1 #include "xhci.h"
2 #include "internal.h"
3 #include <common/hid.h>
4 #include <common/kprint.h>
5 #include <common/spinlock.h>
6 #include <common/time.h>
7 #include <debug/bug.h>
8 #include <debug/traceback/traceback.h>
9 #include <driver/interrupt/apic/apic.h>
10 #include <exception/irq.h>
11 #include <mm/mm.h>
12 #include <mm/slab.h>
13
14 // 由于xhci寄存器读取需要对齐,因此禁用GCC优化选项
15 #pragma GCC optimize("O0")
16
17 spinlock_t xhci_controller_init_lock = {0}; // xhci控制器初始化锁(在usb_init中被初始化)
18
19 static int xhci_ctrl_count = 0; // xhci控制器计数
20
21 static struct xhci_host_controller_t xhci_hc[XHCI_MAX_HOST_CONTROLLERS] = {0};
22
23 void xhci_hc_irq_enable(uint64_t irq_num);
24 void xhci_hc_irq_disable(uint64_t irq_num);
25 uint64_t xhci_hc_irq_install(uint64_t irq_num, void *arg);
26 void xhci_hc_irq_uninstall(uint64_t irq_num);
27
28 static int xhci_hc_find_available_id();
29 static int xhci_hc_stop(int id);
30 static int xhci_hc_reset(int id);
31 static int xhci_hc_stop_legacy(int id);
32 static int xhci_hc_start_sched(int id);
33 static int xhci_hc_stop_sched(int id);
34 static uint32_t xhci_hc_get_protocol_offset(int id, uint32_t list_off, const int version, uint32_t *offset,
35 uint32_t *count, uint16_t *protocol_flag);
36 static int xhci_hc_pair_ports(int id);
37 static uint64_t xhci_create_ring(int trbs);
38 static uint64_t xhci_create_event_ring(int trbs, uint64_t *ret_ring_addr);
39 void xhci_hc_irq_handler(uint64_t irq_num, uint64_t cid, struct pt_regs *regs);
40 static int xhci_hc_init_intr(int id);
41 static int xhci_hc_start_ports(int id);
42
43 static int xhci_send_command(int id, struct xhci_TRB_t *trb, const bool do_ring);
44 static uint64_t xhci_initialize_slot(const int id, const int port, const int speed, const int max_packet);
45 static void xhci_initialize_ep(const int id, const uint64_t slot_vaddr, const int port_id, const int ep_num,
46 const int max_packet, const int max_burst, const int type, const int direction,
47 const int speed, const int ep_interval);
48 static int xhci_set_address(const int id, const uint64_t slot_vaddr, const int slot_id, const bool block);
49 static int xhci_control_in(const int id, struct usb_request_packet_t *packet, void *target, const int port_id,
50 const int max_packet);
51 static int xhci_control_out(const int id, struct usb_request_packet_t *packet, void *target, const int slot_id,
52 const int max_packet);
53 static int xhci_setup_stage(struct xhci_ep_info_t *ep, const struct usb_request_packet_t *packet,
54 const uint8_t direction);
55 static int xhci_data_stage(struct xhci_ep_info_t *ep, uint64_t buf_vaddr, uint8_t trb_type, const uint32_t size,
56 uint8_t direction, const int max_packet, const uint64_t status_vaddr);
57 static int xhci_status_stage(struct xhci_ep_info_t *ep, uint8_t direction, uint64_t status_buf_vaddr);
58 static int xhci_wait_for_interrupt(const int id, uint64_t status_vaddr);
59 static inline int xhci_get_desc(const int id, const int port_id, void *target, const uint16_t desc_type,
60 const uint8_t desc_index, const uint16_t lang_id, const uint16_t length);
61 static int xhci_get_config_desc(const int id, const int port_id, struct usb_config_desc *conf_desc);
62 static inline int xhci_get_config_desc_full(const int id, const int port_id, const struct usb_config_desc *conf_desc,
63 void *target);
64 static int xhci_get_interface_desc(const void *in_buf, const uint8_t if_num, struct usb_interface_desc **if_desc);
65 static inline int xhci_get_endpoint_desc(const struct usb_interface_desc *if_desc, const uint8_t ep_num,
66 struct usb_endpoint_desc **ep_desc);
67 static int xhci_get_descriptor(const int id, const int port_id, struct usb_device_desc *dev_desc);
68 static int xhci_configure_port(const int id, const int port_id);
69 static int xhci_configure_endpoint(const int id, const int port_id, const uint8_t ep_num, const uint8_t ep_type,
70 struct usb_endpoint_desc *ep_desc);
71 static int xhci_get_hid_report(int id, int port_id, int interface_number, void *ret_hid_report,
72 uint32_t hid_report_len);
73 static int xhci_get_hid_descriptor(int id, int port_id, const void *full_conf, int interface_number,
74 struct usb_hid_desc **ret_hid_desc);
75
76 hardware_intr_controller xhci_hc_intr_controller = {
77 .enable = xhci_hc_irq_enable,
78 .disable = xhci_hc_irq_disable,
79 .install = xhci_hc_irq_install,
80 .uninstall = xhci_hc_irq_uninstall,
81 .ack = apic_local_apic_edge_ack,
82 };
83
84 /**
85 * @brief 在controller数组之中寻找可用插槽
86 *
87 * 注意:该函数只能被获得init锁的进程所调用
88 * @return int 可用id(无空位时返回-1)
89 */
xhci_hc_find_available_id()90 static int xhci_hc_find_available_id()
91 {
92 if (unlikely(xhci_ctrl_count >= XHCI_MAX_HOST_CONTROLLERS))
93 return -1;
94
95 for (int i = 0; i < XHCI_MAX_HOST_CONTROLLERS; ++i)
96 {
97 if (xhci_hc[i].pci_dev_hdr == NULL)
98 return i;
99 }
100 return -1;
101 }
102
103 /**
104 * @brief 从指定地址读取trb
105 *
106 * @param trb 要存储到的trb的地址
107 * @param address 待读取trb的地址
108 */
xhci_get_trb(struct xhci_TRB_t * trb,const uint64_t address)109 static __always_inline void xhci_get_trb(struct xhci_TRB_t *trb, const uint64_t address)
110 {
111 trb->param = __read8b(address);
112 trb->status = __read4b(address + 8);
113 trb->command = __read4b(address + 12);
114 }
115
116 /**
117 * @brief 将给定的trb写入指定的地址
118 *
119 * @param trb 源trb
120 * @param address 拷贝的目标地址
121 */
xhci_set_trb(struct xhci_TRB_t * trb,const uint64_t address)122 static __always_inline void xhci_set_trb(struct xhci_TRB_t *trb, const uint64_t address)
123 {
124 __write8b(address, trb->param);
125 __write4b(address + 8, trb->status);
126 __write4b(address + 12, trb->command);
127 }
128
129 /**
130 * @brief 将ep结构体写入到设备上下文中的对应块内
131 *
132 * @param id 主机控制器id
133 * @param slot_vaddr 设备上下文虚拟地址
134 * @param ep_num ep结构体要写入到哪个块中(在设备上下文中的块号)
135 * @param ep 源数据
136 */
__write_ep(int id,uint64_t slot_vaddr,int ep_num,struct xhci_ep_context_t * ep)137 static __always_inline void __write_ep(int id, uint64_t slot_vaddr, int ep_num, struct xhci_ep_context_t *ep)
138 {
139 memcpy((void *)(slot_vaddr + ep_num * xhci_hc[id].context_size), ep, sizeof(struct xhci_ep_context_t));
140 }
141
142 /**
143 * @brief 从设备上下文中的对应块内读取数据到ep结构体
144 *
145 * @param id 主机控制器id
146 * @param slot_vaddr 设备上下文虚拟地址
147 * @param ep_num 要从哪个块中读取(在设备上下文中的块号)
148 * @param ep 目标地址
149 */
__read_from_ep(int id,uint64_t slot_vaddr,int ep_num,struct xhci_ep_context_t * ep)150 static __always_inline void __read_from_ep(int id, uint64_t slot_vaddr, int ep_num, struct xhci_ep_context_t *ep)
151 {
152 memcpy(ep, (void *)(slot_vaddr + ep_num * xhci_hc[id].context_size), sizeof(struct xhci_ep_context_t));
153 }
154
155 /**
156 * @brief 将slot上下文数组结构体写入插槽的上下文空间
157 *
158 * @param vaddr 目标地址
159 * @param slot_ctx slot上下文数组
160 */
__write_slot(const uint64_t vaddr,struct xhci_slot_context_t * slot_ctx)161 static __always_inline void __write_slot(const uint64_t vaddr, struct xhci_slot_context_t *slot_ctx)
162 {
163 memcpy((void *)vaddr, slot_ctx, sizeof(struct xhci_slot_context_t));
164 }
165
166 /**
167 * @brief 从指定地址读取slot context
168 *
169 * @param slot_ctx 目标地址
170 * @param slot_vaddr 源地址
171 * @return __always_inline
172 */
__read_from_slot(struct xhci_slot_context_t * slot_ctx,uint64_t slot_vaddr)173 static __always_inline void __read_from_slot(struct xhci_slot_context_t *slot_ctx, uint64_t slot_vaddr)
174 {
175 memcpy(slot_ctx, (void *)slot_vaddr, sizeof(struct xhci_slot_context_t));
176 }
177
178 /**
179 * @brief 写入doorbell寄存器
180 *
181 * @param id 主机控制器id
182 * @param slot_id usb控制器插槽id(0用作命令门铃,其他的用于具体的设备的门铃)
183 * @param value endpoint
184 */
__xhci_write_doorbell(const int id,const uint16_t slot_id,const uint32_t value)185 static __always_inline void __xhci_write_doorbell(const int id, const uint16_t slot_id, const uint32_t value)
186 {
187 // 确保写入门铃寄存器之前,所有的写操作均已完成
188 io_mfence();
189 xhci_write_cap_reg32(id, xhci_hc[id].db_offset + slot_id * sizeof(uint32_t), value);
190 io_mfence();
191 }
192
193 /**
194 * @brief 将trb写入指定的ring中,并更新下一个要写入的地址的值
195 *
196 * @param ep_info 端点信息结构体
197 * @param trb 待写入的trb
198 */
__xhci_write_trb(struct xhci_ep_info_t * ep_info,struct xhci_TRB_t * trb)199 static __always_inline void __xhci_write_trb(struct xhci_ep_info_t *ep_info, struct xhci_TRB_t *trb)
200 {
201 memcpy((void *)ep_info->current_ep_ring_vaddr, trb, sizeof(struct xhci_TRB_t));
202
203 ep_info->current_ep_ring_vaddr += sizeof(struct xhci_TRB_t);
204
205 struct xhci_TRB_normal_t *ptr = (struct xhci_TRB_normal_t *)(ep_info->current_ep_ring_vaddr);
206
207 // ring到头了,转换cycle,然后回到第一个trb
208 if (unlikely(ptr->TRB_type == TRB_TYPE_LINK))
209 {
210 ptr->cycle = ep_info->current_ep_ring_cycle;
211 ep_info->current_ep_ring_vaddr = ep_info->ep_ring_vbase;
212 ep_info->current_ep_ring_cycle ^= 1;
213 }
214 }
215
216 /**
217 * @brief 获取设备上下文缓冲区的虚拟地址
218 *
219 * @param id 主机控制器id
220 * @param port_id 端口id
221 * @return 设备上下文缓冲区的虚拟地址
222 */
xhci_get_device_context_vaddr(const int id,const int port_id)223 static __always_inline uint64_t xhci_get_device_context_vaddr(const int id, const int port_id)
224 {
225 return (uint64_t)phys_2_virt(
226 __read8b(xhci_hc[id].dcbaap_vaddr + (xhci_hc[id].ports[port_id].slot_id * sizeof(uint64_t))));
227 }
228
229 /**
230 * @brief 停止xhci主机控制器
231 *
232 * @param id 主机控制器id
233 * @return int
234 */
xhci_hc_stop(int id)235 static int xhci_hc_stop(int id)
236 {
237
238 // 判断是否已经停止
239 if (unlikely((xhci_read_op_reg32(id, XHCI_OPS_USBSTS) & (1 << 0)) == 1))
240 return 0;
241 io_mfence();
242 xhci_write_op_reg32(id, XHCI_OPS_USBCMD, 0x00000000);
243 io_mfence();
244 char timeout = 17;
245 while ((xhci_read_op_reg32(id, XHCI_OPS_USBSTS) & (1 << 0)) == 0)
246 {
247 io_mfence();
248 usleep(1000);
249 if (--timeout == 0)
250 return -ETIMEDOUT;
251 }
252
253 return 0;
254 }
255
256 /**
257 * @brief reset xHCI主机控制器
258 *
259 * @param id 主机控制器id
260 * @return int
261 */
xhci_hc_reset(int id)262 static int xhci_hc_reset(int id)
263 {
264 int retval = 0;
265 io_mfence();
266 // 判断HCHalted是否置位
267 if ((xhci_read_op_reg32(id, XHCI_OPS_USBSTS) & (1 << 0)) == 0)
268 {
269 io_mfence();
270 kdebug("stopping usb hc...");
271 // 未置位,需要先尝试停止usb主机控制器
272 retval = xhci_hc_stop(id);
273 if (unlikely(retval))
274 return retval;
275 }
276 int timeout = 500; // wait 500ms
277 // reset
278 uint32_t cmd = xhci_read_op_reg32(id, XHCI_OPS_USBCMD);
279 io_mfence();
280
281 cmd |= (1 << 1);
282 xhci_write_op_reg32(id, XHCI_OPS_USBCMD, cmd);
283 io_mfence();
284 io_mfence();
285 while (xhci_read_op_reg32(id, XHCI_OPS_USBCMD) & (1 << 1))
286 {
287 io_mfence();
288 usleep(1000);
289 if (--timeout == 0)
290 return -ETIMEDOUT;
291 }
292
293 return retval;
294 }
295
296 /**
297 * @brief 停止指定xhci控制器的legacy support
298 *
299 * @param id 控制器id
300 * @return int
301 */
xhci_hc_stop_legacy(int id)302 static int xhci_hc_stop_legacy(int id)
303 {
304 uint64_t current_offset = xhci_hc[id].ext_caps_off;
305
306 do
307 {
308 // 判断当前entry是否为legacy support entry
309 if ((xhci_read_cap_reg32(id, current_offset) & 0xff) == XHCI_XECP_ID_LEGACY)
310 {
311 io_mfence();
312 // 接管控制权
313 xhci_write_cap_reg32(id, current_offset,
314 xhci_read_cap_reg32(id, current_offset) | XHCI_XECP_LEGACY_OS_OWNED);
315 io_mfence();
316 // 等待响应完成
317 int timeout = XHCI_XECP_LEGACY_TIMEOUT;
318 while ((xhci_read_cap_reg32(id, current_offset) & XHCI_XECP_LEGACY_OWNING_MASK) !=
319 XHCI_XECP_LEGACY_OS_OWNED)
320 {
321 io_mfence();
322 usleep(1000);
323 if (--timeout == 0)
324 {
325 kerror("The BIOS doesn't stop legacy support.");
326 return -ETIMEDOUT;
327 }
328 }
329 // 处理完成
330 return 0;
331 }
332 io_mfence();
333 // 读取下一个entry的偏移增加量
334 int next_off = ((xhci_read_cap_reg32(id, current_offset) & 0xff00) >> 8) << 2;
335 io_mfence();
336 // 将指针跳转到下一个entry
337 current_offset = next_off ? (current_offset + next_off) : 0;
338 } while (current_offset);
339
340 // 当前controller不存在legacy支持,也问题不大,不影响
341 return 0;
342 }
343
344 /**
345 * @brief 启用指定xhci控制器的调度
346 *
347 * @param id 控制器id
348 * @return int
349 */
xhci_hc_start_sched(int id)350 static int xhci_hc_start_sched(int id)
351 {
352 io_mfence();
353 xhci_write_op_reg32(id, XHCI_OPS_USBCMD, (1 << 0) | (1 << 2) | (1 << 3));
354 io_mfence();
355 usleep(100 * 1000);
356 }
357
358 /**
359 * @brief 停止指定xhci控制器的调度
360 *
361 * @param id 控制器id
362 * @return int
363 */
xhci_hc_stop_sched(int id)364 static int xhci_hc_stop_sched(int id)
365 {
366 io_mfence();
367 xhci_write_op_reg32(id, XHCI_OPS_USBCMD, 0x00);
368 io_mfence();
369 }
370
371 /**
372 * @brief 在Ex capability list中寻找符合指定的协议号的寄存器offset、count、flag信息
373 *
374 * @param id 主机控制器id
375 * @param list_off 列表项位置距离控制器虚拟基地址的偏移量
376 * @param version 要寻找的端口版本号(2或3)
377 * @param offset 返回的 Compatible Port Offset
378 * @param count 返回的 Compatible Port Count
379 * @param protocol_flag 返回的与协议相关的flag
380 * @return uint32_t 下一个列表项的偏移量
381 */
xhci_hc_get_protocol_offset(int id,uint32_t list_off,const int version,uint32_t * offset,uint32_t * count,uint16_t * protocol_flag)382 static uint32_t xhci_hc_get_protocol_offset(int id, uint32_t list_off, const int version, uint32_t *offset,
383 uint32_t *count, uint16_t *protocol_flag)
384 {
385 if (count)
386 *count = 0;
387
388 do
389 {
390 uint32_t dw0 = xhci_read_cap_reg32(id, list_off);
391 io_mfence();
392 uint32_t next_list_off = (dw0 >> 8) & 0xff;
393 next_list_off = next_list_off ? (list_off + (next_list_off << 2)) : 0;
394
395 if ((dw0 & 0xff) == XHCI_XECP_ID_PROTOCOL && ((dw0 & 0xff000000) >> 24) == version)
396 {
397 uint32_t dw2 = xhci_read_cap_reg32(id, list_off + 8);
398 io_mfence();
399 if (offset != NULL)
400 *offset = (uint32_t)(dw2 & 0xff) - 1; // 使其转换为zero based
401 if (count != NULL)
402 *count = (uint32_t)((dw2 & 0xff00) >> 8);
403 if (protocol_flag != NULL && version == 2)
404 *protocol_flag = (uint16_t)((dw2 >> 16) & 0x0fff);
405
406 return next_list_off;
407 }
408
409 list_off = next_list_off;
410 } while (list_off);
411
412 return 0;
413 }
414 /**
415 * @brief 配对xhci主机控制器的usb2、usb3端口
416 *
417 * @param id 主机控制器id
418 * @return int 返回码
419 */
xhci_hc_pair_ports(int id)420 static int xhci_hc_pair_ports(int id)
421 {
422
423 struct xhci_caps_HCSPARAMS1_reg_t hcs1;
424 io_mfence();
425 memcpy(&hcs1, xhci_get_ptr_cap_reg32(id, XHCI_CAPS_HCSPARAMS1), sizeof(struct xhci_caps_HCSPARAMS1_reg_t));
426 io_mfence();
427 // 从hcs1获取端口数量
428 xhci_hc[id].port_num = hcs1.max_ports;
429
430 // 找到所有的端口并标记其端口信息
431
432 xhci_hc[id].port_num_u2 = 0;
433 xhci_hc[id].port_num_u3 = 0;
434
435 uint32_t next_off = xhci_hc[id].ext_caps_off;
436 uint32_t offset, cnt;
437 uint16_t protocol_flags = 0;
438
439 // 寻找所有的usb2端口
440 while (next_off)
441 {
442 io_mfence();
443 next_off = xhci_hc_get_protocol_offset(id, next_off, 2, &offset, &cnt, &protocol_flags);
444 io_mfence();
445
446 if (cnt)
447 {
448 for (int i = 0; i < cnt; ++i)
449 {
450 io_mfence();
451 xhci_hc[id].ports[offset + i].offset = xhci_hc[id].port_num_u2++;
452 xhci_hc[id].ports[offset + i].flags = XHCI_PROTOCOL_USB2;
453 io_mfence();
454 // usb2 high speed only
455 if (protocol_flags & 2)
456 xhci_hc[id].ports[offset + i].flags |= XHCI_PROTOCOL_HSO;
457 }
458 }
459 }
460
461 // 寻找所有的usb3端口
462 next_off = xhci_hc[id].ext_caps_off;
463 while (next_off)
464 {
465 io_mfence();
466 next_off = xhci_hc_get_protocol_offset(id, next_off, 3, &offset, &cnt, &protocol_flags);
467 io_mfence();
468
469 if (cnt)
470 {
471 for (int i = 0; i < cnt; ++i)
472 {
473 io_mfence();
474 xhci_hc[id].ports[offset + i].offset = xhci_hc[id].port_num_u3++;
475 xhci_hc[id].ports[offset + i].flags = XHCI_PROTOCOL_USB3;
476 }
477 }
478 }
479
480 // 将对应的USB2端口和USB3端口进行配对
481 for (int i = 0; i < xhci_hc[id].port_num; ++i)
482 {
483 for (int j = 0; j < xhci_hc[id].port_num; ++j)
484 {
485 if (unlikely(i == j))
486 continue;
487 io_mfence();
488 if ((xhci_hc[id].ports[i].offset == xhci_hc[id].ports[j].offset) &&
489 ((xhci_hc[id].ports[i].flags & XHCI_PROTOCOL_INFO) !=
490 (xhci_hc[id].ports[j].flags & XHCI_PROTOCOL_INFO)))
491 {
492 xhci_hc[id].ports[i].paired_port_num = j;
493 xhci_hc[id].ports[i].flags |= XHCI_PROTOCOL_HAS_PAIR;
494 io_mfence();
495 xhci_hc[id].ports[j].paired_port_num = i;
496 xhci_hc[id].ports[j].flags |= XHCI_PROTOCOL_HAS_PAIR;
497 }
498 }
499 }
500
501 // 标记所有的usb3、单独的usb2端口为激活状态
502 for (int i = 0; i < xhci_hc[id].port_num; ++i)
503 {
504 io_mfence();
505 if (XHCI_PORT_IS_USB3(id, i) || (XHCI_PORT_IS_USB2(id, i) && (!XHCI_PORT_HAS_PAIR(id, i))))
506 xhci_hc[id].ports[i].flags |= XHCI_PROTOCOL_ACTIVE;
507 }
508 kinfo("Found %d ports on root hub, usb2 ports:%d, usb3 ports:%d", xhci_hc[id].port_num, xhci_hc[id].port_num_u2,
509 xhci_hc[id].port_num_u3);
510
511 /*
512 // 打印配对结果
513 for (int i = 1; i <= xhci_hc[id].port_num; ++i)
514 {
515 if (XHCI_PORT_IS_USB3(id, i))
516 {
517 kdebug("USB3 port %d, offset=%d, pair with usb2 port %d, current port is %s", i,
518 xhci_hc[id].ports[i].offset, xhci_hc[id].ports[i].paired_port_num, XHCI_PORT_IS_ACTIVE(id, i) ? "active" :
519 "inactive");
520 }
521 else if (XHCI_PORT_IS_USB2(id, i) && (!XHCI_PORT_HAS_PAIR(id, i))) // 单独的2.0接口
522 {
523 kdebug("Stand alone USB2 port %d, offset=%d, current port is %s", i, xhci_hc[id].ports[i].offset,
524 XHCI_PORT_IS_ACTIVE(id, i) ? "active" : "inactive");
525 }
526 else if (XHCI_PORT_IS_USB2(id, i))
527 {
528 kdebug("USB2 port %d, offset=%d, current port is %s, has pair=%s", i, xhci_hc[id].ports[i].offset,
529 XHCI_PORT_IS_ACTIVE(id, i) ? "active" : "inactive", XHCI_PORT_HAS_PAIR(id, i) ? "true" : "false");
530 }
531 }
532 */
533
534 return 0;
535 }
536
537 /**
538 * @brief 创建ring,并将最后一个trb指向头一个trb
539 *
540 * @param trbs 要创建的trb数量
541 * @return uint64_t trb数组的起始虚拟地址
542 */
xhci_create_ring(int trbs)543 static uint64_t xhci_create_ring(int trbs)
544 {
545 int total_size = trbs * sizeof(struct xhci_TRB_t);
546 const uint64_t vaddr = (uint64_t)kmalloc(total_size, 0);
547 io_mfence();
548 memset((void *)vaddr, 0, total_size);
549 io_mfence();
550 // 设置最后一个trb为link trb
551 xhci_TRB_set_link_cmd(vaddr + total_size - sizeof(struct xhci_TRB_t));
552 io_mfence();
553 return vaddr;
554 }
555
556 /**
557 * @brief 创建新的event ring table和对应的ring segment
558 *
559 * @param trbs 包含的trb的数量
560 * @param ret_ring_addr 返回的第一个event ring segment的基地址(虚拟)
561 * @return uint64_t trb table的虚拟地址
562 */
xhci_create_event_ring(int trbs,uint64_t * ret_ring_addr)563 static uint64_t xhci_create_event_ring(int trbs, uint64_t *ret_ring_addr)
564 {
565 const uint64_t table_vaddr = (const uint64_t)kmalloc(64, 0); // table支持8个segment
566 io_mfence();
567 if (unlikely(table_vaddr == NULL))
568 return -ENOMEM;
569 memset((void *)table_vaddr, 0, 64);
570
571 // 暂时只创建1个segment
572 const uint64_t seg_vaddr = (const uint64_t)kmalloc(trbs * sizeof(struct xhci_TRB_t), 0);
573 io_mfence();
574 if (unlikely(seg_vaddr == NULL))
575 return -ENOMEM;
576
577 memset((void *)seg_vaddr, 0, trbs * sizeof(struct xhci_TRB_t));
578 io_mfence();
579 // 将segment地址和大小写入table
580 *(uint64_t *)(table_vaddr) = virt_2_phys(seg_vaddr);
581 *(uint64_t *)(table_vaddr + 8) = trbs;
582
583 *ret_ring_addr = seg_vaddr;
584 return table_vaddr;
585 }
586
xhci_hc_irq_enable(uint64_t irq_num)587 void xhci_hc_irq_enable(uint64_t irq_num)
588 {
589 int cid = xhci_find_hcid_by_irq_num(irq_num);
590 io_mfence();
591 if (WARN_ON(cid == -1))
592 return;
593
594 io_mfence();
595 pci_start_msi(xhci_hc[cid].pci_dev_hdr);
596
597 io_mfence();
598 xhci_hc_start_sched(cid);
599 io_mfence();
600 xhci_hc_start_ports(cid);
601 }
602
xhci_hc_irq_disable(uint64_t irq_num)603 void xhci_hc_irq_disable(uint64_t irq_num)
604 {
605 int cid = xhci_find_hcid_by_irq_num(irq_num);
606 io_mfence();
607 if (WARN_ON(cid == -1))
608 return;
609
610 xhci_hc_stop_sched(cid);
611 io_mfence();
612 pci_disable_msi(xhci_hc[cid].pci_dev_hdr);
613 io_mfence();
614 }
615
616 /**
617 * @brief xhci中断的安装函数
618 *
619 * @param irq_num 要安装的中断向量号
620 * @param arg 参数
621 * @return uint64_t 错误码
622 */
xhci_hc_irq_install(uint64_t irq_num,void * arg)623 uint64_t xhci_hc_irq_install(uint64_t irq_num, void *arg)
624 {
625 int cid = xhci_find_hcid_by_irq_num(irq_num);
626 io_mfence();
627 if (WARN_ON(cid == -1))
628 return -EINVAL;
629
630 struct xhci_hc_irq_install_info_t *info = (struct xhci_hc_irq_install_info_t *)arg;
631 struct msi_desc_t msi_desc;
632 memset(&msi_desc, 0, sizeof(struct msi_desc_t));
633 io_mfence();
634 msi_desc.irq_num = irq_num;
635 msi_desc.msi_index = 0;
636 msi_desc.pci_dev = (struct pci_device_structure_header_t *)xhci_hc[cid].pci_dev_hdr;
637 msi_desc.assert = info->assert;
638 msi_desc.edge_trigger = info->edge_trigger;
639 msi_desc.processor = info->processor;
640 msi_desc.pci.msi_attribute.is_64 = 1;
641 msi_desc.pci.msi_attribute.is_msix = 1;
642 io_mfence();
643 int retval = pci_enable_msi(&msi_desc);
644
645 return 0;
646 }
647
xhci_hc_irq_uninstall(uint64_t irq_num)648 void xhci_hc_irq_uninstall(uint64_t irq_num)
649 {
650 // todo
651 int cid = xhci_find_hcid_by_irq_num(irq_num);
652 io_mfence();
653 if (WARN_ON(cid == -1))
654 return;
655 xhci_hc_stop(cid);
656 io_mfence();
657 }
658 /**
659 * @brief xhci主机控制器的中断处理函数
660 *
661 * @param irq_num 中断向量号
662 * @param cid 控制器号
663 * @param regs 寄存器值
664 */
xhci_hc_irq_handler(uint64_t irq_num,uint64_t cid,struct pt_regs * regs)665 void xhci_hc_irq_handler(uint64_t irq_num, uint64_t cid, struct pt_regs *regs)
666 {
667 // kdebug("USB irq received.");
668 /*
669 写入usb status寄存器,以表明当前收到了中断,清除usb status寄存器中的EINT位
670 需要先清除这个位,再清除interrupter中的pending bit)
671 */
672 xhci_write_op_reg32(cid, XHCI_OPS_USBSTS, xhci_read_op_reg32(cid, XHCI_OPS_USBSTS));
673
674 // 读取第0个usb interrupter的intr management寄存器
675 const uint32_t iman0 = xhci_read_intr_reg32(cid, 0, XHCI_IR_MAN);
676 uint64_t dequeue_reg = xhci_read_intr_reg64(cid, 0, XHCI_IR_DEQUEUE);
677
678 if (((iman0 & 3) == 3) || (dequeue_reg & 8)) // 中断被启用,且pending不为0
679 {
680 // kdebug("to handle");
681 // 写入1以清除该interrupter的pending bit
682 xhci_write_intr_reg32(cid, 0, XHCI_IR_MAN, iman0 | 3);
683 io_mfence();
684 struct xhci_TRB_t event_trb, origin_trb; // event ring trb以及其对应的command trb
685 uint64_t origin_vaddr;
686 // 暂存当前trb的起始地址
687 uint64_t last_event_ring_vaddr = xhci_hc[cid].current_event_ring_vaddr;
688 xhci_get_trb(&event_trb, xhci_hc[cid].current_event_ring_vaddr);
689
690 {
691 struct xhci_TRB_cmd_complete_t *event_trb_ptr = (struct xhci_TRB_cmd_complete_t *)&event_trb;
692 // kdebug("TRB_type=%d, comp_code=%d", event_trb_ptr->TRB_type, event_trb_ptr->code);
693 }
694 while ((event_trb.command & 1) == xhci_hc[cid].current_event_ring_cycle) // 循环处理处于当前周期的所有event ring
695 {
696
697 struct xhci_TRB_cmd_complete_t *event_trb_ptr = (struct xhci_TRB_cmd_complete_t *)&event_trb;
698 // kdebug("TRB_type=%d, comp_code=%d", event_trb_ptr->TRB_type, event_trb_ptr->code);
699 if ((event_trb.command & (1 << 2)) == 0) // 当前event trb不是由于short packet产生的
700 {
701 // kdebug("event_trb_ptr->code=%d", event_trb_ptr->code);
702 // kdebug("event_trb_ptr->TRB_type=%d", event_trb_ptr->TRB_type);
703 switch (event_trb_ptr->code) // 判断它的完成码
704 {
705 case TRB_COMP_TRB_SUCCESS: // trb执行成功,则将结果返回到对应的command ring的trb里面
706
707 switch (event_trb_ptr->TRB_type) // 根据event trb类型的不同,采取不同的措施
708 {
709 case TRB_TYPE_COMMAND_COMPLETION: // 命令已经完成
710 origin_vaddr = (uint64_t)phys_2_virt(event_trb.param);
711 // 获取对应的command trb
712 xhci_get_trb(&origin_trb, origin_vaddr);
713
714 switch (((struct xhci_TRB_normal_t *)&origin_trb)->TRB_type)
715 {
716 case TRB_TYPE_ENABLE_SLOT: // 源命令为enable slot
717 // 将slot id返回到命令TRB的command字段中
718 origin_trb.command &= 0x00ffffff;
719 origin_trb.command |= (event_trb.command & 0xff000000);
720 origin_trb.status = event_trb.status;
721 break;
722 default:
723 origin_trb.status = event_trb.status;
724 break;
725 }
726
727 // 标记该命令已经执行完成
728 origin_trb.status |= XHCI_IRQ_DONE;
729 // 将command trb写入到表中
730 xhci_set_trb(&origin_trb, origin_vaddr);
731 // kdebug("set origin:%#018lx", origin_vaddr);
732 break;
733 }
734 break;
735
736 default:
737 break;
738 }
739 }
740 else // 当前TRB是由short packet产生的
741 {
742 switch (event_trb_ptr->TRB_type)
743 {
744 case TRB_TYPE_TRANS_EVENT: // 当前 event trb是 transfer event TRB
745 // If SPD was encountered in this TD, comp_code will be SPD, else it should be SUCCESS
746 // (specs 4.10.1.1)
747 __write4b((uint64_t)phys_2_virt(event_trb.param),
748 (event_trb.status | XHCI_IRQ_DONE)); // return code + bytes *not* transferred
749 break;
750
751 default:
752 break;
753 }
754 }
755
756 // 获取下一个event ring TRB
757 last_event_ring_vaddr = xhci_hc[cid].current_event_ring_vaddr;
758 xhci_hc[cid].current_event_ring_vaddr += sizeof(struct xhci_TRB_t);
759 xhci_get_trb(&event_trb, xhci_hc[cid].current_event_ring_vaddr);
760 if (((struct xhci_TRB_normal_t *)&event_trb)->TRB_type == TRB_TYPE_LINK)
761 {
762 xhci_hc[cid].current_event_ring_vaddr = xhci_hc[cid].event_ring_vaddr;
763 xhci_get_trb(&event_trb, xhci_hc[cid].current_event_ring_vaddr);
764 }
765 }
766
767 // 当前event ring cycle的TRB处理结束
768 // 更新dequeue指针, 并清除event handler busy标志位
769 xhci_write_intr_reg64(cid, 0, XHCI_IR_DEQUEUE, virt_2_phys(last_event_ring_vaddr) | (1 << 3));
770 io_mfence();
771 }
772 }
773 /**
774 * @brief 重置端口
775 *
776 * @param id 控制器id
777 * @param port 端口id
778 * @return int
779 */
xhci_reset_port(const int id,const int port)780 static int xhci_reset_port(const int id, const int port)
781 {
782 int retval = 0;
783 // 相对于op寄存器基地址的偏移量
784 uint64_t port_status_offset = XHCI_OPS_PRS + port * 16;
785
786 io_mfence();
787 // 检查端口电源状态
788 if ((xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC) & (1 << 9)) == 0)
789 {
790 kdebug("port is power off, starting...");
791 io_mfence();
792 xhci_write_cap_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9));
793 io_mfence();
794 usleep(2000);
795 // 检测端口是否被启用, 若未启用,则报错
796 if ((xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC) & (1 << 9)) == 0)
797 {
798 kdebug("cannot power on %d", port);
799 return -EAGAIN;
800 }
801 }
802 // kdebug("port:%d, power check ok", port);
803 io_mfence();
804 // 确保端口的status被清0
805 xhci_write_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9) | XHCI_PORTUSB_CHANGE_BITS);
806 // kdebug("to reset timeout;");
807 io_mfence();
808 // 重置当前端口
809 if (XHCI_PORT_IS_USB3(id, port))
810 xhci_write_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9) | (1U << 31));
811 else
812 xhci_write_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9) | (1 << 4));
813
814 retval = -ETIMEDOUT;
815 // kdebug("to wait reset timeout;");
816 // 等待portsc的port reset change位被置位,说明reset完成
817 int timeout = 100;
818 while (timeout)
819 {
820 io_mfence();
821 uint32_t val = xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC);
822 io_mfence();
823 if (val & (1 << 21))
824 break;
825 // QEMU对usb的模拟有bug,因此需要检测这里
826 #ifdef __QEMU_EMULATION__
827
828 if (XHCI_PORT_IS_USB3(id, port) && (val & (1U << 31)) == 0)
829 break;
830 else if (XHCI_PORT_IS_USB2(id, port) && (val & (1 << 4)) == 0)
831 break;
832 #endif
833 --timeout;
834 usleep(500);
835 }
836 // kdebug("timeout= %d", timeout);
837
838 if (timeout > 0)
839 {
840 // 等待恢复
841 usleep(USB_TIME_RST_REC * 100);
842 uint32_t val = xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC);
843 io_mfence();
844
845 // kdebug("to check if reset ok, val=%#010lx", val);
846
847 // 如果reset之后,enable bit仍然是1,那么说明reset成功
848 if (val & (1 << 1))
849 {
850 // kdebug("reset ok");
851 retval = 0;
852 io_mfence();
853 // 清除status change bit
854 xhci_write_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9) | XHCI_PORTUSB_CHANGE_BITS);
855 io_mfence();
856 }
857 else
858 retval = -1;
859 }
860 // kdebug("reset ok!");
861 // 如果usb2端口成功reset,则处理该端口的active状态
862 if (retval == 0 && XHCI_PORT_IS_USB2(id, port))
863 {
864 xhci_hc[id].ports[port].flags |= XHCI_PROTOCOL_ACTIVE;
865 if (XHCI_PORT_HAS_PAIR(id, port)) // 如果有对应的usb3端口,则将usb3端口设置为未激活
866 xhci_hc[id].ports[xhci_hc[id].ports[port].paired_port_num].flags &= ~(XHCI_PROTOCOL_ACTIVE);
867 }
868
869 // 如果usb3端口reset失败,则启用与之配对的usb2端口
870 if (retval != 0 && XHCI_PORT_IS_USB3(id, port))
871 {
872 xhci_hc[id].ports[port].flags &= ~XHCI_PROTOCOL_ACTIVE;
873 xhci_hc[id].ports[xhci_hc[id].ports[port].paired_port_num].flags |= XHCI_PROTOCOL_ACTIVE;
874 }
875
876 return retval;
877 }
878
879 /**
880 * @brief 初始化设备slot的上下文,并将其写入dcbaap中的上下文index数组
881 * - at this time, we don't know if the device is a hub or not, so we don't
882 * set the slot->hub, ->mtt, ->ttt, ->etc, items.
883 *
884 * @param id 控制器id
885 * @param port 端口号
886 * @param speed 端口速度
887 * @param max_packet 最大数据包大小
888 * @return uint64_t 初始化好的设备上下文空间的虚拟地址
889 */
xhci_initialize_slot(const int id,const int port,const int speed,const int max_packet)890 static uint64_t xhci_initialize_slot(const int id, const int port, const int speed, const int max_packet)
891 {
892 // 为所有的endpoint分配上下文空间
893 // todo: 按需分配上下文空间
894 uint64_t device_context_vaddr = (uint64_t)kzalloc(xhci_hc[id].context_size * 32, 0);
895 // kdebug("slot id=%d, device_context_vaddr=%#018lx, port=%d", slot_id, device_context_vaddr, port);
896 // 写到数组中
897 __write8b(xhci_hc[id].dcbaap_vaddr + (xhci_hc[id].ports[port].slot_id * sizeof(uint64_t)),
898 virt_2_phys(device_context_vaddr));
899 struct xhci_slot_context_t slot_ctx = {0};
900 slot_ctx.entries = 1;
901 slot_ctx.speed = speed;
902 slot_ctx.route_string = 0;
903 slot_ctx.rh_port_num = port + 1; // 由于xhci控制器是1-base的,因此把驱动程序中存储的端口号加1,才是真实的端口号
904 slot_ctx.max_exit_latency = 0; // 稍后会计算这个值
905 slot_ctx.int_target = 0; // 当前全部使用第0个interrupter
906 slot_ctx.slot_state = XHCI_SLOT_STATE_DISABLED_OR_ENABLED;
907 slot_ctx.device_address = 0;
908
909 // 将slot信息写入上下文空间
910 __write_slot(device_context_vaddr, &slot_ctx);
911
912 // 初始化控制端点
913 xhci_initialize_ep(id, device_context_vaddr, port, XHCI_EP_CONTROL, max_packet, 0, USB_EP_CONTROL, 0, speed, 0);
914
915 return device_context_vaddr;
916 }
917
918 /**
919 * @brief 初始化endpoint
920 *
921 * @param id 控制器id
922 * @param slot_vaddr slot上下文的虚拟地址
923 * @param port_id 插槽id
924 * @param ep_num 端点上下文在slot上下文区域内的编号
925 * @param max_packet 最大数据包大小
926 * @param type 端点类型
927 * @param direction 传输方向
928 * @param speed 传输速度
929 * @param ep_interval 端点的连续请求间隔
930 */
xhci_initialize_ep(const int id,const uint64_t slot_vaddr,const int port_id,const int ep_num,const int max_packet,const int max_burst,const int type,const int direction,const int speed,const int ep_interval)931 static void xhci_initialize_ep(const int id, const uint64_t slot_vaddr, const int port_id, const int ep_num,
932 const int max_packet, const int max_burst, const int type, const int direction,
933 const int speed, const int ep_interval)
934 {
935 // 由于目前只实现获取设备的描述符,因此暂时只支持control ep
936 if (type != USB_EP_CONTROL && type != USB_EP_INTERRUPT)
937 return;
938 struct xhci_ep_context_t ep_ctx = {0};
939 memset(&ep_ctx, 0, sizeof(struct xhci_ep_context_t));
940
941 xhci_hc[id].ports[port_id].ep_info[ep_num].ep_ring_vbase = xhci_create_ring(XHCI_TRBS_PER_RING);
942 // 申请ep的 transfer ring
943 ep_ctx.tr_dequeue_ptr = virt_2_phys(xhci_hc[id].ports[port_id].ep_info[ep_num].ep_ring_vbase);
944 xhci_ep_set_dequeue_cycle_state(&ep_ctx, XHCI_TRB_CYCLE_ON);
945
946 xhci_hc[id].ports[port_id].ep_info[ep_num].current_ep_ring_vaddr =
947 xhci_hc[id].ports[port_id].ep_info[ep_num].ep_ring_vbase;
948 xhci_hc[id].ports[port_id].ep_info[ep_num].current_ep_ring_cycle = xhci_ep_get_dequeue_cycle_state(&ep_ctx);
949 // kdebug("ep_ctx.tr_dequeue_ptr = %#018lx", ep_ctx.tr_dequeue_ptr);
950 // kdebug("xhci_hc[id].control_ep_info.current_ep_ring_cycle = %d",
951 // xhci_hc[id].control_ep_info.current_ep_ring_cycle);
952 kdebug("max_packet=%d, max_burst=%d", max_packet, max_burst);
953 switch (type)
954 {
955 case USB_EP_CONTROL: // Control ep
956 // 设置初始值
957 ep_ctx.max_packet_size = max_packet;
958 ep_ctx.linear_stream_array = 0;
959 ep_ctx.max_primary_streams = 0;
960 ep_ctx.mult = 0;
961 ep_ctx.ep_state = XHCI_EP_STATE_DISABLED;
962 ep_ctx.hid = 0;
963 ep_ctx.ep_type = XHCI_EP_TYPE_CONTROL;
964 ep_ctx.average_trb_len = 8; // 所有的control ep的该值均为8
965 ep_ctx.err_cnt = 3;
966 ep_ctx.max_burst_size = max_burst;
967 ep_ctx.interval = ep_interval;
968
969 break;
970 case USB_EP_INTERRUPT:
971 ep_ctx.max_packet_size = max_packet & 0x7ff;
972 ep_ctx.max_burst_size = max_burst;
973 ep_ctx.ep_state = XHCI_EP_STATE_DISABLED;
974 ep_ctx.mult = 0;
975 ep_ctx.err_cnt = 3;
976 ep_ctx.max_esti_payload_hi = ((max_packet * (max_burst + 1)) >> 8) & 0xff;
977 ep_ctx.max_esti_payload_lo = ((max_packet * (max_burst + 1))) & 0xff;
978 ep_ctx.interval = ep_interval;
979 ep_ctx.average_trb_len = 8; // todo: It's not sure how much to fill in this value
980 // ep_ctx.ep_type = XHCI_EP_TYPE_INTR_IN;
981 ep_ctx.ep_type = ((ep_num % 2) ? XHCI_EP_TYPE_INTR_IN : XHCI_EP_TYPE_INTR_OUT);
982
983 break;
984 default:
985 break;
986 }
987
988 // 将ep的信息写入到slot上下文中对应的ep的块中
989 __write_ep(id, slot_vaddr, ep_num, &ep_ctx);
990 }
991
992 /**
993 * @brief 向usb控制器发送 address_device命令
994 *
995 * @param id 主机控制器id
996 * @param slot_vaddr 插槽上下文的虚拟基地址
997 * @param slot_id 插槽id
998 * @param block 是否阻断 set address 信息向usb设备的传输
999 * @return int 错误码
1000 */
xhci_set_address(const int id,const uint64_t slot_vaddr,const int slot_id,const bool block)1001 static int xhci_set_address(const int id, const uint64_t slot_vaddr, const int slot_id, const bool block)
1002 {
1003 int retval = 0;
1004 struct xhci_slot_context_t slot;
1005 struct xhci_ep_context_t ep;
1006 // 创建输入上下文缓冲区
1007 uint64_t input_ctx_buffer = (uint64_t)kzalloc(xhci_hc[id].context_size * 33, 0);
1008
1009 // 置位input control context和slot context的add bit
1010 __write4b(input_ctx_buffer + 4, 0x3);
1011
1012 // 拷贝slot上下文和control ep上下文到输入上下文中
1013
1014 // __write_ep(id, input_ctx_buffer, 2, &ep_ctx);
1015 __read_from_slot(&slot, slot_vaddr);
1016 __read_from_ep(id, slot_vaddr, 1, &ep);
1017 ep.err_cnt = 3;
1018 kdebug("slot.slot_state=%d, speed=%d, root hub port num=%d", slot.slot_state, slot.speed, slot.rh_port_num);
1019 kdebug("ep.type=%d, max_packet=%d, dequeue_ptr=%#018lx", ep.ep_type, ep.max_packet_size, ep.tr_dequeue_ptr);
1020
1021 __write_slot(input_ctx_buffer + xhci_hc[id].context_size, &slot);
1022 __write_ep(id, input_ctx_buffer, 2, &ep);
1023
1024 struct xhci_TRB_normal_t trb = {0};
1025 trb.buf_paddr = virt_2_phys(input_ctx_buffer);
1026 trb.bei = (block ? 1 : 0);
1027 trb.TRB_type = TRB_TYPE_ADDRESS_DEVICE;
1028 trb.intr_target = 0;
1029 trb.cycle = xhci_hc[id].cmd_trb_cycle;
1030 trb.Reserved |= ((slot_id << 8) & 0xffff);
1031
1032 retval = xhci_send_command(id, (struct xhci_TRB_t *)&trb, true);
1033 if (unlikely(retval != 0))
1034 {
1035 kerror("slotid:%d, address device failed", slot_id);
1036 goto failed;
1037 }
1038
1039 struct xhci_TRB_cmd_complete_t *trb_done = (struct xhci_TRB_cmd_complete_t *)&trb;
1040 if (trb_done->code == TRB_COMP_TRB_SUCCESS) // 成功执行
1041 {
1042 // 如果要从控制器获取刚刚设置的设备地址的话,可以在这里读取slot context
1043 ksuccess("slot %d successfully addressed.", slot_id);
1044
1045 retval = 0;
1046 }
1047 else
1048 retval = -EAGAIN;
1049 done:;
1050 failed:;
1051 kfree((void *)input_ctx_buffer);
1052 return retval;
1053 }
1054
1055 /**
1056 * @brief 在指定的端点的ring中,写入一个setup stage TRB
1057 *
1058 * @param ep 端点信息结构体
1059 * @param packet usb请求包
1060 * @param direction 传输的方向
1061 * @return int 产生的TRB数量
1062 */
xhci_setup_stage(struct xhci_ep_info_t * ep,const struct usb_request_packet_t * packet,const uint8_t direction)1063 static int xhci_setup_stage(struct xhci_ep_info_t *ep, const struct usb_request_packet_t *packet,
1064 const uint8_t direction)
1065 {
1066 // kdebug("ep->current_ep_ring_cycle=%d", ep->current_ep_ring_cycle);
1067 struct xhci_TRB_setup_stage_t trb = {0};
1068 trb.bmRequestType = packet->request_type;
1069 trb.bRequest = packet->request;
1070 trb.wValue = packet->value;
1071 trb.wIndex = packet->index;
1072 trb.wLength = packet->length;
1073 trb.transfer_legth = 8;
1074 trb.intr_target = 0; // 使用第0个interrupter
1075 trb.cycle = ep->current_ep_ring_cycle;
1076 trb.ioc = 0;
1077 trb.idt = 1;
1078 trb.TRB_type = TRB_TYPE_SETUP_STAGE;
1079 trb.trt = direction;
1080
1081 // 将setup stage trb拷贝到ep的transfer ring中
1082 __xhci_write_trb(ep, (struct xhci_TRB_t *)&trb);
1083 return 1;
1084 }
1085
1086 /**
1087 * @brief 向指定的端点中写入data stage trb
1088 *
1089 * @param ep 端点信息结构体
1090 * @param buf_vaddr 数据缓冲区虚拟地址
1091 * @param trb_type trb类型
1092 * @param size 要传输的数据大小
1093 * @param direction 传输方向
1094 * @param max_packet 最大请求包大小
1095 * @param status_vaddr event data TRB的缓冲区(4字节,且地址按照16字节对齐)
1096 * @return int 产生的TRB数量
1097 */
xhci_data_stage(struct xhci_ep_info_t * ep,uint64_t buf_vaddr,uint8_t trb_type,const uint32_t size,uint8_t direction,const int max_packet,const uint64_t status_vaddr)1098 static int xhci_data_stage(struct xhci_ep_info_t *ep, uint64_t buf_vaddr, uint8_t trb_type, const uint32_t size,
1099 uint8_t direction, const int max_packet, const uint64_t status_vaddr)
1100 {
1101 if (size == 0)
1102 return 0;
1103 int64_t remain_bytes = size;
1104 uint32_t remain_packets = (size + max_packet - 1) / max_packet;
1105 struct xhci_TRB_data_stage_t trb = {0};
1106 int count_packets = 0;
1107 // 分多个trb来执行
1108 while (remain_bytes > 0)
1109 {
1110 --remain_packets;
1111
1112 trb.buf_paddr = virt_2_phys(buf_vaddr);
1113 trb.intr_target = 0;
1114 trb.TD_size = remain_packets;
1115 trb.transfer_length = (remain_bytes < max_packet ? size : max_packet);
1116 trb.dir = direction;
1117 trb.TRB_type = trb_type;
1118 trb.chain = 1;
1119 trb.ent = (remain_packets == 0);
1120 trb.cycle = ep->current_ep_ring_cycle;
1121 trb.ioc = 0;
1122
1123 // 将data stage trb拷贝到ep的transfer ring中
1124 __xhci_write_trb(ep, (struct xhci_TRB_t *)&trb);
1125
1126 buf_vaddr += max_packet;
1127 remain_bytes -= max_packet;
1128 ++count_packets;
1129
1130 // 对于data stage trb而言,除了第一个trb以外,剩下的trb都是NORMAL的,并且dir是无用的
1131 trb_type = TRB_TYPE_NORMAL;
1132 direction = 0;
1133 }
1134
1135 // 写入data event trb, 待完成后,完成信息将会存到status_vaddr指向的地址中
1136 memset(&trb, 0, sizeof(struct xhci_TRB_data_stage_t *));
1137 trb.buf_paddr = virt_2_phys(status_vaddr);
1138 trb.intr_target = 0;
1139 trb.cycle = ep->current_ep_ring_cycle;
1140 trb.ioc = 1;
1141 trb.TRB_type = TRB_TYPE_EVENT_DATA;
1142 __xhci_write_trb(ep, (struct xhci_TRB_t *)&trb);
1143
1144 return count_packets + 1;
1145 }
1146
1147 /**
1148 * @brief 填写xhci status stage TRB到control ep的transfer ring
1149 *
1150 * @param ep 端点信息结构体
1151 * @param direction 方向:(h2d:0, d2h:1)
1152 * @param status_buf_vaddr
1153 * @return int 创建的TRB数量
1154 */
xhci_status_stage(struct xhci_ep_info_t * ep,uint8_t direction,uint64_t status_buf_vaddr)1155 static int xhci_status_stage(struct xhci_ep_info_t *ep, uint8_t direction, uint64_t status_buf_vaddr)
1156 {
1157 // kdebug("write status stage trb");
1158
1159 {
1160 struct xhci_TRB_status_stage_t trb = {0};
1161
1162 // 写入status stage trb
1163 trb.intr_target = 0;
1164 trb.cycle = ep->current_ep_ring_cycle;
1165 trb.ent = 0;
1166 trb.ioc = 1;
1167 trb.TRB_type = TRB_TYPE_STATUS_STAGE;
1168 trb.dir = direction;
1169 __xhci_write_trb(ep, (struct xhci_TRB_t *)&trb);
1170 }
1171
1172 {
1173 // 写入event data TRB
1174 struct xhci_TRB_data_stage_t trb = {0};
1175 trb.buf_paddr = virt_2_phys(status_buf_vaddr);
1176 trb.intr_target = 0;
1177 trb.TRB_type = TRB_TYPE_EVENT_DATA;
1178 trb.ioc = 1;
1179
1180 trb.cycle = ep->current_ep_ring_cycle;
1181
1182 __xhci_write_trb(ep, (struct xhci_TRB_t *)&trb);
1183 }
1184
1185 return 2;
1186 }
1187
1188 /**
1189 * @brief 等待状态数据被拷贝到status缓冲区中
1190 *
1191 * @param id 主机控制器id
1192 * @param status_vaddr status 缓冲区
1193 * @return int 错误码
1194 */
xhci_wait_for_interrupt(const int id,uint64_t status_vaddr)1195 static int xhci_wait_for_interrupt(const int id, uint64_t status_vaddr)
1196 {
1197 int timer = 500;
1198 while (timer)
1199 {
1200 if (__read4b(status_vaddr) & XHCI_IRQ_DONE)
1201 {
1202 uint32_t status = __read4b(status_vaddr);
1203 // 判断完成码
1204 switch (xhci_get_comp_code(status))
1205 {
1206 case TRB_COMP_TRB_SUCCESS:
1207 case TRB_COMP_SHORT_PACKET:
1208 return 0;
1209 break;
1210 case TRB_COMP_STALL_ERROR:
1211 case TRB_COMP_DATA_BUFFER_ERROR:
1212 case TRB_COMP_BABBLE_DETECTION:
1213 return -EINVAL;
1214 default:
1215 kerror("xhci wait interrupt: status=%#010x, complete_code=%d", status, xhci_get_comp_code(status));
1216 return -EIO;
1217 }
1218 }
1219 --timer;
1220 usleep(1000);
1221 }
1222
1223 kerror(" USB xHCI Interrupt wait timed out.");
1224 return -ETIMEDOUT;
1225 }
1226
1227 /**
1228 * @brief 从指定插槽的control endpoint读取信息
1229 *
1230 * @param id 主机控制器id
1231 * @param packet usb数据包
1232 * @param target 读取到的信息存放到的位置
1233 * @param port_id 端口id
1234 * @param max_packet 最大数据包大小
1235 * @return int 读取到的数据的大小
1236 */
xhci_control_in(const int id,struct usb_request_packet_t * packet,void * target,const int port_id,const int max_packet)1237 static int xhci_control_in(const int id, struct usb_request_packet_t *packet, void *target, const int port_id,
1238 const int max_packet)
1239 {
1240
1241 uint64_t status_buf_vaddr =
1242 (uint64_t)kzalloc(16, 0); // 本来是要申请4bytes的buffer的,但是因为xhci控制器需要16bytes对齐,因此申请16bytes
1243 uint64_t data_buf_vaddr = 0;
1244 int retval = 0;
1245
1246 // 往control ep写入一个setup stage trb
1247 xhci_setup_stage(&xhci_hc[id].ports[port_id].ep_info[XHCI_EP_CONTROL], packet, XHCI_DIR_IN);
1248 if (packet->length)
1249 {
1250 data_buf_vaddr = (uint64_t)kzalloc(packet->length, 0);
1251 xhci_data_stage(&xhci_hc[id].ports[port_id].ep_info[XHCI_EP_CONTROL], data_buf_vaddr, TRB_TYPE_DATA_STAGE,
1252 packet->length, XHCI_DIR_IN_BIT, max_packet, status_buf_vaddr);
1253 }
1254
1255 /*
1256 QEMU doesn't quite handle SETUP/DATA/STATUS transactions correctly.
1257 It will wait for the STATUS TRB before it completes the transfer.
1258 Technically, you need to check for a good transfer before you send the
1259 STATUS TRB. However, since QEMU doesn't update the status until after
1260 the STATUS TRB, waiting here will not complete a successful transfer.
1261 Bochs and real hardware handles this correctly, however QEMU does not.
1262 If you are using QEMU, do not ring the doorbell here. Ring the doorbell
1263 *after* you place the STATUS TRB on the ring.
1264 (See bug report: https://bugs.launchpad.net/qemu/+bug/1859378 )
1265 */
1266 #ifndef __QEMU_EMULATION__
1267 // 如果不是qemu虚拟机,则可以直接发起传输
1268 // kdebug(" not qemu");
1269 __xhci_write_doorbell(id, xhci_hc[id].ports[port_id].slot_id, XHCI_EP_CONTROL);
1270 retval = xhci_wait_for_interrupt(id, status_buf_vaddr);
1271 if (unlikely(retval != 0))
1272 goto failed;
1273 #endif
1274 memset((void *)status_buf_vaddr, 0, 16);
1275 xhci_status_stage(&xhci_hc[id].ports[port_id].ep_info[XHCI_EP_CONTROL], XHCI_DIR_OUT_BIT, status_buf_vaddr);
1276
1277 __xhci_write_doorbell(id, xhci_hc[id].ports[port_id].slot_id, XHCI_EP_CONTROL);
1278
1279 retval = xhci_wait_for_interrupt(id, status_buf_vaddr);
1280
1281 if (unlikely(retval != 0))
1282 goto failed;
1283
1284 // 将读取到的数据拷贝到目标区域
1285 if (packet->length)
1286 memcpy(target, (void *)data_buf_vaddr, packet->length);
1287 retval = packet->length;
1288 goto done;
1289
1290 failed:;
1291 kdebug("wait 4 interrupt failed");
1292 retval = 0;
1293 done:;
1294 // 释放内存
1295 kfree((void *)status_buf_vaddr);
1296 if (packet->length)
1297 kfree((void *)data_buf_vaddr);
1298 return retval;
1299 }
1300
1301 /**
1302 * @brief 向指定插槽的control ep输出信息
1303 *
1304 * @param id 主机控制器id
1305 * @param packet usb数据包
1306 * @param target 返回的数据存放的位置
1307 * @param port_id 端口id
1308 * @param max_packet 最大数据包大小
1309 * @return int 读取到的数据的大小
1310 */
xhci_control_out(const int id,struct usb_request_packet_t * packet,void * target,const int port_id,const int max_packet)1311 static int xhci_control_out(const int id, struct usb_request_packet_t *packet, void *target, const int port_id,
1312 const int max_packet)
1313 {
1314 uint64_t status_buf_vaddr = (uint64_t)kzalloc(16, 0);
1315 uint64_t data_buf_vaddr = 0;
1316 int retval = 0;
1317
1318 // 往control ep写入一个setup stage trb
1319 xhci_setup_stage(&xhci_hc[id].ports[port_id].ep_info[XHCI_EP_CONTROL], packet, XHCI_DIR_OUT);
1320
1321 if (packet->length)
1322 {
1323 data_buf_vaddr = (uint64_t)kzalloc(packet->length, 0);
1324 xhci_data_stage(&xhci_hc[id].ports[port_id].ep_info[XHCI_EP_CONTROL], data_buf_vaddr, TRB_TYPE_DATA_STAGE,
1325 packet->length, XHCI_DIR_OUT_BIT, max_packet, status_buf_vaddr);
1326 }
1327
1328 #ifndef __QEMU_EMULATION__
1329 // 如果不是qemu虚拟机,则可以直接发起传输
1330 __xhci_write_doorbell(id, xhci_hc[id].ports[port_id].slot_id, XHCI_EP_CONTROL);
1331 retval = xhci_wait_for_interrupt(id, status_buf_vaddr);
1332 if (unlikely(retval != 0))
1333 goto failed;
1334 #endif
1335
1336 memset((void *)status_buf_vaddr, 0, 16);
1337 xhci_status_stage(&xhci_hc[id].ports[port_id].ep_info[XHCI_EP_CONTROL], XHCI_DIR_IN_BIT, status_buf_vaddr);
1338
1339 __xhci_write_doorbell(id, xhci_hc[id].ports[port_id].slot_id, XHCI_EP_CONTROL);
1340 #ifndef __QEMU_EMULATION__
1341 // qemu对于这个操作的处理有问题,status_buf并不会被修改。而真机不存在该问题
1342 retval = xhci_wait_for_interrupt(id, status_buf_vaddr);
1343 #endif
1344
1345 if (unlikely(retval != 0))
1346 goto failed;
1347
1348 // 将读取到的数据拷贝到目标区域
1349 if (packet->length)
1350 memcpy(target, (void *)data_buf_vaddr, packet->length);
1351 retval = packet->length;
1352 goto done;
1353 failed:;
1354 kdebug("wait 4 interrupt failed");
1355 retval = 0;
1356 done:;
1357 // 释放内存
1358 kfree((void *)status_buf_vaddr);
1359 if (packet->length)
1360 kfree((void *)data_buf_vaddr);
1361 return retval;
1362 }
1363
1364 /**
1365 * @brief 获取描述符
1366 *
1367 * @param id 控制器号
1368 * @param port_id 端口号
1369 * @param target 获取到的数据要拷贝到的地址
1370 * @param desc_type 描述符类型
1371 * @param desc_index 描述符的索引号
1372 * @param lang_id 语言id(默认为0)
1373 * @param length 要传输的数据长度
1374 * @return int 错误码
1375 */
xhci_get_desc(const int id,const int port_id,void * target,const uint16_t desc_type,const uint8_t desc_index,const uint16_t lang_id,const uint16_t length)1376 static inline int xhci_get_desc(const int id, const int port_id, void *target, const uint16_t desc_type,
1377 const uint8_t desc_index, const uint16_t lang_id, const uint16_t length)
1378 {
1379 struct usb_device_desc *dev_desc = xhci_hc[id].ports[port_id].dev_desc;
1380 int count;
1381
1382 BUG_ON(dev_desc == NULL);
1383 // 设备端口没有对应的描述符
1384 if (unlikely(dev_desc == NULL))
1385 return -EINVAL;
1386
1387 uint8_t req_type = USB_REQ_TYPE_GET_REQUEST;
1388 if (desc_type == USB_DT_HID_REPORT)
1389 req_type = USB_REQ_TYPE_GET_INTERFACE_REQUEST;
1390
1391 DECLARE_USB_PACKET(ctrl_in_packet, req_type, USB_REQ_GET_DESCRIPTOR, (desc_type << 8) | desc_index, lang_id,
1392 length);
1393 count = xhci_control_in(id, &ctrl_in_packet, target, port_id, dev_desc->max_packet_size);
1394 if (unlikely(count == 0))
1395 return -EAGAIN;
1396 return 0;
1397 }
1398
xhci_set_configuration(const int id,const int port_id,const uint8_t conf_value)1399 static inline int xhci_set_configuration(const int id, const int port_id, const uint8_t conf_value)
1400 {
1401 struct usb_device_desc *dev_desc = xhci_hc[id].ports[port_id].dev_desc;
1402 int count;
1403
1404 BUG_ON(dev_desc == NULL);
1405 // 设备端口没有对应的描述符
1406 if (unlikely(dev_desc == NULL))
1407 return -EINVAL;
1408 DECLARE_USB_PACKET(ctrl_out_packet, USB_REQ_TYPE_SET_REQUEST, USB_REQ_SET_CONFIGURATION, conf_value & 0xff, 0, 0);
1409 // kdebug("set conf: to control out");
1410 count = xhci_control_out(id, &ctrl_out_packet, NULL, port_id, dev_desc->max_packet_size);
1411 // kdebug("set conf: count=%d", count);
1412 return 0;
1413 }
1414
1415 /**
1416 * @brief 获取usb 设备的config_desc
1417 *
1418 * @param id 主机控制器id
1419 * @param port_id 端口id
1420 * @param conf_desc 要获取的conf_desc
1421 * @return int 错误码
1422 */
xhci_get_config_desc(const int id,const int port_id,struct usb_config_desc * conf_desc)1423 static int xhci_get_config_desc(const int id, const int port_id, struct usb_config_desc *conf_desc)
1424 {
1425 if (unlikely(conf_desc == NULL))
1426 return -EINVAL;
1427
1428 kdebug("to get conf for port %d", port_id);
1429 int retval = xhci_get_desc(id, port_id, conf_desc, USB_DT_CONFIG, 0, 0, 9);
1430 if (unlikely(retval != 0))
1431 return retval;
1432 kdebug("port %d got conf ok. type=%d, len=%d, total_len=%d, num_interfaces=%d, max_power=%dmA", port_id,
1433 conf_desc->type, conf_desc->len, conf_desc->total_len, conf_desc->num_interfaces,
1434 (xhci_get_port_speed(id, port_id) == XHCI_PORT_SPEED_SUPER) ? (conf_desc->max_power * 8)
1435 : (conf_desc->max_power * 2));
1436 return 0;
1437 }
1438
1439 /**
1440 * @brief 获取完整的config desc(包含conf、interface、endpoint)
1441 *
1442 * @param id 控制器id
1443 * @param port_id 端口id
1444 * @param conf_desc 之前已经获取好的config_desc
1445 * @param target 最终结果要拷贝到的地址
1446 * @return int 错误码
1447 */
xhci_get_config_desc_full(const int id,const int port_id,const struct usb_config_desc * conf_desc,void * target)1448 static inline int xhci_get_config_desc_full(const int id, const int port_id, const struct usb_config_desc *conf_desc,
1449 void *target)
1450 {
1451 if (unlikely(conf_desc == NULL || target == NULL))
1452 return -EINVAL;
1453
1454 return xhci_get_desc(id, port_id, target, USB_DT_CONFIG, 0, 0, conf_desc->total_len);
1455 }
1456
1457 /**
1458 * @brief 从完整的conf_desc数据中获取指定的interface_desc的指针
1459 *
1460 * @param in_buf 存储了完整的conf_desc的缓冲区
1461 * @param if_num 接口号
1462 * @param if_desc 返回的指向接口结构体的指针
1463 * @return int 错误码
1464 */
xhci_get_interface_desc(const void * in_buf,const uint8_t if_num,struct usb_interface_desc ** if_desc)1465 static int xhci_get_interface_desc(const void *in_buf, const uint8_t if_num, struct usb_interface_desc **if_desc)
1466 {
1467 if (unlikely(if_desc == NULL || in_buf == NULL))
1468 return -EINVAL;
1469 // 判断接口index是否合理
1470 if (if_num >= ((struct usb_config_desc *)in_buf)->num_interfaces)
1471 return -EINVAL;
1472 uint32_t total_len = ((struct usb_config_desc *)in_buf)->total_len;
1473 uint32_t pos = 0;
1474 while (pos < total_len)
1475 {
1476 struct usb_interface_desc *ptr = (struct usb_interface_desc *)(in_buf + pos);
1477 if (ptr->type != USB_DT_INTERFACE)
1478 {
1479 pos += ptr->len;
1480 continue;
1481 }
1482
1483 if (ptr->interface_number == if_num) // 找到目标interface desc
1484 {
1485 kdebug("get interface desc ok. interface_number=%d, num_endpoints=%d, class=%d, subclass=%d",
1486 ptr->interface_number, ptr->num_endpoints, ptr->interface_class, ptr->interface_sub_class);
1487 *if_desc = ptr;
1488 return 0;
1489 }
1490 pos += ptr->len;
1491 }
1492
1493 return -EINVAL;
1494 }
1495
1496 /**
1497 * @brief 获取端点描述符
1498 *
1499 * @param if_desc 接口描述符
1500 * @param ep_num 端点号
1501 * @param ep_desc 返回的指向端点描述符的指针
1502 * @return int 错误码
1503 */
xhci_get_endpoint_desc(const struct usb_interface_desc * if_desc,const uint8_t ep_num,struct usb_endpoint_desc ** ep_desc)1504 static inline int xhci_get_endpoint_desc(const struct usb_interface_desc *if_desc, const uint8_t ep_num,
1505 struct usb_endpoint_desc **ep_desc)
1506 {
1507 if (unlikely(if_desc == NULL || ep_desc == NULL))
1508 return -EINVAL;
1509 BUG_ON(ep_num >= if_desc->num_endpoints);
1510
1511 *ep_desc = (struct usb_endpoint_desc *)((uint64_t)(if_desc + 1) + ep_num * sizeof(struct usb_endpoint_desc));
1512 kdebug("get endpoint desc: ep_addr=%d, max_packet=%d, attr=%#06x, interval=%d", (*ep_desc)->endpoint_addr,
1513 (*ep_desc)->max_packet, (*ep_desc)->attributes, (*ep_desc)->interval);
1514 return 0;
1515 }
1516
1517 /**
1518 * @brief 初始化设备端口,并获取端口的描述信息
1519 *
1520 * @param id 主机控制器id
1521 * @param port_id 端口id
1522 * @param dev_desc 设备描述符
1523 * @return int 错误码
1524 */
xhci_get_descriptor(const int id,const int port_id,struct usb_device_desc * dev_desc)1525 static int xhci_get_descriptor(const int id, const int port_id, struct usb_device_desc *dev_desc)
1526 {
1527 int retval = 0;
1528 int count = 0;
1529 if (unlikely(dev_desc == NULL))
1530 return -EINVAL;
1531 // 读取端口速度。 full=1, low=2, high=3, super=4
1532 uint32_t speed = xhci_get_port_speed(id, port_id);
1533
1534 /*
1535 * Some devices will only send the first 8 bytes of the device descriptor
1536 * while in the default state. We must request the first 8 bytes, then reset
1537 * the port, set address, then request all 18 bytes.
1538 */
1539 struct xhci_TRB_normal_t trb = {0};
1540 trb.TRB_type = TRB_TYPE_ENABLE_SLOT;
1541 // kdebug("to enable slot");
1542 if (xhci_send_command(id, (struct xhci_TRB_t *)&trb, true) != 0)
1543 {
1544 kerror("portid:%d: send enable slot failed", port_id);
1545 return -ETIMEDOUT;
1546 }
1547 // kdebug("send enable slot ok");
1548
1549 uint32_t slot_id = ((struct xhci_TRB_cmd_complete_t *)&trb)->slot_id;
1550 int16_t max_packet;
1551 if (slot_id != 0) // slot id不为0时,是合法的slot id
1552 {
1553 // 为不同速度的设备确定最大的数据包大小
1554 switch (speed)
1555 {
1556 case XHCI_PORT_SPEED_LOW:
1557 max_packet = 8;
1558 break;
1559 case XHCI_PORT_SPEED_FULL:
1560 case XHCI_PORT_SPEED_HI:
1561 max_packet = 64;
1562 break;
1563 case XHCI_PORT_SPEED_SUPER:
1564 max_packet = 512;
1565 break;
1566 }
1567 }
1568 else
1569 return -EAGAIN; // slot id 不合法
1570
1571 xhci_hc[id].ports[port_id].slot_id = slot_id;
1572 // kdebug("speed=%d", speed);
1573 // 初始化接口的上下文
1574 uint64_t slot_vaddr = xhci_initialize_slot(id, port_id, speed, max_packet);
1575
1576 retval = xhci_set_address(id, slot_vaddr, slot_id, true);
1577 // kdebug("set addr again");
1578 // 再次发送 set_address命令
1579 // kdebug("to set addr again");
1580 retval = xhci_set_address(id, slot_vaddr, slot_id, false);
1581 if (retval != 0)
1582 return retval;
1583
1584 memset(dev_desc, 0, sizeof(struct usb_device_desc));
1585 DECLARE_USB_PACKET(ctrl_in_packet, USB_REQ_TYPE_GET_REQUEST, USB_REQ_GET_DESCRIPTOR, (USB_DT_DEVICE << 8), 0, 18);
1586 count = xhci_control_in(id, &ctrl_in_packet, dev_desc, port_id, max_packet);
1587 if (unlikely(count == 0))
1588 return -EAGAIN;
1589 /*
1590 TODO: if the dev_desc->max_packet was different than what we have as max_packet,
1591 you would need to change it here and in the slot context by doing a
1592 evaluate_slot_context call.
1593 */
1594
1595 xhci_hc[id].ports[port_id].dev_desc = dev_desc;
1596
1597 // print the descriptor
1598 printk(" Found USB Device:\n"
1599 " port: %i\n"
1600 " len: %i\n"
1601 " type: %i\n"
1602 " version: %01X.%02X\n"
1603 " class: %i\n"
1604 " subclass: %i\n"
1605 " protocol: %i\n"
1606 " max packet size: %i\n"
1607 " vendor id: 0x%04X\n"
1608 " product id: 0x%04X\n"
1609 " release ver: %i%i.%i%i\n"
1610 " manufacture index: %i (index to a string)\n"
1611 " product index: %i\n"
1612 " serial index: %i\n"
1613 " number of configs: %i\n",
1614 port_id, dev_desc->len, dev_desc->type, dev_desc->usb_version >> 8, dev_desc->usb_version & 0xFF,
1615 dev_desc->_class, dev_desc->subclass, dev_desc->protocol, dev_desc->max_packet_size, dev_desc->vendor_id,
1616 dev_desc->product_id, (dev_desc->device_rel & 0xF000) >> 12, (dev_desc->device_rel & 0x0F00) >> 8,
1617 (dev_desc->device_rel & 0x00F0) >> 4, (dev_desc->device_rel & 0x000F) >> 0, dev_desc->manufacturer_index,
1618 dev_desc->procuct_index, dev_desc->serial_index, dev_desc->config);
1619 return 0;
1620 }
1621
1622 /**
1623 * @brief 启用xhci控制器的端口
1624 *
1625 * @param id 控制器id
1626 * @return int
1627 */
xhci_hc_start_ports(int id)1628 static int xhci_hc_start_ports(int id)
1629 {
1630 int cnt = 0;
1631 // 注意,这两个循环应该不能合并到一起,因为可能存在usb2端口offset在前,usb3端口在后的情况,那样的话就会出错
1632
1633 // 循环启动所有的usb3端口
1634 for (int i = 0; i < xhci_hc[id].port_num; ++i)
1635 {
1636 if (XHCI_PORT_IS_USB3(id, i) && XHCI_PORT_IS_ACTIVE(id, i))
1637 {
1638 io_mfence();
1639 // kdebug("to reset port %d, rflags=%#018lx", id, get_rflags());
1640 int rst_ret = xhci_reset_port(id, i);
1641 // kdebug("reset done!, val=%d", rst_ret);
1642 // reset该端口
1643 if (likely(rst_ret == 0)) // 如果端口reset成功,就获取它的描述符
1644 // 否则,reset函数会把它给设置为未激活,并且标志配对的usb2端口是激活的
1645 {
1646 // kdebug("reset port %d ok", id);
1647 struct usb_device_desc dev_desc = {0};
1648 if (xhci_get_descriptor(id, i, &dev_desc) == 0)
1649 {
1650 xhci_configure_port(id, i);
1651 ++cnt;
1652 }
1653 kdebug("usb3 port %d get desc ok", i);
1654 }
1655 }
1656 }
1657 kdebug("Active usb3 ports:%d", cnt);
1658
1659 // 循环启动所有的usb2端口
1660 for (int i = 0; i < xhci_hc[id].port_num; ++i)
1661 {
1662 if (XHCI_PORT_IS_USB2(id, i) && XHCI_PORT_IS_ACTIVE(id, i))
1663 {
1664 // kdebug("initializing usb2: %d", i);
1665 // reset该端口
1666 // kdebug("to reset port %d, rflags=%#018lx", i, get_rflags());
1667 if (likely(xhci_reset_port(id, i) ==
1668 0)) // 如果端口reset成功,就获取它的描述符
1669 // 否则,reset函数会把它给设置为未激活,并且标志配对的usb2端口是激活的
1670 {
1671 // kdebug("reset port %d ok", id);
1672
1673 struct usb_device_desc dev_desc = {0};
1674 if (xhci_get_descriptor(id, i, &dev_desc) == 0)
1675 {
1676 xhci_configure_port(id, i);
1677 ++cnt;
1678 }
1679 kdebug("USB2 port %d get desc ok", i);
1680 }
1681 }
1682 }
1683 kinfo("xHCI controller %d: Started %d ports.", id, cnt);
1684 return 0;
1685 }
1686
1687 /**
1688 * @brief 发送HID设备的IDLE数据包
1689 *
1690 * @param id 主机控制器号
1691 * @param port_id 端口号
1692 * @param if_desc 接口结构体
1693 * @return int
1694 */
xhci_hid_set_idle(const int id,const int port_id,struct usb_interface_desc * if_desc)1695 static int xhci_hid_set_idle(const int id, const int port_id, struct usb_interface_desc *if_desc)
1696 {
1697 struct usb_device_desc *dev_desc = xhci_hc[id].ports[port_id].dev_desc;
1698 if (unlikely(dev_desc) == NULL)
1699 {
1700 BUG_ON(1);
1701 return -EINVAL;
1702 }
1703
1704 DECLARE_USB_PACKET(ctrl_out_packet, USB_REQ_TYPE_SET_CLASS_INTERFACE, 0x0a, 0, 0, 0);
1705 xhci_control_out(id, &ctrl_out_packet, NULL, port_id, dev_desc->max_packet_size);
1706 kdebug("xhci set idle done!");
1707 return 0;
1708 }
1709
1710 /**
1711 * @brief 配置端点上下文,并发送configure endpoint命令
1712 *
1713 * @param id 主机控制器id
1714 * @param port_id 端口号
1715 * @param ep_num 端点号
1716 * @param ep_type 端点类型
1717 * @param ep_desc 端点描述符
1718 * @return int 错误码
1719 */
xhci_configure_endpoint(const int id,const int port_id,const uint8_t ep_num,const uint8_t ep_type,struct usb_endpoint_desc * ep_desc)1720 static int xhci_configure_endpoint(const int id, const int port_id, const uint8_t ep_num, const uint8_t ep_type,
1721 struct usb_endpoint_desc *ep_desc)
1722 {
1723
1724 int retval = 0;
1725 uint64_t slot_context_vaddr = xhci_get_device_context_vaddr(id, port_id);
1726
1727 xhci_initialize_ep(id, slot_context_vaddr, port_id, ep_num, xhci_hc[id].ports[port_id].dev_desc->max_packet_size,
1728 usb_get_max_burst_from_ep(ep_desc), ep_type, (ep_num % 2) ? XHCI_DIR_IN_BIT : XHCI_DIR_OUT_BIT,
1729 xhci_get_port_speed(id, port_id), ep_desc->interval);
1730
1731 struct xhci_slot_context_t slot;
1732 struct xhci_ep_context_t ep = {0};
1733 // 创建输入上下文缓冲区
1734 uint64_t input_ctx_buffer = (uint64_t)kzalloc(xhci_hc[id].context_size * 33, 0);
1735 // 置位对应的add bit
1736 __write4b(input_ctx_buffer + 4, (1 << ep_num) | 1);
1737 __write4b(input_ctx_buffer + 0x1c, 1);
1738
1739 // 拷贝slot上下文
1740 __read_from_slot(&slot, slot_context_vaddr);
1741 // 设置该端口的最大端点号。注意,必须设置这里,否则会出错
1742 slot.entries = (ep_num > slot.entries) ? ep_num : slot.entries;
1743
1744 __write_slot(input_ctx_buffer + xhci_hc[id].context_size, &slot);
1745
1746 // __write_ep(id, input_ctx_buffer, 2, &ep);
1747 // kdebug("ep_num=%d", ep_num);
1748 // 拷贝将要被配置的端点的信息
1749 __read_from_ep(id, slot_context_vaddr, ep_num, &ep);
1750 // kdebug("ep.tr_dequeue_ptr=%#018lx", ep.tr_dequeue_ptr);
1751 ep.err_cnt = 3;
1752 // 加一是因为input_context头部比slot_context多了一个input_control_ctx
1753 __write_ep(id, input_ctx_buffer, ep_num + 1, &ep);
1754
1755 struct xhci_TRB_normal_t trb = {0};
1756 trb.buf_paddr = virt_2_phys(input_ctx_buffer);
1757 trb.TRB_type = TRB_TYPE_CONFIG_EP;
1758 trb.cycle = xhci_hc[id].cmd_trb_cycle;
1759 trb.Reserved |= (((uint16_t)xhci_hc[id].ports[port_id].slot_id) << 8) & 0xffff;
1760
1761 // kdebug("addr=%#018lx", ((struct xhci_TRB_t *)&trb)->param);
1762 // kdebug("status=%#018lx", ((struct xhci_TRB_t *)&trb)->status);
1763 // kdebug("command=%#018lx", ((struct xhci_TRB_t *)&trb)->command);
1764 retval = xhci_send_command(id, (struct xhci_TRB_t *)&trb, true);
1765
1766 if (unlikely(retval != 0))
1767 {
1768 kerror("port_id:%d, configure endpoint %d failed", port_id, ep_num);
1769 goto failed;
1770 }
1771
1772 struct xhci_TRB_cmd_complete_t *trb_done = (struct xhci_TRB_cmd_complete_t *)&trb;
1773 if (trb_done->code == TRB_COMP_TRB_SUCCESS) // 成功执行
1774 {
1775 // 如果要从控制器获取刚刚设置的设备地址的话,可以在这里读取slot context
1776 ksuccess("port_id:%d, ep:%d successfully configured.", port_id, ep_num);
1777 retval = 0;
1778 }
1779 else
1780 retval = -EAGAIN;
1781 done:;
1782 failed:;
1783 kfree((void *)input_ctx_buffer);
1784 return retval;
1785 }
1786
1787 /**
1788 * @brief 配置连接在指定端口上的设备
1789 *
1790 * @param id 主机控制器id
1791 * @param port_id 端口id
1792 * @param full_conf 完整的config
1793 * @return int 错误码
1794 */
xhci_configure_port(const int id,const int port_id)1795 static int xhci_configure_port(const int id, const int port_id)
1796 {
1797 void *full_conf = NULL;
1798 struct usb_interface_desc *if_desc = NULL;
1799 struct usb_endpoint_desc *ep_desc = NULL;
1800 int retval = 0;
1801
1802 // hint: 暂时只考虑对键盘的初始化
1803 // 获取完整的config
1804 {
1805 struct usb_config_desc conf_desc = {0};
1806 retval = xhci_get_config_desc(id, port_id, &conf_desc);
1807 if (unlikely(retval != 0))
1808 return retval;
1809
1810 full_conf = kzalloc(conf_desc.total_len, 0);
1811 if (unlikely(full_conf == NULL))
1812 return -ENOMEM;
1813
1814 retval = xhci_get_config_desc_full(id, port_id, &conf_desc, full_conf);
1815 if (unlikely(retval != 0))
1816 goto failed;
1817 }
1818
1819 retval = xhci_get_interface_desc(full_conf, 0, &if_desc);
1820 if (unlikely(retval != 0))
1821 goto failed;
1822
1823 if (if_desc->interface_class == USB_CLASS_HID)
1824 {
1825 // 由于暂时只支持键盘,因此把键盘的驱动也写在这里
1826 // todo: 分离usb键盘驱动
1827
1828 retval = xhci_get_endpoint_desc(if_desc, 0, &ep_desc);
1829 if (unlikely(retval != 0))
1830 goto failed;
1831 // kdebug("to set conf, val=%#010lx", ((struct usb_config_desc *)full_conf)->value);
1832 retval = xhci_set_configuration(id, port_id, ((struct usb_config_desc *)full_conf)->value);
1833 if (unlikely(retval != 0))
1834 goto failed;
1835 // kdebug("set conf ok");
1836
1837 // configure endpoint
1838 retval = xhci_configure_endpoint(id, port_id, ep_desc->endpoint_addr, USB_EP_INTERRUPT, ep_desc);
1839 if (unlikely(retval != 0))
1840 goto failed;
1841
1842 retval = xhci_hid_set_idle(id, port_id, if_desc);
1843 if (unlikely(retval != 0))
1844 goto failed;
1845
1846 struct usb_hid_desc *hid_desc = NULL;
1847 uint32_t hid_desc_len = 0;
1848 // 获取hid desc
1849 retval = xhci_get_hid_descriptor(id, port_id, full_conf, if_desc->interface_number, &hid_desc);
1850 if (unlikely(retval != 0))
1851 goto failed;
1852
1853 // 获取hid report
1854 void *hid_report_data = kzalloc(hid_desc->report_desc_len, 0);
1855 if (unlikely(hid_report_data == NULL))
1856 goto failed;
1857 retval =
1858 xhci_get_hid_report(id, port_id, if_desc->interface_number, hid_report_data, hid_desc->report_desc_len);
1859 if (unlikely(retval != 0))
1860 {
1861 kfree(hid_report_data);
1862 goto failed;
1863 }
1864
1865 kdebug("to parse hid report");
1866 // todo:这里的parse有问题,详见hid_parse函数的注释
1867 // hid_parse_report(hid_report_data, hid_desc->report_desc_len);
1868 kdebug("parse hid report done");
1869
1870 // kdebug("to find object from hid path");
1871 // struct hid_data_t data = {0};
1872 // data.type = HID_ITEM_INPUT;
1873 // data.path.node[0].u_page = HID_USAGE_PAGE_GEN_DESKTOP;
1874 // data.path.node[0].usage = 0xff;
1875 // data.path.node[2].usage = USAGE_POINTER_Y; // to get the Y Coordinate, comment X above and uncomment this
1876 // line data.path.node[2].usage = USAGE_POINTER_WHEEL; // to get the Wheel Coordinate, comment X above and
1877 // uncomment this line
1878 // data.path.size = 1;
1879 // hid_parse_find_object(hid_report_data, hid_desc->report_desc_len, &data);
1880 kfree(hid_report_data);
1881 }
1882 goto out;
1883 failed:;
1884 kerror("failed at xhci_configure_port, retval=%d", retval);
1885 out:;
1886 kfree(full_conf);
1887 return retval;
1888 }
1889 /**
1890 * @brief 初始化xhci主机控制器的中断控制
1891 *
1892 * @param id 主机控制器id
1893 * @return int 返回码
1894 */
xhci_hc_init_intr(int id)1895 static int xhci_hc_init_intr(int id)
1896 {
1897 uint64_t retval = 0;
1898
1899 struct xhci_caps_HCSPARAMS1_reg_t hcs1;
1900 struct xhci_caps_HCSPARAMS2_reg_t hcs2;
1901 io_mfence();
1902 memcpy(&hcs1, xhci_get_ptr_cap_reg32(id, XHCI_CAPS_HCSPARAMS1), sizeof(struct xhci_caps_HCSPARAMS1_reg_t));
1903 io_mfence();
1904 memcpy(&hcs2, xhci_get_ptr_cap_reg32(id, XHCI_CAPS_HCSPARAMS2), sizeof(struct xhci_caps_HCSPARAMS2_reg_t));
1905 io_mfence();
1906
1907 uint32_t max_segs = (1 << (uint32_t)(hcs2.ERST_Max));
1908 uint32_t max_interrupters = hcs1.max_intrs;
1909
1910 // 创建 event ring
1911 retval = xhci_create_event_ring(4096, &xhci_hc[id].event_ring_vaddr);
1912 io_mfence();
1913 if (unlikely((int64_t)(retval) == -ENOMEM))
1914 return -ENOMEM;
1915 xhci_hc[id].event_ring_table_vaddr = retval;
1916 xhci_hc[id].current_event_ring_vaddr =
1917 xhci_hc[id].event_ring_vaddr; // 设置驱动程序要读取的下一个event ring trb的地址
1918 retval = 0;
1919
1920 xhci_hc[id].current_event_ring_cycle = 1;
1921
1922 // 写入第0个中断寄存器组
1923 io_mfence();
1924 xhci_write_intr_reg32(id, 0, XHCI_IR_MAN, 0x3); // 使能中断并清除pending位(这个pending位是写入1就清0的)
1925 io_mfence();
1926 xhci_write_intr_reg32(id, 0, XHCI_IR_MOD, 0); // 关闭中断管制
1927 io_mfence();
1928 xhci_write_intr_reg32(id, 0, XHCI_IR_TABLE_SIZE, 1); // 当前只有1个segment
1929 io_mfence();
1930 xhci_write_intr_reg64(id, 0, XHCI_IR_DEQUEUE,
1931 virt_2_phys(xhci_hc[id].current_event_ring_vaddr) |
1932 (1 << 3)); // 写入dequeue寄存器,并清除busy位(写1就会清除)
1933 io_mfence();
1934 xhci_write_intr_reg64(id, 0, XHCI_IR_TABLE_ADDR, virt_2_phys(xhci_hc[id].event_ring_table_vaddr)); // 写入table地址
1935 io_mfence();
1936
1937 // 清除状态位
1938 xhci_write_op_reg32(id, XHCI_OPS_USBSTS, (1 << 10) | (1 << 4) | (1 << 3) | (1 << 2));
1939 io_mfence();
1940 // 开启usb中断
1941 // 注册中断处理程序
1942 struct xhci_hc_irq_install_info_t install_info;
1943 install_info.assert = 1;
1944 install_info.edge_trigger = 1;
1945 install_info.processor = 0; // 投递到bsp
1946
1947 char *buf = (char *)kmalloc(16, 0);
1948 memset(buf, 0, 16);
1949 sprintk(buf, "xHCI HC%d", id);
1950 io_mfence();
1951 irq_register(xhci_controller_irq_num[id], &install_info, &xhci_hc_irq_handler, id, &xhci_hc_intr_controller, buf);
1952 io_mfence();
1953 kfree(buf);
1954
1955 kdebug("xhci host controller %d: interrupt registered. irq num=%d", id, xhci_controller_irq_num[id]);
1956
1957 return 0;
1958 }
1959
1960 /**
1961 * @brief 往xhci控制器发送trb, 并将返回的数据存入原始的trb中
1962 *
1963 * @param id xhci控制器号
1964 * @param trb 传输请求块
1965 * @param do_ring 是否通知doorbell register
1966 * @return int 错误码
1967 */
xhci_send_command(int id,struct xhci_TRB_t * trb,const bool do_ring)1968 static int xhci_send_command(int id, struct xhci_TRB_t *trb, const bool do_ring)
1969 {
1970 uint64_t origin_trb_vaddr = xhci_hc[id].cmd_trb_vaddr;
1971
1972 // 必须先写入参数和状态数据,最后写入command
1973 __write8b(xhci_hc[id].cmd_trb_vaddr, trb->param); // 参数
1974 __write4b(xhci_hc[id].cmd_trb_vaddr + 8, trb->status); // 状态
1975 __write4b(xhci_hc[id].cmd_trb_vaddr + 12, trb->command | xhci_hc[id].cmd_trb_cycle); // 命令
1976
1977 xhci_hc[id].cmd_trb_vaddr += sizeof(struct xhci_TRB_t); // 跳转到下一个trb
1978
1979 {
1980 // 如果下一个trb是link trb,则将下一个要操作的地址是设置为第一个trb
1981 struct xhci_TRB_normal_t *ptr = (struct xhci_TRB_normal_t *)xhci_hc[id].cmd_trb_vaddr;
1982 if (ptr->TRB_type == TRB_TYPE_LINK)
1983 {
1984 ptr->cycle = xhci_hc[id].cmd_trb_cycle;
1985 xhci_hc[id].cmd_trb_vaddr = xhci_hc[id].cmd_ring_vaddr;
1986 xhci_hc[id].cmd_trb_cycle ^= 1;
1987 }
1988 }
1989
1990 if (do_ring) // 按响命令门铃
1991 {
1992 __xhci_write_doorbell(id, 0, 0);
1993
1994 // 等待中断产生
1995 int timer = 400;
1996 const uint32_t iman0 = xhci_read_intr_reg32(id, 0, XHCI_IR_MAN);
1997
1998 // Now wait for the interrupt to happen
1999 // We use bit 31 of the command dword since it is reserved
2000 while (timer && ((__read4b(origin_trb_vaddr + 8) & XHCI_IRQ_DONE) == 0))
2001 {
2002 usleep(1000);
2003 --timer;
2004 }
2005 uint32_t x = xhci_read_cap_reg32(id, xhci_hc[id].rts_offset + 0x20);
2006 if (timer == 0)
2007 return -ETIMEDOUT;
2008 else
2009 {
2010 xhci_get_trb(trb, origin_trb_vaddr);
2011 trb->status &= (~XHCI_IRQ_DONE);
2012 }
2013 }
2014 return 0;
2015 }
2016
2017 /**
2018 * @brief 获取接口的hid descriptor
2019 *
2020 * @param id 主机控制器号
2021 * @param port_id 端口号
2022 * @param full_conf 完整的cofig缓冲区
2023 * @param interface_number 接口号
2024 * @param ret_hid_desc 返回的指向hid描述符的指针
2025 * @return int 错误码
2026 */
xhci_get_hid_descriptor(int id,int port_id,const void * full_conf,int interface_number,struct usb_hid_desc ** ret_hid_desc)2027 static int xhci_get_hid_descriptor(int id, int port_id, const void *full_conf, int interface_number,
2028 struct usb_hid_desc **ret_hid_desc)
2029 {
2030 if (unlikely(ret_hid_desc == NULL || full_conf == NULL))
2031 return -EINVAL;
2032 kdebug("to get hid_descriptor.");
2033 // 判断接口index是否合理
2034 if (interface_number >= ((struct usb_config_desc *)full_conf)->num_interfaces)
2035 return -EINVAL;
2036 uint32_t total_len = ((struct usb_config_desc *)full_conf)->total_len;
2037 uint32_t pos = 0;
2038 while (pos < total_len)
2039 {
2040 struct usb_hid_desc *ptr = (struct usb_hid_desc *)(full_conf + pos);
2041 if (ptr->type != USB_DT_HID)
2042 {
2043 pos += ptr->len;
2044 continue;
2045 }
2046 // 找到目标hid描述符
2047 *ret_hid_desc = ptr;
2048 kdebug("Found hid descriptor for port:%d, if:%d, report_desc_len=%d", port_id, interface_number,
2049 ptr->report_desc_len);
2050 return 0;
2051 }
2052
2053 return -EINVAL;
2054 }
2055
2056 /**
2057 * @brief 发送get_hid_descriptor请求,将hid
2058 *
2059 * @param id 主机控制器号
2060 * @param port_id 端口号
2061 * @param interface_number 接口号
2062 * @param ret_hid_report hid report要拷贝到的地址
2063 * @param hid_report_len hid report的长度
2064 * @return int 错误码
2065 */
xhci_get_hid_report(int id,int port_id,int interface_number,void * ret_hid_report,uint32_t hid_report_len)2066 static int xhci_get_hid_report(int id, int port_id, int interface_number, void *ret_hid_report, uint32_t hid_report_len)
2067 {
2068 int retval = xhci_get_desc(id, port_id, ret_hid_report, USB_DT_HID_REPORT, 0, interface_number, hid_report_len);
2069 if (unlikely(retval != 0))
2070 kerror("xhci_get_hid_report failed: host_controller:%d, port:%d, interface %d", id, port_id, interface_number);
2071 return retval;
2072 }
2073 /**
2074 * @brief 初始化xhci控制器
2075 *
2076 * @param header 指定控制器的pci device头部
2077 */
xhci_init(struct pci_device_structure_general_device_t * dev_hdr)2078 void xhci_init(struct pci_device_structure_general_device_t *dev_hdr)
2079 {
2080
2081 if (xhci_ctrl_count >= XHCI_MAX_HOST_CONTROLLERS)
2082 {
2083 kerror("Initialize xhci controller failed: exceed the limit of max controllers.");
2084 return;
2085 }
2086
2087 spin_lock(&xhci_controller_init_lock);
2088 kinfo("Initializing xhci host controller: bus=%#02x, device=%#02x, func=%#02x, VendorID=%#04x, irq_line=%d, "
2089 "irq_pin=%d",
2090 dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, dev_hdr->header.Vendor_ID,
2091 dev_hdr->Interrupt_Line, dev_hdr->Interrupt_PIN);
2092 io_mfence();
2093 int cid = xhci_hc_find_available_id();
2094 if (cid < 0)
2095 {
2096 kerror("Initialize xhci controller failed: exceed the limit of max controllers.");
2097 goto failed_exceed_max;
2098 }
2099
2100 memset(&xhci_hc[cid], 0, sizeof(struct xhci_host_controller_t));
2101 xhci_hc[cid].controller_id = cid;
2102 xhci_hc[cid].pci_dev_hdr = dev_hdr;
2103 io_mfence();
2104 {
2105 uint32_t tmp = pci_read_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0x4);
2106 tmp |= 0x6;
2107 // mem I/O access enable and bus master enable
2108 pci_write_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0x4, tmp);
2109 }
2110 io_mfence();
2111 // 为当前控制器映射寄存器地址空间
2112 xhci_hc[cid].vbase =
2113 SPECIAL_MEMOEY_MAPPING_VIRT_ADDR_BASE + XHCI_MAPPING_OFFSET + 65536 * xhci_hc[cid].controller_id;
2114 // kdebug("dev_hdr->BAR0 & (~0xf)=%#018lx", dev_hdr->BAR0 & (~0xf));
2115 mm_map_phys_addr(xhci_hc[cid].vbase, dev_hdr->BAR0 & (~0xf), 65536, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD, true);
2116 io_mfence();
2117
2118 // 计算operational registers的地址
2119 xhci_hc[cid].vbase_op = xhci_hc[cid].vbase + (xhci_read_cap_reg32(cid, XHCI_CAPS_CAPLENGTH) & 0xff);
2120 io_mfence();
2121 // 重置xhci控制器
2122 FAIL_ON_TO(xhci_hc_reset(cid), failed);
2123 io_mfence();
2124
2125 // 读取xhci控制寄存器
2126 uint16_t iversion = *(uint16_t *)(xhci_hc[cid].vbase + XHCI_CAPS_HCIVERSION);
2127
2128 struct xhci_caps_HCCPARAMS1_reg_t hcc1;
2129 struct xhci_caps_HCCPARAMS2_reg_t hcc2;
2130
2131 struct xhci_caps_HCSPARAMS1_reg_t hcs1;
2132 struct xhci_caps_HCSPARAMS2_reg_t hcs2;
2133 memcpy(&hcc1, xhci_get_ptr_cap_reg32(cid, XHCI_CAPS_HCCPARAMS1), sizeof(struct xhci_caps_HCCPARAMS1_reg_t));
2134 memcpy(&hcc2, xhci_get_ptr_cap_reg32(cid, XHCI_CAPS_HCCPARAMS2), sizeof(struct xhci_caps_HCCPARAMS2_reg_t));
2135 memcpy(&hcs1, xhci_get_ptr_cap_reg32(cid, XHCI_CAPS_HCSPARAMS1), sizeof(struct xhci_caps_HCSPARAMS1_reg_t));
2136 memcpy(&hcs2, xhci_get_ptr_cap_reg32(cid, XHCI_CAPS_HCSPARAMS2), sizeof(struct xhci_caps_HCSPARAMS2_reg_t));
2137
2138 xhci_hc[cid].db_offset = xhci_read_cap_reg32(cid, XHCI_CAPS_DBOFF) & (~0x3); // bits [1:0] reserved
2139 io_mfence();
2140 xhci_hc[cid].rts_offset = xhci_read_cap_reg32(cid, XHCI_CAPS_RTSOFF) & (~0x1f); // bits [4:0] reserved.
2141 io_mfence();
2142
2143 xhci_hc[cid].ext_caps_off = 1UL * (hcc1.xECP) * 4;
2144 xhci_hc[cid].context_size = (hcc1.csz) ? 64 : 32;
2145
2146 if (iversion < 0x95)
2147 kwarn("Unsupported/Unknowned xHCI controller version: %#06x. This may cause unexpected behavior.", iversion);
2148
2149 {
2150
2151 // Write to the FLADJ register incase the BIOS didn't
2152 uint32_t tmp = pci_read_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0x60);
2153 tmp |= (0x20 << 8);
2154 pci_write_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0x60, tmp);
2155 }
2156 // if it is a Panther Point device, make sure sockets are xHCI controlled.
2157 if (((pci_read_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0) & 0xffff) == 0x8086) &&
2158 (((pci_read_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0) >> 16) & 0xffff) ==
2159 0x1E31) &&
2160 ((pci_read_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 8) & 0xff) == 4))
2161 {
2162 kdebug("Is a Panther Point device");
2163 pci_write_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0xd8, 0xffffffff);
2164 pci_write_config(dev_hdr->header.bus, dev_hdr->header.device, dev_hdr->header.func, 0xd0, 0xffffffff);
2165 }
2166 io_mfence();
2167 // 关闭legacy支持
2168 FAIL_ON_TO(xhci_hc_stop_legacy(cid), failed);
2169 io_mfence();
2170
2171 // 端口配对
2172 FAIL_ON_TO(xhci_hc_pair_ports(cid), failed);
2173 io_mfence();
2174
2175 // ========== 设置USB host controller =========
2176 // 获取页面大小
2177 xhci_hc[cid].page_size = (xhci_read_op_reg32(cid, XHCI_OPS_PAGESIZE) & 0xffff) << 12;
2178 io_mfence();
2179 // 获取设备上下文空间
2180 xhci_hc[cid].dcbaap_vaddr = (uint64_t)kzalloc(2048, 0); // 分配2KB的设备上下文地址数组空间
2181
2182 io_mfence();
2183 // kdebug("dcbaap_vaddr=%#018lx", xhci_hc[cid].dcbaap_vaddr);
2184 if (unlikely(!xhci_is_aligned64(xhci_hc[cid].dcbaap_vaddr))) // 地址不是按照64byte对齐
2185 {
2186 kerror("dcbaap isn't 64 byte aligned.");
2187 goto failed_free_dyn;
2188 }
2189 // 写入dcbaap
2190 xhci_write_op_reg64(cid, XHCI_OPS_DCBAAP, virt_2_phys(xhci_hc[cid].dcbaap_vaddr));
2191 io_mfence();
2192
2193 // 创建scratchpad buffer array
2194 uint32_t max_scratchpad_buf = (((uint32_t)hcs2.max_scratchpad_buf_HI5) << 5) | hcs2.max_scratchpad_buf_LO5;
2195 kdebug("max scratchpad buffer=%d", max_scratchpad_buf);
2196 if (max_scratchpad_buf > 0)
2197 {
2198 xhci_hc[cid].scratchpad_buf_array_vaddr = (uint64_t)kzalloc(sizeof(uint64_t) * max_scratchpad_buf, 0);
2199 __write8b(xhci_hc[cid].dcbaap_vaddr, virt_2_phys(xhci_hc[cid].scratchpad_buf_array_vaddr));
2200
2201 // 创建scratchpad buffers
2202 for (int i = 0; i < max_scratchpad_buf; ++i)
2203 {
2204 uint64_t buf_vaddr = (uint64_t)kzalloc(xhci_hc[cid].page_size, 0);
2205 __write8b(xhci_hc[cid].scratchpad_buf_array_vaddr, virt_2_phys(buf_vaddr));
2206 }
2207 }
2208
2209 // 创建command ring
2210 xhci_hc[cid].cmd_ring_vaddr = xhci_create_ring(XHCI_CMND_RING_TRBS);
2211 xhci_hc[cid].cmd_trb_vaddr = xhci_hc[cid].cmd_ring_vaddr;
2212
2213 if (unlikely(!xhci_is_aligned64(xhci_hc[cid].cmd_ring_vaddr))) // 地址不是按照64byte对齐
2214 {
2215 kerror("cmd ring isn't 64 byte aligned.");
2216 goto failed_free_dyn;
2217 }
2218
2219 // 设置初始cycle bit为1
2220 xhci_hc[cid].cmd_trb_cycle = XHCI_TRB_CYCLE_ON;
2221 io_mfence();
2222 // 写入command ring控制寄存器
2223 xhci_write_op_reg64(cid, XHCI_OPS_CRCR, virt_2_phys(xhci_hc[cid].cmd_ring_vaddr) | xhci_hc[cid].cmd_trb_cycle);
2224 // 写入配置寄存器
2225 uint32_t max_slots = hcs1.max_slots;
2226 // kdebug("max slots = %d", max_slots);
2227 io_mfence();
2228 xhci_write_op_reg32(cid, XHCI_OPS_CONFIG, max_slots);
2229 io_mfence();
2230 // 写入设备通知控制寄存器
2231 xhci_write_op_reg32(cid, XHCI_OPS_DNCTRL, (1 << 1)); // 目前只有N1被支持
2232 io_mfence();
2233
2234 FAIL_ON_TO(xhci_hc_init_intr(cid), failed_free_dyn);
2235 io_mfence();
2236
2237 ++xhci_ctrl_count;
2238 io_mfence();
2239 spin_unlock(&xhci_controller_init_lock);
2240 io_mfence();
2241
2242 return;
2243
2244 failed_free_dyn:; // 释放动态申请的内存
2245 if (xhci_hc[cid].dcbaap_vaddr)
2246 kfree((void *)xhci_hc[cid].dcbaap_vaddr);
2247
2248 if (xhci_hc[cid].cmd_ring_vaddr)
2249 kfree((void *)xhci_hc[cid].cmd_ring_vaddr);
2250
2251 if (xhci_hc[cid].event_ring_table_vaddr)
2252 kfree((void *)xhci_hc[cid].event_ring_table_vaddr);
2253
2254 if (xhci_hc[cid].event_ring_vaddr)
2255 kfree((void *)xhci_hc[cid].event_ring_vaddr);
2256
2257 failed:;
2258 io_mfence();
2259 // 取消地址映射
2260 mm_unmap_addr(xhci_hc[cid].vbase, 65536);
2261 io_mfence();
2262 // 清空数组
2263 memset((void *)&xhci_hc[cid], 0, sizeof(struct xhci_host_controller_t));
2264
2265 failed_exceed_max:;
2266 kerror("Failed to initialize controller: bus=%d, dev=%d, func=%d", dev_hdr->header.bus, dev_hdr->header.device,
2267 dev_hdr->header.func);
2268 spin_unlock(&xhci_controller_init_lock);
2269 }