1 use core::{ptr::null_mut, sync::atomic::compiler_fence};
2 
3 use alloc::{boxed::Box, collections::LinkedList, vec::Vec};
4 
5 use crate::{
6     arch::asm::current::current_pcb,
7     include::bindings::bindings::{
8         process_control_block, MAX_CPU_NUM, PF_NEED_SCHED, SCHED_FIFO, SCHED_RR,
9     },
10     kBUG, kdebug,
11     libs::spinlock::RawSpinlock,
12 };
13 
14 use super::core::{sched_enqueue, Scheduler};
15 
16 /// 声明全局的rt调度器实例
17 
18 pub static mut RT_SCHEDULER_PTR: *mut SchedulerRT = null_mut();
19 
20 /// @brief 获取rt调度器实例的可变引用
21 #[inline]
__get_rt_scheduler() -> &'static mut SchedulerRT22 pub fn __get_rt_scheduler() -> &'static mut SchedulerRT {
23     return unsafe { RT_SCHEDULER_PTR.as_mut().unwrap() };
24 }
25 
26 /// @brief 初始化rt调度器
sched_rt_init()27 pub unsafe fn sched_rt_init() {
28     kdebug!("rt scheduler init");
29     if RT_SCHEDULER_PTR.is_null() {
30         RT_SCHEDULER_PTR = Box::leak(Box::new(SchedulerRT::new()));
31     } else {
32         kBUG!("Try to init RT Scheduler twice.");
33         panic!("Try to init RT Scheduler twice.");
34     }
35 }
36 
37 /// @brief RT队列(per-cpu的)
38 #[derive(Debug)]
39 struct RTQueue {
40     /// 队列的锁
41     lock: RawSpinlock,
42     /// 存储进程的双向队列
43     queue: LinkedList<&'static mut process_control_block>,
44 }
45 
46 impl RTQueue {
new() -> RTQueue47     pub fn new() -> RTQueue {
48         RTQueue {
49             queue: LinkedList::new(),
50             lock: RawSpinlock::INIT,
51         }
52     }
53     /// @brief 将pcb加入队列
enqueue(&mut self, pcb: &'static mut process_control_block)54     pub fn enqueue(&mut self, pcb: &'static mut process_control_block) {
55         self.lock.lock();
56 
57         // 如果进程是IDLE进程,那么就不加入队列
58         if pcb.pid == 0 {
59             self.lock.unlock();
60             return;
61         }
62         self.queue.push_back(pcb);
63         self.lock.unlock();
64     }
65 
66     /// @brief 将pcb从调度队列头部取出,若队列为空,则返回None
dequeue(&mut self) -> Option<&'static mut process_control_block>67     pub fn dequeue(&mut self) -> Option<&'static mut process_control_block> {
68         let res: Option<&'static mut process_control_block>;
69         self.lock.lock();
70         if self.queue.len() > 0 {
71             // 队列不为空,返回下一个要执行的pcb
72             res = Some(self.queue.pop_front().unwrap());
73         } else {
74             // 如果队列为空,则返回None
75             res = None;
76         }
77         self.lock.unlock();
78         return res;
79     }
enqueue_front(&mut self, pcb: &'static mut process_control_block)80     pub fn enqueue_front(&mut self, pcb: &'static mut process_control_block) {
81         self.lock.lock();
82 
83         // 如果进程是IDLE进程,那么就不加入队列
84         if pcb.pid == 0 {
85             self.lock.unlock();
86             return;
87         }
88         self.queue.push_front(pcb);
89         self.lock.unlock();
90     }
get_rt_queue_size(&mut self) -> usize91     pub fn get_rt_queue_size(&mut self) -> usize {
92         return self.queue.len();
93     }
94 }
95 
96 /// @brief RT调度器类
97 pub struct SchedulerRT {
98     cpu_queue: Vec<Vec<&'static mut RTQueue>>,
99     load_list: Vec<&'static mut LinkedList<u64>>,
100 }
101 
102 impl SchedulerRT {
103     const RR_TIMESLICE: i64 = 100;
104     const MAX_RT_PRIO: i64 = 100;
105 
new() -> SchedulerRT106     pub fn new() -> SchedulerRT {
107         // 暂时手动指定核心数目
108         // todo: 从cpu模块来获取核心的数目
109         let mut result = SchedulerRT {
110             cpu_queue: Default::default(),
111             load_list: Default::default(),
112         };
113 
114         // 为每个cpu核心创建队列
115         for cpu_id in 0..MAX_CPU_NUM {
116             result.cpu_queue.push(Vec::new());
117             // 每个CPU有MAX_RT_PRIO个优先级队列
118             for _ in 0..SchedulerRT::MAX_RT_PRIO {
119                 result.cpu_queue[cpu_id as usize].push(Box::leak(Box::new(RTQueue::new())));
120             }
121         }
122         // 为每个cpu核心创建负载统计队列
123         for _ in 0..MAX_CPU_NUM {
124             result
125                 .load_list
126                 .push(Box::leak(Box::new(LinkedList::new())));
127         }
128         return result;
129     }
130 
131     /// @brief 挑选下一个可执行的rt进程
pick_next_task_rt(&mut self, cpu_id: u32) -> Option<&'static mut process_control_block>132     pub fn pick_next_task_rt(&mut self, cpu_id: u32) -> Option<&'static mut process_control_block> {
133         // 循环查找,直到找到
134         // 这里应该是优先级数量,而不是CPU数量,需要修改
135         for i in 0..SchedulerRT::MAX_RT_PRIO {
136             let cpu_queue_i: &mut RTQueue = self.cpu_queue[cpu_id as usize][i as usize];
137             let proc: Option<&'static mut process_control_block> = cpu_queue_i.dequeue();
138             if proc.is_some() {
139                 return proc;
140             }
141         }
142         // return 一个空值
143         None
144     }
145 
get_rt_queue_len(&mut self, cpu_id: u32) -> usize146     pub fn get_rt_queue_len(&mut self, cpu_id: u32) -> usize {
147         let mut sum = 0;
148         for prio in 0..SchedulerRT::MAX_RT_PRIO {
149             sum += self.cpu_queue[cpu_id as usize][prio as usize].get_rt_queue_size();
150         }
151         return sum as usize;
152     }
153 
get_load_list_len(&mut self, cpu_id: u32) -> usize154     pub fn get_load_list_len(&mut self, cpu_id: u32) -> usize {
155         return self.load_list[cpu_id as usize].len();
156     }
157 
enqueue_front(&mut self, pcb: &'static mut process_control_block)158     pub fn enqueue_front(&mut self, pcb: &'static mut process_control_block) {
159         self.cpu_queue[pcb.cpu_id as usize][pcb.priority as usize].enqueue_front(pcb);
160     }
161 }
162 
163 impl Scheduler for SchedulerRT {
164     /// @brief 在当前cpu上进行调度。
165     /// 请注意,进入该函数之前,需要关中断
sched(&mut self) -> Option<&'static mut process_control_block>166     fn sched(&mut self) -> Option<&'static mut process_control_block> {
167         current_pcb().flags &= !(PF_NEED_SCHED as u64);
168         // 正常流程下,这里一定是会pick到next的pcb的,如果是None的话,要抛出错误
169         let cpu_id = current_pcb().cpu_id;
170         let proc: &'static mut process_control_block =
171             self.pick_next_task_rt(cpu_id).expect("No RT process found");
172 
173         // 如果是fifo策略,则可以一直占有cpu直到有优先级更高的任务就绪(即使优先级相同也不行)或者主动放弃(等待资源)
174         if proc.policy == SCHED_FIFO {
175             // 如果挑选的进程优先级小于当前进程,则不进行切换
176             if proc.priority <= current_pcb().priority {
177                 sched_enqueue(proc, false);
178             } else {
179                 // 将当前的进程加进队列
180                 sched_enqueue(current_pcb(), false);
181                 compiler_fence(core::sync::atomic::Ordering::SeqCst);
182                 return Some(proc);
183             }
184         }
185         // RR调度策略需要考虑时间片
186         else if proc.policy == SCHED_RR {
187             // 同等优先级的,考虑切换
188             if proc.priority >= current_pcb().priority {
189                 // 判断这个进程时间片是否耗尽,若耗尽则将其时间片赋初值然后入队
190                 if proc.rt_time_slice <= 0 {
191                     proc.rt_time_slice = SchedulerRT::RR_TIMESLICE;
192                     proc.flags |= !(PF_NEED_SCHED as u64);
193                     sched_enqueue(proc, false);
194                 }
195                 // 目标进程时间片未耗尽,切换到目标进程
196                 else {
197                     // 将当前进程加进队列
198                     sched_enqueue(current_pcb(), false);
199                     compiler_fence(core::sync::atomic::Ordering::SeqCst);
200                     return Some(proc);
201                 }
202             }
203             // curr优先级更大,说明一定是实时进程,将所选进程入队列,此时需要入队首
204             else {
205                 self.cpu_queue[cpu_id as usize][proc.cpu_id as usize].enqueue_front(proc);
206             }
207         }
208         return None;
209     }
210 
enqueue(&mut self, pcb: &'static mut process_control_block)211     fn enqueue(&mut self, pcb: &'static mut process_control_block) {
212         let cpu_id = pcb.cpu_id;
213         let cpu_queue = &mut self.cpu_queue[pcb.cpu_id as usize];
214         cpu_queue[cpu_id as usize].enqueue(pcb);
215         // // 获取当前时间
216         // let time = unsafe { _rdtsc() };
217         // let freq = unsafe { Cpu_tsc_freq };
218         // // kdebug!("this is timeeeeeeer {},freq is {}, {}", time, freq, cpu_id);
219         // // 将当前时间加入负载记录队列
220         // self.load_list[cpu_id as usize].push_back(time);
221         // // 如果队首元素与当前时间差超过设定值,则移除队首元素
222         // while self.load_list[cpu_id as usize].len() > 1
223         //     && (time - *self.load_list[cpu_id as usize].front().unwrap() > 10000000000)
224         // {
225         //     self.load_list[cpu_id as usize].pop_front();
226         // }
227     }
228 }
229