1 use crate::{
2 arch::kvm::vmx::ept::EptMapper,
3 kdebug,
4 libs::mutex::Mutex,
5 mm::{page::PageFlags, syscall::ProtFlags},
6 virt::kvm::host_mem::{__gfn_to_pfn, kvm_vcpu_gfn_to_memslot, PAGE_MASK, PAGE_SHIFT},
7 };
8 use bitfield_struct::bitfield;
9 use system_error::SystemError;
10
11 use super::{
12 ept::check_ept_features,
13 vcpu::VmxVcpu,
14 vmcs::VmcsFields,
15 vmx_asm_wrapper::{vmx_vmread, vmx_vmwrite},
16 };
17 use crate::arch::kvm::vmx::mmu::VmcsFields::CTRL_EPTP_PTR;
18
19 // pub const PT64_ROOT_LEVEL: u32 = 4;
20 // pub const PT32_ROOT_LEVEL: u32 = 2;
21 // pub const PT32E_ROOT_LEVEL: u32 = 3;
22
23 // pub struct KvmMmuPage{
24 // gfn: u64, // 管理地址范围的起始地址对应的 gfn
25 // role: KvmMmuPageRole, // 基本信息,包括硬件特性和所属层级等
26 // // spt: *mut u64, // spt: shadow page table,指向 struct page 的地址,其包含了所有页表项 (pte)。同时 page->private 会指向该 kvm_mmu_page
27 // }
28
29 #[bitfield(u32)]
30 pub struct KvmMmuPageRole {
31 #[bits(4)]
32 level: usize, // 页所处的层级
33 cr4_pae: bool, // cr4.pae,1 表示使用 64bit gpte
34 #[bits(2)]
35 quadrant: usize, // 如果 cr4.pae=0,则 gpte 为 32bit,但 spte 为 64bit,因此需要用多个 spte 来表示一个 gpte,该字段指示是 gpte 的第几块
36 direct: bool,
37 #[bits(3)]
38 access: usize, // 访问权限
39 invalid: bool, // 失效,一旦 unpin 就会被销毁
40 nxe: bool, // efer.nxe,不可执行
41 cr0_wp: bool, // cr0.wp, 写保护
42 smep_andnot_wp: bool, // smep && !cr0.wp,SMEP启用,用户模式代码将无法执行位于内核地址空间中的指令。
43 smap_andnot_wp: bool, // smap && !cr0.wp
44 #[bits(8)]
45 unused: usize,
46 #[bits(8)]
47 smm: usize, // 1 表示处于 system management mode, 0 表示非 SMM
48 }
49
50 // We don't want allocation failures within the mmu code, so we preallocate
51 // enough memory for a single page fault in a cache.
52 // pub struct KvmMmuMemoryCache {
53 // num_objs: u32,
54 // objs: [*mut u8; KVM_NR_MEM_OBJS as usize],
55 // }
56
57 #[derive(Default)]
58 pub struct KvmMmu {
59 pub root_hpa: u64,
60 pub root_level: u32,
61 pub base_role: KvmMmuPageRole,
62 // ...还有一些变量不知道用来做什么
63 pub get_cr3: Option<fn(&VmxVcpu) -> u64>,
64 pub set_eptp: Option<fn(u64) -> Result<(), SystemError>>,
65 pub page_fault: Option<
66 fn(
67 vcpu: &mut VmxVcpu,
68 gpa: u64,
69 error_code: u32,
70 prefault: bool,
71 ) -> Result<(), SystemError>,
72 >,
73 // get_pdptr: Option<fn(& VmxVcpu, index:u32) -> u64>, // Page Directory Pointer Table Register?暂时不知道和CR3的区别是什么
74 // inject_page_fault: Option<fn(&mut VmxVcpu, fault: &X86Exception)>,
75 // gva_to_gpa: Option<fn(&mut VmxVcpu, gva: u64, access: u32, exception: &X86Exception) -> u64>,
76 // translate_gpa: Option<fn(&mut VmxVcpu, gpa: u64, access: u32, exception: &X86Exception) -> u64>,
77 // sync_page: Option<fn(&mut VmxVcpu, &mut KvmMmuPage)>,
78 // invlpg: Option<fn(&mut VmxVcpu, gva: u64)>, // invalid entry
79 // update_pte: Option<fn(&mut VmxVcpu, sp: &KvmMmuPage, spte: u64, pte: u64)>,
80 }
81
82 impl core::fmt::Debug for KvmMmu {
fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result83 fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
84 f.debug_struct("KvmMmu")
85 .field("root_hpa", &self.root_hpa)
86 .field("root_level", &self.root_level)
87 .field("base_role", &self.base_role)
88 .finish()
89 }
90 }
91
tdp_get_cr3(_vcpu: &VmxVcpu) -> u6492 fn tdp_get_cr3(_vcpu: &VmxVcpu) -> u64 {
93 let guest_cr3 = vmx_vmread(VmcsFields::GUEST_CR3 as u32).expect("Failed to read eptp");
94 return guest_cr3;
95 }
96
tdp_set_eptp(root_hpa: u64) -> Result<(), SystemError>97 fn tdp_set_eptp(root_hpa: u64) -> Result<(), SystemError> {
98 // 设置权限位,目前是写死的,可读可写可执行
99 // EPT paging-structure memory type: Uncacheable
100 let mut eptp = 0x0 as u64;
101 // This value is 1 less than the EPT page-walk length. 3 means 4-level paging.
102 eptp |= 0x3 << 3;
103 eptp |= root_hpa & (PAGE_MASK as u64);
104 vmx_vmwrite(CTRL_EPTP_PTR as u32, eptp)?;
105 Ok(())
106 }
107
tdp_page_fault( vcpu: &mut VmxVcpu, gpa: u64, error_code: u32, prefault: bool, ) -> Result<(), SystemError>108 fn tdp_page_fault(
109 vcpu: &mut VmxVcpu,
110 gpa: u64,
111 error_code: u32,
112 prefault: bool,
113 ) -> Result<(), SystemError> {
114 kdebug!("tdp_page_fault");
115 let gfn = gpa >> PAGE_SHIFT; // 物理地址右移12位得到物理页框号(相对于虚拟机而言)
116 // 分配缓存池,为了避免在运行时分配空间失败,这里提前分配/填充足额的空间
117 mmu_topup_memory_caches(vcpu)?;
118 // TODO:获取gfn使用的level,处理hugepage的问题
119 let level = 1; // 4KB page
120 // TODO: 快速处理由读写操作引起violation,即present同时有写权限的非mmio page fault
121 // fast_page_fault(vcpu, gpa, level, error_code)
122 // gfn->pfn
123 let mut map_writable = false;
124 let write = error_code & ((1 as u32) << 1);
125 let pfn = mmu_gfn_to_pfn_fast(vcpu, gpa, prefault, gfn, write == 0, &mut map_writable)?;
126 // direct map就是映射ept页表的过程
127 __direct_map(vcpu, gpa, write, map_writable, level, gfn, pfn, prefault)?;
128 Ok(())
129 }
130
131 /*
132 * Caculate mmu pages needed for kvm.
133 */
134 // pub fn kvm_mmu_calculate_mmu_pages() -> u32 {
135 // let mut nr_mmu_pages:u32;
136 // let mut nr_pages = 0;
137
138 // let kvm = vm(0).unwrap();
139 // for as_id in 0..KVM_ADDRESS_SPACE_NUM {
140 // let slots = kvm.memslots[as_id];
141 // for i in 0..KVM_MEM_SLOTS_NUM {
142 // let memslot = slots.memslots[i as usize];
143 // nr_pages += memslot.npages;
144 // }
145 // }
146
147 // nr_mmu_pages = (nr_pages as u32)* KVM_PERMILLE_MMU_PAGES / 1000;
148 // nr_mmu_pages = nr_mmu_pages.max(KVM_MIN_ALLOC_MMU_PAGES);
149 // return nr_mmu_pages;
150 // }
151
152 // pub fn kvm_mmu_change_mmu_pages(mut goal_nr_mmu_pages: u32){
153 // let kvm = KVM();
154 // // 释放多余的mmu page
155 // if kvm.lock().arch.n_used_mmu_pages > goal_nr_mmu_pages {
156 // while kvm.lock().arch.n_used_mmu_pages > goal_nr_mmu_pages {
157 // if !prepare_zap_oldest_mmu_page() {
158 // break;
159 // }
160 // }
161 // // kvm_mmu_commit_zap_page();
162 // goal_nr_mmu_pages = kvm.lock().arch.n_used_mmu_pages;
163
164 // }
165 // kvm.lock().arch.n_max_mmu_pages = goal_nr_mmu_pages;
166 // }
167
168 // pub fn prepare_zap_oldest_mmu_page() -> bool {
169 // return false;
170 // }
171
kvm_mmu_setup(vcpu: &Mutex<VmxVcpu>)172 pub fn kvm_mmu_setup(vcpu: &Mutex<VmxVcpu>) {
173 // TODO: init_kvm_softmmu(vcpu), init_kvm_nested_mmu(vcpu)
174 init_kvm_tdp_mmu(vcpu);
175 }
176
kvm_vcpu_mtrr_init(_vcpu: &Mutex<VmxVcpu>) -> Result<(), SystemError>177 pub fn kvm_vcpu_mtrr_init(_vcpu: &Mutex<VmxVcpu>) -> Result<(), SystemError> {
178 check_ept_features()?;
179 Ok(())
180 }
181
init_kvm_tdp_mmu(vcpu: &Mutex<VmxVcpu>)182 pub fn init_kvm_tdp_mmu(vcpu: &Mutex<VmxVcpu>) {
183 let context = &mut vcpu.lock().mmu;
184 context.page_fault = Some(tdp_page_fault);
185 context.get_cr3 = Some(tdp_get_cr3);
186 context.set_eptp = Some(tdp_set_eptp);
187 // context.inject_page_fault = kvm_inject_page_fault; TODO: inject_page_fault
188 // context.invlpg = nonpaging_invlpg;
189 // context.sync_page = nonpaging_sync_page;
190 // context.update_pte = nonpaging_update_pte;
191
192 // TODO: gva to gpa in kvm
193 // if !is_paging(vcpu) { // vcpu不分页
194 // context.gva_to_gpa = nonpaging_gva_to_gpa;
195 // context.root_level = 0;
196 // } else if (is_long_mode(vcpu)) {
197 // context.gva_to_gpa = paging64_gva_to_gpa;
198 // context.root_level = PT64_ROOT_LEVEL;
199 // TODO:: different paging strategy
200 // } else if (is_pae(vcpu)) {
201 // context.gva_to_gpa = paging64_gva_to_gpa;
202 // context.root_level = PT32E_ROOT_LEVEL;
203 // } else {
204 // context.gva_to_gpa = paging32_gva_to_gpa;
205 // context.root_level = PT32_ROOT_LEVEL;
206 // }
207 }
208
__direct_map( vcpu: &mut VmxVcpu, gpa: u64, _write: u32, _map_writable: bool, _level: i32, _gfn: u64, pfn: u64, _prefault: bool, ) -> Result<u32, SystemError>209 pub fn __direct_map(
210 vcpu: &mut VmxVcpu,
211 gpa: u64,
212 _write: u32,
213 _map_writable: bool,
214 _level: i32,
215 _gfn: u64,
216 pfn: u64,
217 _prefault: bool,
218 ) -> Result<u32, SystemError> {
219 kdebug!("gpa={}, pfn={}, root_hpa={:x}", gpa, pfn, vcpu.mmu.root_hpa);
220 // 判断vcpu.mmu.root_hpa是否有效
221 if vcpu.mmu.root_hpa == 0 {
222 return Err(SystemError::KVM_HVA_ERR_BAD);
223 }
224 // 把gpa映射到hpa
225 let mut ept_mapper = EptMapper::lock();
226 let page_flags = PageFlags::from_prot_flags(ProtFlags::from_bits_truncate(0x7 as u64), false);
227 unsafe {
228 assert!(ept_mapper.walk(gpa, pfn << PAGE_SHIFT, page_flags).is_ok());
229 }
230 drop(ept_mapper);
231 return Ok(0);
232 }
233
mmu_gfn_to_pfn_fast( vcpu: &mut VmxVcpu, _gpa: u64, _prefault: bool, gfn: u64, write: bool, writable: &mut bool, ) -> Result<u64, SystemError>234 pub fn mmu_gfn_to_pfn_fast(
235 vcpu: &mut VmxVcpu,
236 _gpa: u64,
237 _prefault: bool,
238 gfn: u64,
239 write: bool,
240 writable: &mut bool,
241 ) -> Result<u64, SystemError> {
242 let slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
243 let pfn = __gfn_to_pfn(slot, gfn, false, write, writable)?;
244 Ok(pfn)
245 }
246
247 // TODO: 添加cache
mmu_topup_memory_caches(_vcpu: &mut VmxVcpu) -> Result<(), SystemError>248 pub fn mmu_topup_memory_caches(_vcpu: &mut VmxVcpu) -> Result<(), SystemError> {
249 // 如果 vcpu->arch.mmu_page_header_cache 不足,从 mmu_page_header_cache 中分配
250 // pte_list_desc_cache 和 mmu_page_header_cache 两块全局 slab cache 在 kvm_mmu_module_init 中被创建
251 // mmu_topup_memory_cache(vcpu.mmu_page_header_cache,
252 // mmu_page_header_cache, 4);
253 Ok(())
254 }
255