nr_pages = slot.npages - (gfn - slot.base_gfn);
119 }
120
121 return Ok(__gfn_to_hva(slot, gfn));
122 }
123
124 /* From Linux kernel
125 * Pin guest page in memory and return its pfn.
126 * @addr: host virtual address which maps memory to the guest
127 * @atomic: whether this function can sleep
128 * @async: whether this function need to wait IO complete if the
129 * host page is not in the memory
130 * @write_fault: whether we should get a writable host page
131 * @writable: whether it allows to map a writable host page for !@write_fault
132 *
133 * The function will map a writable host page for these two cases:
134 * 1): @write_fault = true
135 * 2): @write_fault = false && @writable, @writable will tell the caller
136 * whether the mapping is writable.
137 */
138 // 计算 HVA 对应的 pfn,同时确保该物理页在内存中
139 // host端虚拟地址到物理地址的转换,有两种方式,hva_to_pfn_fast、hva_to_pfn_slow
140 // 正确性待验证
hva_to_pfn(addr: u64, _atomic: bool, _writable: &mut bool) -> Result<u64, SystemError>141 fn hva_to_pfn(addr: u64, _atomic: bool, _writable: &mut bool) -> Result<u64, SystemError> {
142 debug!("hva_to_pfn");
143 unsafe {
144 let raw = addr as *const i32;
145 debug!("raw={:x}", *raw);
146 }
147 // let hpa = MMArch::virt_2_phys(VirtAddr::new(addr)).unwrap().data() as u64;
148 let hva = VirtAddr::new(addr as usize);
149 let mut mapper = KernelMapper::lock();
150 let mapper = mapper.as_mut().unwrap();
151 if let Some((hpa, _)) = mapper.translate(hva) {
152 return Ok(hpa.data() as u64 >> PAGE_SHIFT);
153 }
154 unsafe {
155 mapper.map(hva, EntryFlags::mmio_flags());
156 }
157 let (hpa, _) = mapper.translate(hva).unwrap();
158 return Ok(hpa.data() as u64 >> PAGE_SHIFT);
159 }
160
__gfn_to_pfn( slot: Option<KvmMemorySlot>, gfn: u64, atomic: bool, write: bool, writable: &mut bool, ) -> Result<u64, SystemError>161 pub fn __gfn_to_pfn(
162 slot: Option<KvmMemorySlot>,
163 gfn: u64,
164 atomic: bool,
165 write: bool,
166 writable: &mut bool,
167 ) -> Result<u64, SystemError> {
168 debug!("__gfn_to_pfn");
169 let mut nr_pages = 0;
170 let addr = __gfn_to_hva_many(slot, gfn, Some(&mut nr_pages), write)?;
171 let pfn = hva_to_pfn(addr, atomic, writable)?;
172 debug!("hva={}, pfn={}", addr, pfn);
173 return Ok(pfn);
174 }
175
kvm_vcpu_gfn_to_memslot(vcpu: &mut dyn Vcpu, gfn: u64) -> Option<KvmMemorySlot>176 pub fn kvm_vcpu_gfn_to_memslot(vcpu: &mut dyn Vcpu, gfn: u64) -> Option<KvmMemorySlot> {
177 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
178 }
179