1 pub mod barrier;
2 pub mod bump;
3 mod c_adapter;
4 
5 use alloc::vec::Vec;
6 use hashbrown::HashSet;
7 use x86::time::rdtsc;
8 use x86_64::registers::model_specific::EferFlags;
9 
10 use crate::driver::serial::serial8250::send_to_default_serial8250_port;
11 use crate::include::bindings::bindings::{
12     multiboot2_get_load_base, multiboot2_get_memory, multiboot2_iter, multiboot_mmap_entry_t,
13     multiboot_tag_load_base_addr_t,
14 };
15 use crate::libs::align::page_align_up;
16 use crate::libs::lib_ui::screen_manager::scm_disable_put_to_window;
17 use crate::libs::spinlock::SpinLock;
18 
19 use crate::mm::allocator::page_frame::{FrameAllocator, PageFrameCount, PageFrameUsage};
20 use crate::mm::memblock::mem_block_manager;
21 use crate::{
22     arch::MMArch,
23     mm::allocator::{buddy::BuddyAllocator, bump::BumpAllocator},
24 };
25 
26 use crate::mm::kernel_mapper::KernelMapper;
27 use crate::mm::page::{PageEntry, PageFlags};
28 use crate::mm::{MemoryManagementArch, PageTableKind, PhysAddr, VirtAddr};
29 use crate::{kdebug, kinfo, kwarn};
30 use system_error::SystemError;
31 
32 use core::arch::asm;
33 use core::ffi::c_void;
34 use core::fmt::Debug;
35 use core::mem::{self};
36 
37 use core::sync::atomic::{compiler_fence, AtomicBool, Ordering};
38 
39 use super::kvm::vmx::vmcs::VmcsFields;
40 use super::kvm::vmx::vmx_asm_wrapper::vmx_vmread;
41 
42 pub type PageMapper =
43     crate::mm::page::PageMapper<crate::arch::x86_64::mm::X86_64MMArch, LockedFrameAllocator>;
44 
45 /// 初始的CR3寄存器的值,用于内存管理初始化时,创建的第一个内核页表的位置
46 static mut INITIAL_CR3_VALUE: PhysAddr = PhysAddr::new(0);
47 
48 /// 内核的第一个页表在pml4中的索引
49 /// 顶级页表的[256, 512)项是内核的页表
50 static KERNEL_PML4E_NO: usize = (X86_64MMArch::PHYS_OFFSET & ((1 << 48) - 1)) >> 39;
51 
52 static INNER_ALLOCATOR: SpinLock<Option<BuddyAllocator<MMArch>>> = SpinLock::new(None);
53 
54 #[derive(Clone, Copy, Debug)]
55 pub struct X86_64MMBootstrapInfo {
56     kernel_load_base_paddr: usize,
57     kernel_code_start: usize,
58     kernel_code_end: usize,
59     kernel_data_end: usize,
60     kernel_rodata_end: usize,
61     start_brk: usize,
62 }
63 
64 pub(super) static mut BOOTSTRAP_MM_INFO: Option<X86_64MMBootstrapInfo> = None;
65 
66 /// @brief X86_64的内存管理架构结构体
67 #[derive(Debug, Clone, Copy, Hash)]
68 pub struct X86_64MMArch;
69 
70 /// XD标志位是否被保留
71 static XD_RESERVED: AtomicBool = AtomicBool::new(false);
72 
73 impl MemoryManagementArch for X86_64MMArch {
74     /// 4K页
75     const PAGE_SHIFT: usize = 12;
76 
77     /// 每个页表项占8字节,总共有512个页表项
78     const PAGE_ENTRY_SHIFT: usize = 9;
79 
80     /// 四级页表(PML4T、PDPT、PDT、PT)
81     const PAGE_LEVELS: usize = 4;
82 
83     /// 页表项的有效位的index。在x86_64中,页表项的第[0, 47]位表示地址和flag,
84     /// 第[48, 51]位表示保留。因此,有效位的index为52。
85     /// 请注意,第63位是XD位,表示是否允许执行。
86     const ENTRY_ADDRESS_SHIFT: usize = 52;
87 
88     const ENTRY_FLAG_DEFAULT_PAGE: usize = Self::ENTRY_FLAG_PRESENT;
89 
90     const ENTRY_FLAG_DEFAULT_TABLE: usize = Self::ENTRY_FLAG_PRESENT;
91 
92     const ENTRY_FLAG_PRESENT: usize = 1 << 0;
93 
94     const ENTRY_FLAG_READONLY: usize = 0;
95 
96     const ENTRY_FLAG_READWRITE: usize = 1 << 1;
97 
98     const ENTRY_FLAG_USER: usize = 1 << 2;
99 
100     const ENTRY_FLAG_WRITE_THROUGH: usize = 1 << 3;
101 
102     const ENTRY_FLAG_CACHE_DISABLE: usize = 1 << 4;
103 
104     const ENTRY_FLAG_NO_EXEC: usize = 1 << 63;
105     /// x86_64不存在EXEC标志位,只有NO_EXEC(XD)标志位
106     const ENTRY_FLAG_EXEC: usize = 0;
107 
108     const ENTRY_FLAG_ACCESSED: usize = 0;
109     const ENTRY_FLAG_DIRTY: usize = 0;
110 
111     /// 物理地址与虚拟地址的偏移量
112     /// 0xffff_8000_0000_0000
113     const PHYS_OFFSET: usize = Self::PAGE_NEGATIVE_MASK + (Self::PAGE_ADDRESS_SIZE >> 1);
114     const KERNEL_LINK_OFFSET: usize = 0x100000;
115 
116     // 参考 https://code.dragonos.org.cn/xref/linux-6.1.9/arch/x86/include/asm/page_64_types.h#75
117     const USER_END_VADDR: VirtAddr =
118         VirtAddr::new((Self::PAGE_ADDRESS_SIZE >> 1) - Self::PAGE_SIZE);
119     const USER_BRK_START: VirtAddr = VirtAddr::new(0x700000000000);
120     const USER_STACK_START: VirtAddr = VirtAddr::new(0x6ffff0a00000);
121 
122     const FIXMAP_START_VADDR: VirtAddr = VirtAddr::new(0xffffb00000000000);
123     /// 设置FIXMAP区域大小为1M
124     const FIXMAP_SIZE: usize = 256 * 4096;
125 
126     /// @brief 获取物理内存区域
init()127     unsafe fn init() {
128         extern "C" {
129             fn _text();
130             fn _etext();
131             fn _edata();
132             fn _erodata();
133             fn _end();
134         }
135 
136         Self::init_xd_rsvd();
137         let load_base_paddr = Self::get_load_base_paddr();
138 
139         let bootstrap_info = X86_64MMBootstrapInfo {
140             kernel_load_base_paddr: load_base_paddr.data(),
141             kernel_code_start: _text as usize,
142             kernel_code_end: _etext as usize,
143             kernel_data_end: _edata as usize,
144             kernel_rodata_end: _erodata as usize,
145             start_brk: _end as usize,
146         };
147 
148         unsafe {
149             BOOTSTRAP_MM_INFO = Some(bootstrap_info);
150         }
151 
152         // 初始化物理内存区域(从multiboot2中获取)
153         Self::init_memory_area_from_multiboot2().expect("init memory area failed");
154 
155         kdebug!("bootstrap info: {:?}", unsafe { BOOTSTRAP_MM_INFO });
156         kdebug!("phys[0]=virt[0x{:x}]", unsafe {
157             MMArch::phys_2_virt(PhysAddr::new(0)).unwrap().data()
158         });
159 
160         // 初始化内存管理器
161         unsafe { allocator_init() };
162         send_to_default_serial8250_port("x86 64 init done\n\0".as_bytes());
163     }
164 
165     /// @brief 刷新TLB中,关于指定虚拟地址的条目
invalidate_page(address: VirtAddr)166     unsafe fn invalidate_page(address: VirtAddr) {
167         compiler_fence(Ordering::SeqCst);
168         asm!("invlpg [{0}]", in(reg) address.data(), options(nostack, preserves_flags));
169         compiler_fence(Ordering::SeqCst);
170     }
171 
172     /// @brief 刷新TLB中,所有的条目
invalidate_all()173     unsafe fn invalidate_all() {
174         compiler_fence(Ordering::SeqCst);
175         // 通过设置cr3寄存器,来刷新整个TLB
176         Self::set_table(PageTableKind::User, Self::table(PageTableKind::User));
177         compiler_fence(Ordering::SeqCst);
178     }
179 
180     /// @brief 获取顶级页表的物理地址
table(table_kind: PageTableKind) -> PhysAddr181     unsafe fn table(table_kind: PageTableKind) -> PhysAddr {
182         match table_kind {
183             PageTableKind::Kernel | PageTableKind::User => {
184                 let paddr: usize;
185                 compiler_fence(Ordering::SeqCst);
186                 asm!("mov {}, cr3", out(reg) paddr, options(nomem, nostack, preserves_flags));
187                 compiler_fence(Ordering::SeqCst);
188                 return PhysAddr::new(paddr);
189             }
190             PageTableKind::EPT => {
191                 let eptp =
192                     vmx_vmread(VmcsFields::CTRL_EPTP_PTR as u32).expect("Failed to read eptp");
193                 return PhysAddr::new(eptp as usize);
194             }
195         }
196     }
197 
198     /// @brief 设置顶级页表的物理地址到处理器中
set_table(_table_kind: PageTableKind, table: PhysAddr)199     unsafe fn set_table(_table_kind: PageTableKind, table: PhysAddr) {
200         compiler_fence(Ordering::SeqCst);
201         asm!("mov cr3, {}", in(reg) table.data(), options(nostack, preserves_flags));
202         compiler_fence(Ordering::SeqCst);
203     }
204 
205     /// @brief 判断虚拟地址是否合法
virt_is_valid(virt: VirtAddr) -> bool206     fn virt_is_valid(virt: VirtAddr) -> bool {
207         return virt.is_canonical();
208     }
209 
210     /// 获取内存管理初始化时,创建的第一个内核页表的地址
initial_page_table() -> PhysAddr211     fn initial_page_table() -> PhysAddr {
212         unsafe {
213             return INITIAL_CR3_VALUE;
214         }
215     }
216 
217     /// @brief 创建新的顶层页表
218     ///
219     /// 该函数会创建页表并复制内核的映射到新的页表中
220     ///
221     /// @return 新的页表
setup_new_usermapper() -> Result<crate::mm::ucontext::UserMapper, SystemError>222     fn setup_new_usermapper() -> Result<crate::mm::ucontext::UserMapper, SystemError> {
223         let new_umapper: crate::mm::page::PageMapper<X86_64MMArch, LockedFrameAllocator> = unsafe {
224             PageMapper::create(PageTableKind::User, LockedFrameAllocator)
225                 .ok_or(SystemError::ENOMEM)?
226         };
227 
228         let current_ktable: KernelMapper = KernelMapper::lock();
229         let copy_mapping = |pml4_entry_no| unsafe {
230             let entry: PageEntry<X86_64MMArch> = current_ktable
231                 .table()
232                 .entry(pml4_entry_no)
233                 .unwrap_or_else(|| panic!("entry {} not found", pml4_entry_no));
234             new_umapper.table().set_entry(pml4_entry_no, entry)
235         };
236 
237         // 复制内核的映射
238         for pml4_entry_no in KERNEL_PML4E_NO..512 {
239             copy_mapping(pml4_entry_no);
240         }
241 
242         return Ok(crate::mm::ucontext::UserMapper::new(new_umapper));
243     }
244 
245     const PAGE_SIZE: usize = 1 << Self::PAGE_SHIFT;
246 
247     const PAGE_OFFSET_MASK: usize = Self::PAGE_SIZE - 1;
248 
249     const PAGE_MASK: usize = !(Self::PAGE_OFFSET_MASK);
250 
251     const PAGE_ADDRESS_SHIFT: usize = Self::PAGE_LEVELS * Self::PAGE_ENTRY_SHIFT + Self::PAGE_SHIFT;
252 
253     const PAGE_ADDRESS_SIZE: usize = 1 << Self::PAGE_ADDRESS_SHIFT;
254 
255     const PAGE_ADDRESS_MASK: usize = Self::PAGE_ADDRESS_SIZE - Self::PAGE_SIZE;
256 
257     const PAGE_ENTRY_SIZE: usize = 1 << (Self::PAGE_SHIFT - Self::PAGE_ENTRY_SHIFT);
258 
259     const PAGE_ENTRY_NUM: usize = 1 << Self::PAGE_ENTRY_SHIFT;
260 
261     const PAGE_ENTRY_MASK: usize = Self::PAGE_ENTRY_NUM - 1;
262 
263     const PAGE_NEGATIVE_MASK: usize = !((Self::PAGE_ADDRESS_SIZE) - 1);
264 
265     const ENTRY_ADDRESS_SIZE: usize = 1 << Self::ENTRY_ADDRESS_SHIFT;
266 
267     const ENTRY_ADDRESS_MASK: usize = Self::ENTRY_ADDRESS_SIZE - Self::PAGE_SIZE;
268 
269     const ENTRY_FLAGS_MASK: usize = !Self::ENTRY_ADDRESS_MASK;
270 
read<T>(address: VirtAddr) -> T271     unsafe fn read<T>(address: VirtAddr) -> T {
272         return core::ptr::read(address.data() as *const T);
273     }
274 
write<T>(address: VirtAddr, value: T)275     unsafe fn write<T>(address: VirtAddr, value: T) {
276         core::ptr::write(address.data() as *mut T, value);
277     }
278 
write_bytes(address: VirtAddr, value: u8, count: usize)279     unsafe fn write_bytes(address: VirtAddr, value: u8, count: usize) {
280         core::ptr::write_bytes(address.data() as *mut u8, value, count);
281     }
282 
phys_2_virt(phys: PhysAddr) -> Option<VirtAddr>283     unsafe fn phys_2_virt(phys: PhysAddr) -> Option<VirtAddr> {
284         if let Some(vaddr) = phys.data().checked_add(Self::PHYS_OFFSET) {
285             return Some(VirtAddr::new(vaddr));
286         } else {
287             return None;
288         }
289     }
290 
virt_2_phys(virt: VirtAddr) -> Option<PhysAddr>291     unsafe fn virt_2_phys(virt: VirtAddr) -> Option<PhysAddr> {
292         if let Some(paddr) = virt.data().checked_sub(Self::PHYS_OFFSET) {
293             return Some(PhysAddr::new(paddr));
294         } else {
295             return None;
296         }
297     }
298 
299     #[inline(always)]
make_entry(paddr: PhysAddr, page_flags: usize) -> usize300     fn make_entry(paddr: PhysAddr, page_flags: usize) -> usize {
301         return paddr.data() | page_flags;
302     }
303 }
304 
305 impl X86_64MMArch {
get_load_base_paddr() -> PhysAddr306     unsafe fn get_load_base_paddr() -> PhysAddr {
307         let mut mb2_lb_info: [multiboot_tag_load_base_addr_t; 512] = mem::zeroed();
308         send_to_default_serial8250_port("get_load_base_paddr begin\n\0".as_bytes());
309 
310         let mut mb2_count: u32 = 0;
311         multiboot2_iter(
312             Some(multiboot2_get_load_base),
313             &mut mb2_lb_info as *mut [multiboot_tag_load_base_addr_t; 512] as usize as *mut c_void,
314             &mut mb2_count,
315         );
316 
317         if mb2_count == 0 {
318             send_to_default_serial8250_port(
319                 "get_load_base_paddr mb2_count == 0, default to 1MB\n\0".as_bytes(),
320             );
321             return PhysAddr::new(0x100000);
322         }
323 
324         let phys = mb2_lb_info[0].load_base_addr as usize;
325 
326         return PhysAddr::new(phys);
327     }
init_memory_area_from_multiboot2() -> Result<usize, SystemError>328     unsafe fn init_memory_area_from_multiboot2() -> Result<usize, SystemError> {
329         // 这个数组用来存放内存区域的信息(从C获取)
330         let mut mb2_mem_info: [multiboot_mmap_entry_t; 512] = mem::zeroed();
331         send_to_default_serial8250_port("init_memory_area_from_multiboot2 begin\n\0".as_bytes());
332 
333         let mut mb2_count: u32 = 0;
334         multiboot2_iter(
335             Some(multiboot2_get_memory),
336             &mut mb2_mem_info as *mut [multiboot_mmap_entry_t; 512] as usize as *mut c_void,
337             &mut mb2_count,
338         );
339         send_to_default_serial8250_port("init_memory_area_from_multiboot2 2\n\0".as_bytes());
340 
341         let mb2_count = mb2_count as usize;
342         let mut areas_count = 0usize;
343         let mut total_mem_size = 0usize;
344         for i in 0..mb2_count {
345             // Only use the memory area if its type is 1 (RAM)
346             if mb2_mem_info[i].type_ == 1 {
347                 // Skip the memory area if its len is 0
348                 if mb2_mem_info[i].len == 0 {
349                     continue;
350                 }
351 
352                 total_mem_size += mb2_mem_info[i].len as usize;
353 
354                 mem_block_manager()
355                     .add_block(
356                         PhysAddr::new(mb2_mem_info[i].addr as usize),
357                         mb2_mem_info[i].len as usize,
358                     )
359                     .unwrap_or_else(|e| {
360                         kwarn!(
361                             "Failed to add memory block: base={:#x}, size={:#x}, error={:?}",
362                             mb2_mem_info[i].addr,
363                             mb2_mem_info[i].len,
364                             e
365                         );
366                     });
367                 areas_count += 1;
368             }
369         }
370         send_to_default_serial8250_port("init_memory_area_from_multiboot2 end\n\0".as_bytes());
371         kinfo!("Total memory size: {} MB, total areas from multiboot2: {mb2_count}, valid areas: {areas_count}", total_mem_size / 1024 / 1024);
372         return Ok(areas_count);
373     }
374 
init_xd_rsvd()375     fn init_xd_rsvd() {
376         // 读取ia32-EFER寄存器的值
377         let efer: EferFlags = x86_64::registers::model_specific::Efer::read();
378         if !efer.contains(EferFlags::NO_EXECUTE_ENABLE) {
379             // NO_EXECUTE_ENABLE是false,那么就设置xd_reserved为true
380             kdebug!("NO_EXECUTE_ENABLE is false, set XD_RESERVED to true");
381             XD_RESERVED.store(true, Ordering::Relaxed);
382         }
383         compiler_fence(Ordering::SeqCst);
384     }
385 
386     /// 判断XD标志位是否被保留
is_xd_reserved() -> bool387     pub fn is_xd_reserved() -> bool {
388         // return XD_RESERVED.load(Ordering::Relaxed);
389 
390         // 由于暂时不支持execute disable,因此直接返回true
391         // 不支持的原因是,目前好像没有能正确的设置page-level的xd位,会触发page fault
392         return true;
393     }
394 }
395 
396 impl VirtAddr {
397     /// @brief 判断虚拟地址是否合法
398     #[inline(always)]
is_canonical(self) -> bool399     pub fn is_canonical(self) -> bool {
400         let x = self.data() & X86_64MMArch::PHYS_OFFSET;
401         // 如果x为0,说明虚拟地址的高位为0,是合法的用户地址
402         // 如果x为PHYS_OFFSET,说明虚拟地址的高位全为1,是合法的内核地址
403         return x == 0 || x == X86_64MMArch::PHYS_OFFSET;
404     }
405 }
406 
allocator_init()407 unsafe fn allocator_init() {
408     let virt_offset = BOOTSTRAP_MM_INFO.unwrap().start_brk;
409     let phy_offset =
410         unsafe { MMArch::virt_2_phys(VirtAddr::new(page_align_up(virt_offset))) }.unwrap();
411 
412     let mut bump_allocator = BumpAllocator::<X86_64MMArch>::new(phy_offset.data());
413     kdebug!(
414         "BumpAllocator created, offset={:?}",
415         bump_allocator.offset()
416     );
417 
418     // 暂存初始在head.S中指定的页表的地址,后面再考虑是否需要把它加到buddy的可用空间里面!
419     // 现在不加的原因是,我担心会有安全漏洞问题:这些初始的页表,位于内核的数据段。如果归还到buddy,
420     // 可能会产生一定的安全风险(有的代码可能根据虚拟地址来进行安全校验)
421     let _old_page_table = MMArch::table(PageTableKind::Kernel);
422 
423     let new_page_table: PhysAddr;
424     // 使用bump分配器,把所有的内存页都映射到页表
425     {
426         // 用bump allocator创建新的页表
427         let mut mapper: crate::mm::page::PageMapper<MMArch, &mut BumpAllocator<MMArch>> =
428             crate::mm::page::PageMapper::<MMArch, _>::create(
429                 PageTableKind::Kernel,
430                 &mut bump_allocator,
431             )
432             .expect("Failed to create page mapper");
433         new_page_table = mapper.table().phys();
434         kdebug!("PageMapper created");
435 
436         // 取消最开始时候,在head.S中指定的映射(暂时不刷新TLB)
437         {
438             let table = mapper.table();
439             let empty_entry = PageEntry::<MMArch>::from_usize(0);
440             for i in 0..MMArch::PAGE_ENTRY_NUM {
441                 table
442                     .set_entry(i, empty_entry)
443                     .expect("Failed to empty page table entry");
444             }
445         }
446         kdebug!("Successfully emptied page table");
447 
448         let total_num = mem_block_manager().total_initial_memory_regions();
449         for i in 0..total_num {
450             let area = mem_block_manager().get_initial_memory_region(i).unwrap();
451             // kdebug!("area: base={:?}, size={:#x}, end={:?}", area.base, area.size, area.base + area.size);
452             for i in 0..((area.size + MMArch::PAGE_SIZE - 1) / MMArch::PAGE_SIZE) {
453                 let paddr = area.base.add(i * MMArch::PAGE_SIZE);
454                 let vaddr = unsafe { MMArch::phys_2_virt(paddr) }.unwrap();
455                 let flags = kernel_page_flags::<MMArch>(vaddr);
456 
457                 let flusher = mapper
458                     .map_phys(vaddr, paddr, flags)
459                     .expect("Failed to map frame");
460                 // 暂时不刷新TLB
461                 flusher.ignore();
462             }
463         }
464 
465         // 添加低地址的映射(在smp完成初始化之前,需要使用低地址的映射.初始化之后需要取消这一段映射)
466         LowAddressRemapping::remap_at_low_address(&mut mapper);
467     }
468 
469     unsafe {
470         INITIAL_CR3_VALUE = new_page_table;
471     }
472     kdebug!(
473         "After mapping all physical memory, DragonOS used: {} KB",
474         bump_allocator.offset() / 1024
475     );
476 
477     // 初始化buddy_allocator
478     let buddy_allocator = unsafe { BuddyAllocator::<X86_64MMArch>::new(bump_allocator).unwrap() };
479     // 设置全局的页帧分配器
480     unsafe { set_inner_allocator(buddy_allocator) };
481     kinfo!("Successfully initialized buddy allocator");
482     // 关闭显示输出
483     scm_disable_put_to_window();
484 
485     // make the new page table current
486     {
487         let mut binding = INNER_ALLOCATOR.lock();
488         let mut allocator_guard = binding.as_mut().unwrap();
489         kdebug!("To enable new page table.");
490         compiler_fence(Ordering::SeqCst);
491         let mapper = crate::mm::page::PageMapper::<MMArch, _>::new(
492             PageTableKind::Kernel,
493             new_page_table,
494             &mut allocator_guard,
495         );
496         compiler_fence(Ordering::SeqCst);
497         mapper.make_current();
498         compiler_fence(Ordering::SeqCst);
499         kdebug!("New page table enabled");
500     }
501     kdebug!("Successfully enabled new page table");
502 }
503 
504 #[no_mangle]
rs_test_buddy()505 pub extern "C" fn rs_test_buddy() {
506     test_buddy();
507 }
test_buddy()508 pub fn test_buddy() {
509     // 申请内存然后写入数据然后free掉
510     // 总共申请200MB内存
511     const TOTAL_SIZE: usize = 200 * 1024 * 1024;
512 
513     for i in 0..10 {
514         kdebug!("Test buddy, round: {i}");
515         // 存放申请的内存块
516         let mut v: Vec<(PhysAddr, PageFrameCount)> = Vec::with_capacity(60 * 1024);
517         // 存放已经申请的内存块的地址(用于检查重复)
518         let mut addr_set: HashSet<PhysAddr> = HashSet::new();
519 
520         let mut allocated = 0usize;
521 
522         let mut free_count = 0usize;
523 
524         while allocated < TOTAL_SIZE {
525             let mut random_size = 0u64;
526             unsafe { x86::random::rdrand64(&mut random_size) };
527             // 一次最多申请4M
528             random_size = random_size % (1024 * 4096);
529             if random_size == 0 {
530                 continue;
531             }
532             let random_size =
533                 core::cmp::min(page_align_up(random_size as usize), TOTAL_SIZE - allocated);
534             let random_size = PageFrameCount::from_bytes(random_size.next_power_of_two()).unwrap();
535             // 获取帧
536             let (paddr, allocated_frame_count) =
537                 unsafe { LockedFrameAllocator.allocate(random_size).unwrap() };
538             assert!(allocated_frame_count.data().is_power_of_two());
539             assert!(paddr.data() % MMArch::PAGE_SIZE == 0);
540             unsafe {
541                 assert!(MMArch::phys_2_virt(paddr)
542                     .as_ref()
543                     .unwrap()
544                     .check_aligned(allocated_frame_count.data() * MMArch::PAGE_SIZE));
545             }
546             allocated += allocated_frame_count.data() * MMArch::PAGE_SIZE;
547             v.push((paddr, allocated_frame_count));
548             assert!(addr_set.insert(paddr), "duplicate address: {:?}", paddr);
549 
550             // 写入数据
551             let vaddr = unsafe { MMArch::phys_2_virt(paddr).unwrap() };
552             let slice = unsafe {
553                 core::slice::from_raw_parts_mut(
554                     vaddr.data() as *mut u8,
555                     allocated_frame_count.data() * MMArch::PAGE_SIZE,
556                 )
557             };
558             for i in 0..slice.len() {
559                 slice[i] = ((i + unsafe { rdtsc() } as usize) % 256) as u8;
560             }
561 
562             // 随机释放一个内存块
563             if v.len() > 0 {
564                 let mut random_index = 0u64;
565                 unsafe { x86::random::rdrand64(&mut random_index) };
566                 // 70%概率释放
567                 if random_index % 10 > 7 {
568                     continue;
569                 }
570                 random_index = random_index % v.len() as u64;
571                 let random_index = random_index as usize;
572                 let (paddr, allocated_frame_count) = v.remove(random_index);
573                 assert!(addr_set.remove(&paddr));
574                 unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) };
575                 free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE;
576             }
577         }
578 
579         kdebug!(
580             "Allocated {} MB memory, release: {} MB, no release: {} bytes",
581             allocated / 1024 / 1024,
582             free_count / 1024 / 1024,
583             (allocated - free_count)
584         );
585 
586         kdebug!("Now, to release buddy memory");
587         // 释放所有的内存
588         for (paddr, allocated_frame_count) in v {
589             unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) };
590             assert!(addr_set.remove(&paddr));
591             free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE;
592         }
593 
594         kdebug!("release done!, allocated: {allocated}, free_count: {free_count}");
595     }
596 }
597 
598 /// 全局的页帧分配器
599 #[derive(Debug, Clone, Copy, Hash)]
600 pub struct LockedFrameAllocator;
601 
602 impl FrameAllocator for LockedFrameAllocator {
allocate(&mut self, count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)>603     unsafe fn allocate(&mut self, count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)> {
604         if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
605             return allocator.allocate(count);
606         } else {
607             return None;
608         }
609     }
610 
free(&mut self, address: crate::mm::PhysAddr, count: PageFrameCount)611     unsafe fn free(&mut self, address: crate::mm::PhysAddr, count: PageFrameCount) {
612         assert!(count.data().is_power_of_two());
613         if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
614             return allocator.free(address, count);
615         }
616     }
617 
usage(&self) -> PageFrameUsage618     unsafe fn usage(&self) -> PageFrameUsage {
619         if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
620             return allocator.usage();
621         } else {
622             panic!("usage error");
623         }
624     }
625 }
626 
627 /// 获取内核地址默认的页面标志
kernel_page_flags<A: MemoryManagementArch>(virt: VirtAddr) -> PageFlags<A>628 pub unsafe fn kernel_page_flags<A: MemoryManagementArch>(virt: VirtAddr) -> PageFlags<A> {
629     let info: X86_64MMBootstrapInfo = BOOTSTRAP_MM_INFO.clone().unwrap();
630 
631     if virt.data() >= info.kernel_code_start && virt.data() < info.kernel_code_end {
632         // Remap kernel code  execute
633         return PageFlags::new().set_execute(true).set_write(true);
634     } else if virt.data() >= info.kernel_data_end && virt.data() < info.kernel_rodata_end {
635         // Remap kernel rodata read only
636         return PageFlags::new().set_execute(true);
637     } else {
638         return PageFlags::new().set_write(true).set_execute(true);
639     }
640 }
641 
set_inner_allocator(allocator: BuddyAllocator<MMArch>)642 unsafe fn set_inner_allocator(allocator: BuddyAllocator<MMArch>) {
643     static FLAG: AtomicBool = AtomicBool::new(false);
644     if FLAG
645         .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
646         .is_err()
647     {
648         panic!("Cannot set inner allocator twice!");
649     }
650     *INNER_ALLOCATOR.lock() = Some(allocator);
651 }
652 
653 /// 低地址重映射的管理器
654 ///
655 /// 低地址重映射的管理器,在smp初始化完成之前,需要使用低地址的映射,因此需要在smp初始化完成之后,取消这一段映射
656 pub struct LowAddressRemapping;
657 
658 impl LowAddressRemapping {
659     // 映射64M
660     const REMAP_SIZE: usize = 64 * 1024 * 1024;
661 
remap_at_low_address( mapper: &mut crate::mm::page::PageMapper<MMArch, &mut BumpAllocator<MMArch>>, )662     pub unsafe fn remap_at_low_address(
663         mapper: &mut crate::mm::page::PageMapper<MMArch, &mut BumpAllocator<MMArch>>,
664     ) {
665         for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
666             let paddr = PhysAddr::new(i * MMArch::PAGE_SIZE);
667             let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
668             let flags = kernel_page_flags::<MMArch>(vaddr);
669 
670             let flusher = mapper
671                 .map_phys(vaddr, paddr, flags)
672                 .expect("Failed to map frame");
673             // 暂时不刷新TLB
674             flusher.ignore();
675         }
676     }
677 
678     /// 取消低地址的映射
unmap_at_low_address(flush: bool)679     pub unsafe fn unmap_at_low_address(flush: bool) {
680         let mut mapper = KernelMapper::lock();
681         assert!(mapper.as_mut().is_some());
682         for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
683             let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
684             let (_, _, flusher) = mapper
685                 .as_mut()
686                 .unwrap()
687                 .unmap_phys(vaddr, true)
688                 .expect("Failed to unmap frame");
689             if flush == false {
690                 flusher.ignore();
691             }
692         }
693     }
694 }
695