1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2016 Broadcom
4 */
5
6 /**
7 * DOC: VC4 DSI0/DSI1 module
8 *
9 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
11 * controller.
12 *
13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
14 * while the compute module brings both DSI0 and DSI1 out.
15 *
16 * This driver has been tested for DSI1 video-mode display only
17 * currently, with most of the information necessary for DSI0
18 * hopefully present.
19 */
20
21 #include <linux/clk-provider.h>
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/component.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/dmaengine.h>
27 #include <linux/i2c.h>
28 #include <linux/io.h>
29 #include <linux/of_address.h>
30 #include <linux/of_platform.h>
31 #include <linux/pm_runtime.h>
32
33 #include <drm/drm_atomic_helper.h>
34 #include <drm/drm_bridge.h>
35 #include <drm/drm_edid.h>
36 #include <drm/drm_mipi_dsi.h>
37 #include <drm/drm_of.h>
38 #include <drm/drm_panel.h>
39 #include <drm/drm_probe_helper.h>
40 #include <drm/drm_simple_kms_helper.h>
41
42 #include "vc4_drv.h"
43 #include "vc4_regs.h"
44
45 #define DSI_CMD_FIFO_DEPTH 16
46 #define DSI_PIX_FIFO_DEPTH 256
47 #define DSI_PIX_FIFO_WIDTH 4
48
49 #define DSI0_CTRL 0x00
50
51 /* Command packet control. */
52 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */
53 #define DSI1_TXPKT1C 0x04
54 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
55 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
56 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
57 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
58
59 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
60 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
61 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
62 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
63 /* Primary display where cmdfifo provides part of the payload and
64 * pixelvalve the rest.
65 */
66 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
67 /* Secondary display where cmdfifo provides part of the payload and
68 * pixfifo the rest.
69 */
70 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
71
72 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
73 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
74
75 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
76 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
77 /* Command only. Uses TXPKT1H and DISPLAY_NO */
78 # define DSI_TXPKT1C_CMD_CTRL_TX 0
79 /* Command with BTA for either ack or read data. */
80 # define DSI_TXPKT1C_CMD_CTRL_RX 1
81 /* Trigger according to TRIG_CMD */
82 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2
83 /* BTA alone for getting error status after a command, or a TE trigger
84 * without a previous command.
85 */
86 # define DSI_TXPKT1C_CMD_CTRL_BTA 3
87
88 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
89 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
90 # define DSI_TXPKT1C_CMD_TE_EN BIT(1)
91 # define DSI_TXPKT1C_CMD_EN BIT(0)
92
93 /* Command packet header. */
94 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */
95 #define DSI1_TXPKT1H 0x08
96 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
97 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
98 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
99 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8
100 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
101 # define DSI_TXPKT1H_BC_DT_SHIFT 0
102
103 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
104 #define DSI1_RXPKT1H 0x14
105 # define DSI_RXPKT1H_CRC_ERR BIT(31)
106 # define DSI_RXPKT1H_DET_ERR BIT(30)
107 # define DSI_RXPKT1H_ECC_ERR BIT(29)
108 # define DSI_RXPKT1H_COR_ERR BIT(28)
109 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
110 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
111 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
112 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
113 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
114 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
115 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
116 # define DSI_RXPKT1H_SHORT_1_SHIFT 16
117 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
118 # define DSI_RXPKT1H_SHORT_0_SHIFT 8
119 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
120 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
121
122 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
123 #define DSI1_RXPKT2H 0x18
124 # define DSI_RXPKT1H_DET_ERR BIT(30)
125 # define DSI_RXPKT1H_ECC_ERR BIT(29)
126 # define DSI_RXPKT1H_COR_ERR BIT(28)
127 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
128 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
129 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
130 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
131 # define DSI_RXPKT1H_DT_SHIFT 0
132
133 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
134 #define DSI1_TXPKT_CMD_FIFO 0x1c
135
136 #define DSI0_DISP0_CTRL 0x18
137 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
138 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
139 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
140 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
141 # define DSI_DISP0_LP_STOP_DISABLE 0
142 # define DSI_DISP0_LP_STOP_PERLINE 1
143 # define DSI_DISP0_LP_STOP_PERFRAME 2
144
145 /* Transmit RGB pixels and null packets only during HACTIVE, instead
146 * of going to LP-STOP.
147 */
148 # define DSI_DISP_HACTIVE_NULL BIT(10)
149 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
150 # define DSI_DISP_VBLP_CTRL BIT(9)
151 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
152 # define DSI_DISP_HFP_CTRL BIT(8)
153 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
154 # define DSI_DISP_HBP_CTRL BIT(7)
155 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
156 # define DSI_DISP0_CHANNEL_SHIFT 5
157 /* Enables end events for HSYNC/VSYNC, not just start events. */
158 # define DSI_DISP0_ST_END BIT(4)
159 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
160 # define DSI_DISP0_PFORMAT_SHIFT 2
161 # define DSI_PFORMAT_RGB565 0
162 # define DSI_PFORMAT_RGB666_PACKED 1
163 # define DSI_PFORMAT_RGB666 2
164 # define DSI_PFORMAT_RGB888 3
165 /* Default is VIDEO mode. */
166 # define DSI_DISP0_COMMAND_MODE BIT(1)
167 # define DSI_DISP0_ENABLE BIT(0)
168
169 #define DSI0_DISP1_CTRL 0x1c
170 #define DSI1_DISP1_CTRL 0x2c
171 /* Format of the data written to TXPKT_PIX_FIFO. */
172 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
173 # define DSI_DISP1_PFORMAT_SHIFT 1
174 # define DSI_DISP1_PFORMAT_16BIT 0
175 # define DSI_DISP1_PFORMAT_24BIT 1
176 # define DSI_DISP1_PFORMAT_32BIT_LE 2
177 # define DSI_DISP1_PFORMAT_32BIT_BE 3
178
179 /* DISP1 is always command mode. */
180 # define DSI_DISP1_ENABLE BIT(0)
181
182 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
183
184 #define DSI0_INT_STAT 0x24
185 #define DSI0_INT_EN 0x28
186 # define DSI0_INT_FIFO_ERR BIT(25)
187 # define DSI0_INT_CMDC_DONE_MASK VC4_MASK(24, 23)
188 # define DSI0_INT_CMDC_DONE_SHIFT 23
189 # define DSI0_INT_CMDC_DONE_NO_REPEAT 1
190 # define DSI0_INT_CMDC_DONE_REPEAT 3
191 # define DSI0_INT_PHY_DIR_RTF BIT(22)
192 # define DSI0_INT_PHY_D1_ULPS BIT(21)
193 # define DSI0_INT_PHY_D1_STOP BIT(20)
194 # define DSI0_INT_PHY_RXLPDT BIT(19)
195 # define DSI0_INT_PHY_RXTRIG BIT(18)
196 # define DSI0_INT_PHY_D0_ULPS BIT(17)
197 # define DSI0_INT_PHY_D0_LPDT BIT(16)
198 # define DSI0_INT_PHY_D0_FTR BIT(15)
199 # define DSI0_INT_PHY_D0_STOP BIT(14)
200 /* Signaled when the clock lane enters the given state. */
201 # define DSI0_INT_PHY_CLK_ULPS BIT(13)
202 # define DSI0_INT_PHY_CLK_HS BIT(12)
203 # define DSI0_INT_PHY_CLK_FTR BIT(11)
204 /* Signaled on timeouts */
205 # define DSI0_INT_PR_TO BIT(10)
206 # define DSI0_INT_TA_TO BIT(9)
207 # define DSI0_INT_LPRX_TO BIT(8)
208 # define DSI0_INT_HSTX_TO BIT(7)
209 /* Contention on a line when trying to drive the line low */
210 # define DSI0_INT_ERR_CONT_LP1 BIT(6)
211 # define DSI0_INT_ERR_CONT_LP0 BIT(5)
212 /* Control error: incorrect line state sequence on data lane 0. */
213 # define DSI0_INT_ERR_CONTROL BIT(4)
214 # define DSI0_INT_ERR_SYNC_ESC BIT(3)
215 # define DSI0_INT_RX2_PKT BIT(2)
216 # define DSI0_INT_RX1_PKT BIT(1)
217 # define DSI0_INT_CMD_PKT BIT(0)
218
219 #define DSI0_INTERRUPTS_ALWAYS_ENABLED (DSI0_INT_ERR_SYNC_ESC | \
220 DSI0_INT_ERR_CONTROL | \
221 DSI0_INT_ERR_CONT_LP0 | \
222 DSI0_INT_ERR_CONT_LP1 | \
223 DSI0_INT_HSTX_TO | \
224 DSI0_INT_LPRX_TO | \
225 DSI0_INT_TA_TO | \
226 DSI0_INT_PR_TO)
227
228 # define DSI1_INT_PHY_D3_ULPS BIT(30)
229 # define DSI1_INT_PHY_D3_STOP BIT(29)
230 # define DSI1_INT_PHY_D2_ULPS BIT(28)
231 # define DSI1_INT_PHY_D2_STOP BIT(27)
232 # define DSI1_INT_PHY_D1_ULPS BIT(26)
233 # define DSI1_INT_PHY_D1_STOP BIT(25)
234 # define DSI1_INT_PHY_D0_ULPS BIT(24)
235 # define DSI1_INT_PHY_D0_STOP BIT(23)
236 # define DSI1_INT_FIFO_ERR BIT(22)
237 # define DSI1_INT_PHY_DIR_RTF BIT(21)
238 # define DSI1_INT_PHY_RXLPDT BIT(20)
239 # define DSI1_INT_PHY_RXTRIG BIT(19)
240 # define DSI1_INT_PHY_D0_LPDT BIT(18)
241 # define DSI1_INT_PHY_DIR_FTR BIT(17)
242
243 /* Signaled when the clock lane enters the given state. */
244 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
245 # define DSI1_INT_PHY_CLOCK_HS BIT(15)
246 # define DSI1_INT_PHY_CLOCK_STOP BIT(14)
247
248 /* Signaled on timeouts */
249 # define DSI1_INT_PR_TO BIT(13)
250 # define DSI1_INT_TA_TO BIT(12)
251 # define DSI1_INT_LPRX_TO BIT(11)
252 # define DSI1_INT_HSTX_TO BIT(10)
253
254 /* Contention on a line when trying to drive the line low */
255 # define DSI1_INT_ERR_CONT_LP1 BIT(9)
256 # define DSI1_INT_ERR_CONT_LP0 BIT(8)
257
258 /* Control error: incorrect line state sequence on data lane 0. */
259 # define DSI1_INT_ERR_CONTROL BIT(7)
260 /* LPDT synchronization error (bits received not a multiple of 8. */
261
262 # define DSI1_INT_ERR_SYNC_ESC BIT(6)
263 /* Signaled after receiving an error packet from the display in
264 * response to a read.
265 */
266 # define DSI1_INT_RXPKT2 BIT(5)
267 /* Signaled after receiving a packet. The header and optional short
268 * response will be in RXPKT1H, and a long response will be in the
269 * RXPKT_FIFO.
270 */
271 # define DSI1_INT_RXPKT1 BIT(4)
272 # define DSI1_INT_TXPKT2_DONE BIT(3)
273 # define DSI1_INT_TXPKT2_END BIT(2)
274 /* Signaled after all repeats of TXPKT1 are transferred. */
275 # define DSI1_INT_TXPKT1_DONE BIT(1)
276 /* Signaled after each TXPKT1 repeat is scheduled. */
277 # define DSI1_INT_TXPKT1_END BIT(0)
278
279 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
280 DSI1_INT_ERR_CONTROL | \
281 DSI1_INT_ERR_CONT_LP0 | \
282 DSI1_INT_ERR_CONT_LP1 | \
283 DSI1_INT_HSTX_TO | \
284 DSI1_INT_LPRX_TO | \
285 DSI1_INT_TA_TO | \
286 DSI1_INT_PR_TO)
287
288 #define DSI0_STAT 0x2c
289 #define DSI0_HSTX_TO_CNT 0x30
290 #define DSI0_LPRX_TO_CNT 0x34
291 #define DSI0_TA_TO_CNT 0x38
292 #define DSI0_PR_TO_CNT 0x3c
293 #define DSI0_PHYC 0x40
294 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
295 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
296 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
297 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
298 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
299 # define DSI1_PHYC_CLANE_ULPS BIT(17)
300 # define DSI1_PHYC_CLANE_ENABLE BIT(16)
301 # define DSI_PHYC_DLANE3_ULPS BIT(13)
302 # define DSI_PHYC_DLANE3_ENABLE BIT(12)
303 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
304 # define DSI0_PHYC_CLANE_ULPS BIT(9)
305 # define DSI_PHYC_DLANE2_ULPS BIT(9)
306 # define DSI0_PHYC_CLANE_ENABLE BIT(8)
307 # define DSI_PHYC_DLANE2_ENABLE BIT(8)
308 # define DSI_PHYC_DLANE1_ULPS BIT(5)
309 # define DSI_PHYC_DLANE1_ENABLE BIT(4)
310 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
311 # define DSI_PHYC_DLANE0_ULPS BIT(1)
312 # define DSI_PHYC_DLANE0_ENABLE BIT(0)
313
314 #define DSI0_HS_CLT0 0x44
315 #define DSI0_HS_CLT1 0x48
316 #define DSI0_HS_CLT2 0x4c
317 #define DSI0_HS_DLT3 0x50
318 #define DSI0_HS_DLT4 0x54
319 #define DSI0_HS_DLT5 0x58
320 #define DSI0_HS_DLT6 0x5c
321 #define DSI0_HS_DLT7 0x60
322
323 #define DSI0_PHY_AFEC0 0x64
324 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
325 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
326 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
327 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
328 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
329 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
330 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
331 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
332 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
333 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
334 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
335 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
336 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
337 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
338 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
339 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
340 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
341 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
342 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
343 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
344 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
345 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
346 # define DSI1_PHY_AFEC0_RESET BIT(13)
347 # define DSI1_PHY_AFEC0_PD BIT(12)
348 # define DSI0_PHY_AFEC0_RESET BIT(11)
349 # define DSI1_PHY_AFEC0_PD_BG BIT(11)
350 # define DSI0_PHY_AFEC0_PD BIT(10)
351 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(10)
352 # define DSI0_PHY_AFEC0_PD_BG BIT(9)
353 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
354 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
355 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(8)
356 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
357 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
358 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
359 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
360
361 #define DSI0_PHY_AFEC1 0x68
362 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
363 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
364 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
365 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
366 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
367 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
368
369 #define DSI0_TST_SEL 0x6c
370 #define DSI0_TST_MON 0x70
371 #define DSI0_ID 0x74
372 # define DSI_ID_VALUE 0x00647369
373
374 #define DSI1_CTRL 0x00
375 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
376 # define DSI_CTRL_HS_CLKC_SHIFT 14
377 # define DSI_CTRL_HS_CLKC_BYTE 0
378 # define DSI_CTRL_HS_CLKC_DDR2 1
379 # define DSI_CTRL_HS_CLKC_DDR 2
380
381 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
382 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
383 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
384 # define DSI_CTRL_SOFT_RESET_CFG BIT(10)
385 # define DSI_CTRL_CAL_BYTE BIT(9)
386 # define DSI_CTRL_INV_BYTE BIT(8)
387 # define DSI_CTRL_CLR_LDF BIT(7)
388 # define DSI0_CTRL_CLR_PBCF BIT(6)
389 # define DSI1_CTRL_CLR_RXF BIT(6)
390 # define DSI0_CTRL_CLR_CPBCF BIT(5)
391 # define DSI1_CTRL_CLR_PDF BIT(5)
392 # define DSI0_CTRL_CLR_PDF BIT(4)
393 # define DSI1_CTRL_CLR_CDF BIT(4)
394 # define DSI0_CTRL_CLR_CDF BIT(3)
395 # define DSI0_CTRL_CTRL2 BIT(2)
396 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
397 # define DSI0_CTRL_CTRL1 BIT(1)
398 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
399 # define DSI0_CTRL_CTRL0 BIT(0)
400 # define DSI1_CTRL_EN BIT(0)
401 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
402 DSI0_CTRL_CLR_PBCF | \
403 DSI0_CTRL_CLR_CPBCF | \
404 DSI0_CTRL_CLR_PDF | \
405 DSI0_CTRL_CLR_CDF)
406 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
407 DSI1_CTRL_CLR_RXF | \
408 DSI1_CTRL_CLR_PDF | \
409 DSI1_CTRL_CLR_CDF)
410
411 #define DSI1_TXPKT2C 0x0c
412 #define DSI1_TXPKT2H 0x10
413 #define DSI1_TXPKT_PIX_FIFO 0x20
414 #define DSI1_RXPKT_FIFO 0x24
415 #define DSI1_DISP0_CTRL 0x28
416 #define DSI1_INT_STAT 0x30
417 #define DSI1_INT_EN 0x34
418 /* State reporting bits. These mostly behave like INT_STAT, where
419 * writing a 1 clears the bit.
420 */
421 #define DSI1_STAT 0x38
422 # define DSI1_STAT_PHY_D3_ULPS BIT(31)
423 # define DSI1_STAT_PHY_D3_STOP BIT(30)
424 # define DSI1_STAT_PHY_D2_ULPS BIT(29)
425 # define DSI1_STAT_PHY_D2_STOP BIT(28)
426 # define DSI1_STAT_PHY_D1_ULPS BIT(27)
427 # define DSI1_STAT_PHY_D1_STOP BIT(26)
428 # define DSI1_STAT_PHY_D0_ULPS BIT(25)
429 # define DSI1_STAT_PHY_D0_STOP BIT(24)
430 # define DSI1_STAT_FIFO_ERR BIT(23)
431 # define DSI1_STAT_PHY_RXLPDT BIT(22)
432 # define DSI1_STAT_PHY_RXTRIG BIT(21)
433 # define DSI1_STAT_PHY_D0_LPDT BIT(20)
434 /* Set when in forward direction */
435 # define DSI1_STAT_PHY_DIR BIT(19)
436 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
437 # define DSI1_STAT_PHY_CLOCK_HS BIT(17)
438 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
439 # define DSI1_STAT_PR_TO BIT(15)
440 # define DSI1_STAT_TA_TO BIT(14)
441 # define DSI1_STAT_LPRX_TO BIT(13)
442 # define DSI1_STAT_HSTX_TO BIT(12)
443 # define DSI1_STAT_ERR_CONT_LP1 BIT(11)
444 # define DSI1_STAT_ERR_CONT_LP0 BIT(10)
445 # define DSI1_STAT_ERR_CONTROL BIT(9)
446 # define DSI1_STAT_ERR_SYNC_ESC BIT(8)
447 # define DSI1_STAT_RXPKT2 BIT(7)
448 # define DSI1_STAT_RXPKT1 BIT(6)
449 # define DSI1_STAT_TXPKT2_BUSY BIT(5)
450 # define DSI1_STAT_TXPKT2_DONE BIT(4)
451 # define DSI1_STAT_TXPKT2_END BIT(3)
452 # define DSI1_STAT_TXPKT1_BUSY BIT(2)
453 # define DSI1_STAT_TXPKT1_DONE BIT(1)
454 # define DSI1_STAT_TXPKT1_END BIT(0)
455
456 #define DSI1_HSTX_TO_CNT 0x3c
457 #define DSI1_LPRX_TO_CNT 0x40
458 #define DSI1_TA_TO_CNT 0x44
459 #define DSI1_PR_TO_CNT 0x48
460 #define DSI1_PHYC 0x4c
461
462 #define DSI1_HS_CLT0 0x50
463 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
464 # define DSI_HS_CLT0_CZERO_SHIFT 18
465 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
466 # define DSI_HS_CLT0_CPRE_SHIFT 9
467 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
468 # define DSI_HS_CLT0_CPREP_SHIFT 0
469
470 #define DSI1_HS_CLT1 0x54
471 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
472 # define DSI_HS_CLT1_CTRAIL_SHIFT 9
473 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
474 # define DSI_HS_CLT1_CPOST_SHIFT 0
475
476 #define DSI1_HS_CLT2 0x58
477 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
478 # define DSI_HS_CLT2_WUP_SHIFT 0
479
480 #define DSI1_HS_DLT3 0x5c
481 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
482 # define DSI_HS_DLT3_EXIT_SHIFT 18
483 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
484 # define DSI_HS_DLT3_ZERO_SHIFT 9
485 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
486 # define DSI_HS_DLT3_PRE_SHIFT 0
487
488 #define DSI1_HS_DLT4 0x60
489 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
490 # define DSI_HS_DLT4_ANLAT_SHIFT 18
491 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
492 # define DSI_HS_DLT4_TRAIL_SHIFT 9
493 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
494 # define DSI_HS_DLT4_LPX_SHIFT 0
495
496 #define DSI1_HS_DLT5 0x64
497 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
498 # define DSI_HS_DLT5_INIT_SHIFT 0
499
500 #define DSI1_HS_DLT6 0x68
501 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
502 # define DSI_HS_DLT6_TA_GET_SHIFT 24
503 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
504 # define DSI_HS_DLT6_TA_SURE_SHIFT 16
505 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
506 # define DSI_HS_DLT6_TA_GO_SHIFT 8
507 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
508 # define DSI_HS_DLT6_LP_LPX_SHIFT 0
509
510 #define DSI1_HS_DLT7 0x6c
511 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
512 # define DSI_HS_DLT7_LP_WUP_SHIFT 0
513
514 #define DSI1_PHY_AFEC0 0x70
515
516 #define DSI1_PHY_AFEC1 0x74
517 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
518 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
519 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
520 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
521 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
522 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
523 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
524 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
525 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
526 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
527
528 #define DSI1_TST_SEL 0x78
529 #define DSI1_TST_MON 0x7c
530 #define DSI1_PHY_TST1 0x80
531 #define DSI1_PHY_TST2 0x84
532 #define DSI1_PHY_FIFO_STAT 0x88
533 /* Actually, all registers in the range that aren't otherwise claimed
534 * will return the ID.
535 */
536 #define DSI1_ID 0x8c
537
538 struct vc4_dsi_variant {
539 /* Whether we're on bcm2835's DSI0 or DSI1. */
540 unsigned int port;
541
542 bool broken_axi_workaround;
543
544 const char *debugfs_name;
545 const struct debugfs_reg32 *regs;
546 size_t nregs;
547
548 };
549
550 /* General DSI hardware state. */
551 struct vc4_dsi {
552 struct vc4_encoder encoder;
553 struct mipi_dsi_host dsi_host;
554
555 struct kref kref;
556
557 struct platform_device *pdev;
558
559 struct drm_bridge *bridge;
560 struct list_head bridge_chain;
561
562 void __iomem *regs;
563
564 struct dma_chan *reg_dma_chan;
565 dma_addr_t reg_dma_paddr;
566 u32 *reg_dma_mem;
567 dma_addr_t reg_paddr;
568
569 const struct vc4_dsi_variant *variant;
570
571 /* DSI channel for the panel we're connected to. */
572 u32 channel;
573 u32 lanes;
574 u32 format;
575 u32 divider;
576 u32 mode_flags;
577
578 /* Input clock from CPRMAN to the digital PHY, for the DSI
579 * escape clock.
580 */
581 struct clk *escape_clock;
582
583 /* Input clock to the analog PHY, used to generate the DSI bit
584 * clock.
585 */
586 struct clk *pll_phy_clock;
587
588 /* HS Clocks generated within the DSI analog PHY. */
589 struct clk_fixed_factor phy_clocks[3];
590
591 struct clk_hw_onecell_data *clk_onecell;
592
593 /* Pixel clock output to the pixelvalve, generated from the HS
594 * clock.
595 */
596 struct clk *pixel_clock;
597
598 struct completion xfer_completion;
599 int xfer_result;
600
601 struct debugfs_regset32 regset;
602 };
603
604 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
605
606 static inline struct vc4_dsi *
to_vc4_dsi(struct drm_encoder * encoder)607 to_vc4_dsi(struct drm_encoder *encoder)
608 {
609 return container_of(encoder, struct vc4_dsi, encoder.base);
610 }
611
612 static inline void
dsi_dma_workaround_write(struct vc4_dsi * dsi,u32 offset,u32 val)613 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
614 {
615 struct dma_chan *chan = dsi->reg_dma_chan;
616 struct dma_async_tx_descriptor *tx;
617 dma_cookie_t cookie;
618 int ret;
619
620 /* DSI0 should be able to write normally. */
621 if (!chan) {
622 writel(val, dsi->regs + offset);
623 return;
624 }
625
626 *dsi->reg_dma_mem = val;
627
628 tx = chan->device->device_prep_dma_memcpy(chan,
629 dsi->reg_paddr + offset,
630 dsi->reg_dma_paddr,
631 4, 0);
632 if (!tx) {
633 DRM_ERROR("Failed to set up DMA register write\n");
634 return;
635 }
636
637 cookie = tx->tx_submit(tx);
638 ret = dma_submit_error(cookie);
639 if (ret) {
640 DRM_ERROR("Failed to submit DMA: %d\n", ret);
641 return;
642 }
643 ret = dma_sync_wait(chan, cookie);
644 if (ret)
645 DRM_ERROR("Failed to wait for DMA: %d\n", ret);
646 }
647
648 #define DSI_READ(offset) readl(dsi->regs + (offset))
649 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
650 #define DSI_PORT_READ(offset) \
651 DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset)
652 #define DSI_PORT_WRITE(offset, val) \
653 DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val)
654 #define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit)
655
656 static const struct debugfs_reg32 dsi0_regs[] = {
657 VC4_REG32(DSI0_CTRL),
658 VC4_REG32(DSI0_STAT),
659 VC4_REG32(DSI0_HSTX_TO_CNT),
660 VC4_REG32(DSI0_LPRX_TO_CNT),
661 VC4_REG32(DSI0_TA_TO_CNT),
662 VC4_REG32(DSI0_PR_TO_CNT),
663 VC4_REG32(DSI0_DISP0_CTRL),
664 VC4_REG32(DSI0_DISP1_CTRL),
665 VC4_REG32(DSI0_INT_STAT),
666 VC4_REG32(DSI0_INT_EN),
667 VC4_REG32(DSI0_PHYC),
668 VC4_REG32(DSI0_HS_CLT0),
669 VC4_REG32(DSI0_HS_CLT1),
670 VC4_REG32(DSI0_HS_CLT2),
671 VC4_REG32(DSI0_HS_DLT3),
672 VC4_REG32(DSI0_HS_DLT4),
673 VC4_REG32(DSI0_HS_DLT5),
674 VC4_REG32(DSI0_HS_DLT6),
675 VC4_REG32(DSI0_HS_DLT7),
676 VC4_REG32(DSI0_PHY_AFEC0),
677 VC4_REG32(DSI0_PHY_AFEC1),
678 VC4_REG32(DSI0_ID),
679 };
680
681 static const struct debugfs_reg32 dsi1_regs[] = {
682 VC4_REG32(DSI1_CTRL),
683 VC4_REG32(DSI1_STAT),
684 VC4_REG32(DSI1_HSTX_TO_CNT),
685 VC4_REG32(DSI1_LPRX_TO_CNT),
686 VC4_REG32(DSI1_TA_TO_CNT),
687 VC4_REG32(DSI1_PR_TO_CNT),
688 VC4_REG32(DSI1_DISP0_CTRL),
689 VC4_REG32(DSI1_DISP1_CTRL),
690 VC4_REG32(DSI1_INT_STAT),
691 VC4_REG32(DSI1_INT_EN),
692 VC4_REG32(DSI1_PHYC),
693 VC4_REG32(DSI1_HS_CLT0),
694 VC4_REG32(DSI1_HS_CLT1),
695 VC4_REG32(DSI1_HS_CLT2),
696 VC4_REG32(DSI1_HS_DLT3),
697 VC4_REG32(DSI1_HS_DLT4),
698 VC4_REG32(DSI1_HS_DLT5),
699 VC4_REG32(DSI1_HS_DLT6),
700 VC4_REG32(DSI1_HS_DLT7),
701 VC4_REG32(DSI1_PHY_AFEC0),
702 VC4_REG32(DSI1_PHY_AFEC1),
703 VC4_REG32(DSI1_ID),
704 };
705
vc4_dsi_latch_ulps(struct vc4_dsi * dsi,bool latch)706 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
707 {
708 u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
709
710 if (latch)
711 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
712 else
713 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
714
715 DSI_PORT_WRITE(PHY_AFEC0, afec0);
716 }
717
718 /* Enters or exits Ultra Low Power State. */
vc4_dsi_ulps(struct vc4_dsi * dsi,bool ulps)719 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
720 {
721 bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
722 u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
723 DSI_PHYC_DLANE0_ULPS |
724 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
725 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
726 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
727 u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
728 DSI1_STAT_PHY_D0_ULPS |
729 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
730 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
731 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
732 u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
733 DSI1_STAT_PHY_D0_STOP |
734 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
735 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
736 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
737 int ret;
738 bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
739 DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
740
741 if (ulps == ulps_currently_enabled)
742 return;
743
744 DSI_PORT_WRITE(STAT, stat_ulps);
745 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
746 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
747 if (ret) {
748 dev_warn(&dsi->pdev->dev,
749 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
750 DSI_PORT_READ(STAT));
751 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
752 vc4_dsi_latch_ulps(dsi, false);
753 return;
754 }
755
756 /* The DSI module can't be disabled while the module is
757 * generating ULPS state. So, to be able to disable the
758 * module, we have the AFE latch the ULPS state and continue
759 * on to having the module enter STOP.
760 */
761 vc4_dsi_latch_ulps(dsi, ulps);
762
763 DSI_PORT_WRITE(STAT, stat_stop);
764 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
765 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
766 if (ret) {
767 dev_warn(&dsi->pdev->dev,
768 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
769 DSI_PORT_READ(STAT));
770 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
771 return;
772 }
773 }
774
775 static u32
dsi_hs_timing(u32 ui_ns,u32 ns,u32 ui)776 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
777 {
778 /* The HS timings have to be rounded up to a multiple of 8
779 * because we're using the byte clock.
780 */
781 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
782 }
783
784 /* ESC always runs at 100Mhz. */
785 #define ESC_TIME_NS 10
786
787 static u32
dsi_esc_timing(u32 ns)788 dsi_esc_timing(u32 ns)
789 {
790 return DIV_ROUND_UP(ns, ESC_TIME_NS);
791 }
792
vc4_dsi_encoder_disable(struct drm_encoder * encoder)793 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
794 {
795 struct vc4_dsi *dsi = to_vc4_dsi(encoder);
796 struct device *dev = &dsi->pdev->dev;
797 struct drm_bridge *iter;
798
799 list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
800 if (iter->funcs->disable)
801 iter->funcs->disable(iter);
802
803 if (iter == dsi->bridge)
804 break;
805 }
806
807 vc4_dsi_ulps(dsi, true);
808
809 list_for_each_entry_from(iter, &dsi->bridge_chain, chain_node) {
810 if (iter->funcs->post_disable)
811 iter->funcs->post_disable(iter);
812 }
813
814 clk_disable_unprepare(dsi->pll_phy_clock);
815 clk_disable_unprepare(dsi->escape_clock);
816 clk_disable_unprepare(dsi->pixel_clock);
817
818 pm_runtime_put(dev);
819 }
820
821 /* Extends the mode's blank intervals to handle BCM2835's integer-only
822 * DSI PLL divider.
823 *
824 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
825 * driver since most peripherals are hanging off of the PLLD_PER
826 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore
827 * the pixel clock), only has an integer divider off of DSI.
828 *
829 * To get our panel mode to refresh at the expected 60Hz, we need to
830 * extend the horizontal blank time. This means we drive a
831 * higher-than-expected clock rate to the panel, but that's what the
832 * firmware does too.
833 */
vc4_dsi_encoder_mode_fixup(struct drm_encoder * encoder,const struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)834 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
835 const struct drm_display_mode *mode,
836 struct drm_display_mode *adjusted_mode)
837 {
838 struct vc4_dsi *dsi = to_vc4_dsi(encoder);
839 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
840 unsigned long parent_rate = clk_get_rate(phy_parent);
841 unsigned long pixel_clock_hz = mode->clock * 1000;
842 unsigned long pll_clock = pixel_clock_hz * dsi->divider;
843 int divider;
844
845 /* Find what divider gets us a faster clock than the requested
846 * pixel clock.
847 */
848 for (divider = 1; divider < 255; divider++) {
849 if (parent_rate / (divider + 1) < pll_clock)
850 break;
851 }
852
853 /* Now that we've picked a PLL divider, calculate back to its
854 * pixel clock.
855 */
856 pll_clock = parent_rate / divider;
857 pixel_clock_hz = pll_clock / dsi->divider;
858
859 adjusted_mode->clock = pixel_clock_hz / 1000;
860
861 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
862 adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
863 mode->clock;
864 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
865 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
866
867 return true;
868 }
869
vc4_dsi_encoder_enable(struct drm_encoder * encoder)870 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
871 {
872 struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
873 struct vc4_dsi *dsi = to_vc4_dsi(encoder);
874 struct device *dev = &dsi->pdev->dev;
875 bool debug_dump_regs = false;
876 struct drm_bridge *iter;
877 unsigned long hs_clock;
878 u32 ui_ns;
879 /* Minimum LP state duration in escape clock cycles. */
880 u32 lpx = dsi_esc_timing(60);
881 unsigned long pixel_clock_hz = mode->clock * 1000;
882 unsigned long dsip_clock;
883 unsigned long phy_clock;
884 int ret;
885
886 ret = pm_runtime_resume_and_get(dev);
887 if (ret) {
888 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->variant->port);
889 return;
890 }
891
892 if (debug_dump_regs) {
893 struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
894 dev_info(&dsi->pdev->dev, "DSI regs before:\n");
895 drm_print_regset32(&p, &dsi->regset);
896 }
897
898 /* Round up the clk_set_rate() request slightly, since
899 * PLLD_DSI1 is an integer divider and its rate selection will
900 * never round up.
901 */
902 phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
903 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
904 if (ret) {
905 dev_err(&dsi->pdev->dev,
906 "Failed to set phy clock to %ld: %d\n", phy_clock, ret);
907 }
908
909 /* Reset the DSI and all its fifos. */
910 DSI_PORT_WRITE(CTRL,
911 DSI_CTRL_SOFT_RESET_CFG |
912 DSI_PORT_BIT(CTRL_RESET_FIFOS));
913
914 DSI_PORT_WRITE(CTRL,
915 DSI_CTRL_HSDT_EOT_DISABLE |
916 DSI_CTRL_RX_LPDT_EOT_DISABLE);
917
918 /* Clear all stat bits so we see what has happened during enable. */
919 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
920
921 /* Set AFE CTR00/CTR1 to release powerdown of analog. */
922 if (dsi->variant->port == 0) {
923 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
924 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
925
926 if (dsi->lanes < 2)
927 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
928
929 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
930 afec0 |= DSI0_PHY_AFEC0_RESET;
931
932 DSI_PORT_WRITE(PHY_AFEC0, afec0);
933
934 /* AFEC reset hold time */
935 mdelay(1);
936
937 DSI_PORT_WRITE(PHY_AFEC1,
938 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) |
939 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) |
940 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE));
941 } else {
942 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
943 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
944 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
945 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
946 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
947 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
948 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
949
950 if (dsi->lanes < 4)
951 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
952 if (dsi->lanes < 3)
953 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
954 if (dsi->lanes < 2)
955 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
956
957 afec0 |= DSI1_PHY_AFEC0_RESET;
958
959 DSI_PORT_WRITE(PHY_AFEC0, afec0);
960
961 DSI_PORT_WRITE(PHY_AFEC1, 0);
962
963 /* AFEC reset hold time */
964 mdelay(1);
965 }
966
967 ret = clk_prepare_enable(dsi->escape_clock);
968 if (ret) {
969 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
970 return;
971 }
972
973 ret = clk_prepare_enable(dsi->pll_phy_clock);
974 if (ret) {
975 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
976 return;
977 }
978
979 hs_clock = clk_get_rate(dsi->pll_phy_clock);
980
981 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
982 * not the pixel clock rate. DSIxP take from the APHY's byte,
983 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
984 * that rate. Separately, a value derived from PIX_CLK_DIV
985 * and HS_CLKC is fed into the PV to divide down to the actual
986 * pixel clock for pushing pixels into DSI.
987 */
988 dsip_clock = phy_clock / 8;
989 ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
990 if (ret) {
991 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
992 dsip_clock, ret);
993 }
994
995 ret = clk_prepare_enable(dsi->pixel_clock);
996 if (ret) {
997 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
998 return;
999 }
1000
1001 /* How many ns one DSI unit interval is. Note that the clock
1002 * is DDR, so there's an extra divide by 2.
1003 */
1004 ui_ns = DIV_ROUND_UP(500000000, hs_clock);
1005
1006 DSI_PORT_WRITE(HS_CLT0,
1007 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
1008 DSI_HS_CLT0_CZERO) |
1009 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
1010 DSI_HS_CLT0_CPRE) |
1011 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
1012 DSI_HS_CLT0_CPREP));
1013
1014 DSI_PORT_WRITE(HS_CLT1,
1015 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
1016 DSI_HS_CLT1_CTRAIL) |
1017 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
1018 DSI_HS_CLT1_CPOST));
1019
1020 DSI_PORT_WRITE(HS_CLT2,
1021 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
1022 DSI_HS_CLT2_WUP));
1023
1024 DSI_PORT_WRITE(HS_DLT3,
1025 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
1026 DSI_HS_DLT3_EXIT) |
1027 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
1028 DSI_HS_DLT3_ZERO) |
1029 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
1030 DSI_HS_DLT3_PRE));
1031
1032 DSI_PORT_WRITE(HS_DLT4,
1033 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
1034 DSI_HS_DLT4_LPX) |
1035 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
1036 dsi_hs_timing(ui_ns, 60, 4)),
1037 DSI_HS_DLT4_TRAIL) |
1038 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
1039
1040 /* T_INIT is how long STOP is driven after power-up to
1041 * indicate to the slave (also coming out of power-up) that
1042 * master init is complete, and should be greater than the
1043 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The
1044 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
1045 * T_INIT,SLAVE, while allowing protocols on top of it to give
1046 * greater minimums. The vc4 firmware uses an extremely
1047 * conservative 5ms, and we maintain that here.
1048 */
1049 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
1050 5 * 1000 * 1000, 0),
1051 DSI_HS_DLT5_INIT));
1052
1053 DSI_PORT_WRITE(HS_DLT6,
1054 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1055 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1056 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1057 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1058
1059 DSI_PORT_WRITE(HS_DLT7,
1060 VC4_SET_FIELD(dsi_esc_timing(1000000),
1061 DSI_HS_DLT7_LP_WUP));
1062
1063 DSI_PORT_WRITE(PHYC,
1064 DSI_PHYC_DLANE0_ENABLE |
1065 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1066 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1067 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1068 DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1069 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1070 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1071 (dsi->variant->port == 0 ?
1072 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1073 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1074
1075 DSI_PORT_WRITE(CTRL,
1076 DSI_PORT_READ(CTRL) |
1077 DSI_CTRL_CAL_BYTE);
1078
1079 /* HS timeout in HS clock cycles: disabled. */
1080 DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1081 /* LP receive timeout in HS clocks. */
1082 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1083 /* Bus turnaround timeout */
1084 DSI_PORT_WRITE(TA_TO_CNT, 100000);
1085 /* Display reset sequence timeout */
1086 DSI_PORT_WRITE(PR_TO_CNT, 100000);
1087
1088 /* Set up DISP1 for transferring long command payloads through
1089 * the pixfifo.
1090 */
1091 DSI_PORT_WRITE(DISP1_CTRL,
1092 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1093 DSI_DISP1_PFORMAT) |
1094 DSI_DISP1_ENABLE);
1095
1096 /* Ungate the block. */
1097 if (dsi->variant->port == 0)
1098 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1099 else
1100 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1101
1102 /* Bring AFE out of reset. */
1103 DSI_PORT_WRITE(PHY_AFEC0,
1104 DSI_PORT_READ(PHY_AFEC0) &
1105 ~DSI_PORT_BIT(PHY_AFEC0_RESET));
1106
1107 vc4_dsi_ulps(dsi, false);
1108
1109 list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
1110 if (iter->funcs->pre_enable)
1111 iter->funcs->pre_enable(iter);
1112 }
1113
1114 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1115 DSI_PORT_WRITE(DISP0_CTRL,
1116 VC4_SET_FIELD(dsi->divider,
1117 DSI_DISP0_PIX_CLK_DIV) |
1118 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1119 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1120 DSI_DISP0_LP_STOP_CTRL) |
1121 DSI_DISP0_ST_END |
1122 DSI_DISP0_ENABLE);
1123 } else {
1124 DSI_PORT_WRITE(DISP0_CTRL,
1125 DSI_DISP0_COMMAND_MODE |
1126 DSI_DISP0_ENABLE);
1127 }
1128
1129 list_for_each_entry(iter, &dsi->bridge_chain, chain_node) {
1130 if (iter->funcs->enable)
1131 iter->funcs->enable(iter);
1132 }
1133
1134 if (debug_dump_regs) {
1135 struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1136 dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1137 drm_print_regset32(&p, &dsi->regset);
1138 }
1139 }
1140
vc4_dsi_host_transfer(struct mipi_dsi_host * host,const struct mipi_dsi_msg * msg)1141 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1142 const struct mipi_dsi_msg *msg)
1143 {
1144 struct vc4_dsi *dsi = host_to_dsi(host);
1145 struct mipi_dsi_packet packet;
1146 u32 pkth = 0, pktc = 0;
1147 int i, ret;
1148 bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1149 u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1150
1151 mipi_dsi_create_packet(&packet, msg);
1152
1153 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1154 pkth |= VC4_SET_FIELD(packet.header[1] |
1155 (packet.header[2] << 8),
1156 DSI_TXPKT1H_BC_PARAM);
1157 if (is_long) {
1158 /* Divide data across the various FIFOs we have available.
1159 * The command FIFO takes byte-oriented data, but is of
1160 * limited size. The pixel FIFO (never actually used for
1161 * pixel data in reality) is word oriented, and substantially
1162 * larger. So, we use the pixel FIFO for most of the data,
1163 * sending the residual bytes in the command FIFO at the start.
1164 *
1165 * With this arrangement, the command FIFO will never get full.
1166 */
1167 if (packet.payload_length <= 16) {
1168 cmd_fifo_len = packet.payload_length;
1169 pix_fifo_len = 0;
1170 } else {
1171 cmd_fifo_len = (packet.payload_length %
1172 DSI_PIX_FIFO_WIDTH);
1173 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1174 DSI_PIX_FIFO_WIDTH);
1175 }
1176
1177 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1178
1179 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1180 }
1181
1182 if (msg->rx_len) {
1183 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1184 DSI_TXPKT1C_CMD_CTRL);
1185 } else {
1186 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1187 DSI_TXPKT1C_CMD_CTRL);
1188 }
1189
1190 for (i = 0; i < cmd_fifo_len; i++)
1191 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1192 for (i = 0; i < pix_fifo_len; i++) {
1193 const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1194
1195 DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1196 pix[0] |
1197 pix[1] << 8 |
1198 pix[2] << 16 |
1199 pix[3] << 24);
1200 }
1201
1202 if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1203 pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1204 if (is_long)
1205 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1206
1207 /* Send one copy of the packet. Larger repeats are used for pixel
1208 * data in command mode.
1209 */
1210 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1211
1212 pktc |= DSI_TXPKT1C_CMD_EN;
1213 if (pix_fifo_len) {
1214 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1215 DSI_TXPKT1C_DISPLAY_NO);
1216 } else {
1217 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1218 DSI_TXPKT1C_DISPLAY_NO);
1219 }
1220
1221 /* Enable the appropriate interrupt for the transfer completion. */
1222 dsi->xfer_result = 0;
1223 reinit_completion(&dsi->xfer_completion);
1224 if (dsi->variant->port == 0) {
1225 DSI_PORT_WRITE(INT_STAT,
1226 DSI0_INT_CMDC_DONE_MASK | DSI1_INT_PHY_DIR_RTF);
1227 if (msg->rx_len) {
1228 DSI_PORT_WRITE(INT_EN, (DSI0_INTERRUPTS_ALWAYS_ENABLED |
1229 DSI0_INT_PHY_DIR_RTF));
1230 } else {
1231 DSI_PORT_WRITE(INT_EN,
1232 (DSI0_INTERRUPTS_ALWAYS_ENABLED |
1233 VC4_SET_FIELD(DSI0_INT_CMDC_DONE_NO_REPEAT,
1234 DSI0_INT_CMDC_DONE)));
1235 }
1236 } else {
1237 DSI_PORT_WRITE(INT_STAT,
1238 DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1239 if (msg->rx_len) {
1240 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1241 DSI1_INT_PHY_DIR_RTF));
1242 } else {
1243 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1244 DSI1_INT_TXPKT1_DONE));
1245 }
1246 }
1247
1248 /* Send the packet. */
1249 DSI_PORT_WRITE(TXPKT1H, pkth);
1250 DSI_PORT_WRITE(TXPKT1C, pktc);
1251
1252 if (!wait_for_completion_timeout(&dsi->xfer_completion,
1253 msecs_to_jiffies(1000))) {
1254 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1255 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1256 DSI_PORT_READ(INT_STAT));
1257 ret = -ETIMEDOUT;
1258 } else {
1259 ret = dsi->xfer_result;
1260 }
1261
1262 DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED));
1263
1264 if (ret)
1265 goto reset_fifo_and_return;
1266
1267 if (ret == 0 && msg->rx_len) {
1268 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1269 u8 *msg_rx = msg->rx_buf;
1270
1271 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1272 u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1273 DSI_RXPKT1H_BC_PARAM);
1274
1275 if (rxlen != msg->rx_len) {
1276 DRM_ERROR("DSI returned %db, expecting %db\n",
1277 rxlen, (int)msg->rx_len);
1278 ret = -ENXIO;
1279 goto reset_fifo_and_return;
1280 }
1281
1282 for (i = 0; i < msg->rx_len; i++)
1283 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1284 } else {
1285 /* FINISHME: Handle AWER */
1286
1287 msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1288 DSI_RXPKT1H_SHORT_0);
1289 if (msg->rx_len > 1) {
1290 msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1291 DSI_RXPKT1H_SHORT_1);
1292 }
1293 }
1294 }
1295
1296 return ret;
1297
1298 reset_fifo_and_return:
1299 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1300
1301 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1302 udelay(1);
1303 DSI_PORT_WRITE(CTRL,
1304 DSI_PORT_READ(CTRL) |
1305 DSI_PORT_BIT(CTRL_RESET_FIFOS));
1306
1307 DSI_PORT_WRITE(TXPKT1C, 0);
1308 DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED));
1309 return ret;
1310 }
1311
1312 static const struct component_ops vc4_dsi_ops;
vc4_dsi_host_attach(struct mipi_dsi_host * host,struct mipi_dsi_device * device)1313 static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1314 struct mipi_dsi_device *device)
1315 {
1316 struct vc4_dsi *dsi = host_to_dsi(host);
1317
1318 dsi->lanes = device->lanes;
1319 dsi->channel = device->channel;
1320 dsi->mode_flags = device->mode_flags;
1321
1322 switch (device->format) {
1323 case MIPI_DSI_FMT_RGB888:
1324 dsi->format = DSI_PFORMAT_RGB888;
1325 dsi->divider = 24 / dsi->lanes;
1326 break;
1327 case MIPI_DSI_FMT_RGB666:
1328 dsi->format = DSI_PFORMAT_RGB666;
1329 dsi->divider = 24 / dsi->lanes;
1330 break;
1331 case MIPI_DSI_FMT_RGB666_PACKED:
1332 dsi->format = DSI_PFORMAT_RGB666_PACKED;
1333 dsi->divider = 18 / dsi->lanes;
1334 break;
1335 case MIPI_DSI_FMT_RGB565:
1336 dsi->format = DSI_PFORMAT_RGB565;
1337 dsi->divider = 16 / dsi->lanes;
1338 break;
1339 default:
1340 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1341 dsi->format);
1342 return 0;
1343 }
1344
1345 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1346 dev_err(&dsi->pdev->dev,
1347 "Only VIDEO mode panels supported currently.\n");
1348 return 0;
1349 }
1350
1351 return component_add(&dsi->pdev->dev, &vc4_dsi_ops);
1352 }
1353
vc4_dsi_host_detach(struct mipi_dsi_host * host,struct mipi_dsi_device * device)1354 static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1355 struct mipi_dsi_device *device)
1356 {
1357 struct vc4_dsi *dsi = host_to_dsi(host);
1358
1359 component_del(&dsi->pdev->dev, &vc4_dsi_ops);
1360 return 0;
1361 }
1362
1363 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1364 .attach = vc4_dsi_host_attach,
1365 .detach = vc4_dsi_host_detach,
1366 .transfer = vc4_dsi_host_transfer,
1367 };
1368
1369 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1370 .disable = vc4_dsi_encoder_disable,
1371 .enable = vc4_dsi_encoder_enable,
1372 .mode_fixup = vc4_dsi_encoder_mode_fixup,
1373 };
1374
vc4_dsi_late_register(struct drm_encoder * encoder)1375 static int vc4_dsi_late_register(struct drm_encoder *encoder)
1376 {
1377 struct drm_device *drm = encoder->dev;
1378 struct vc4_dsi *dsi = to_vc4_dsi(encoder);
1379 int ret;
1380
1381 ret = vc4_debugfs_add_regset32(drm->primary, dsi->variant->debugfs_name,
1382 &dsi->regset);
1383 if (ret)
1384 return ret;
1385
1386 return 0;
1387 }
1388
1389 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
1390 .late_register = vc4_dsi_late_register,
1391 };
1392
1393 static const struct vc4_dsi_variant bcm2711_dsi1_variant = {
1394 .port = 1,
1395 .debugfs_name = "dsi1_regs",
1396 .regs = dsi1_regs,
1397 .nregs = ARRAY_SIZE(dsi1_regs),
1398 };
1399
1400 static const struct vc4_dsi_variant bcm2835_dsi0_variant = {
1401 .port = 0,
1402 .debugfs_name = "dsi0_regs",
1403 .regs = dsi0_regs,
1404 .nregs = ARRAY_SIZE(dsi0_regs),
1405 };
1406
1407 static const struct vc4_dsi_variant bcm2835_dsi1_variant = {
1408 .port = 1,
1409 .broken_axi_workaround = true,
1410 .debugfs_name = "dsi1_regs",
1411 .regs = dsi1_regs,
1412 .nregs = ARRAY_SIZE(dsi1_regs),
1413 };
1414
1415 static const struct of_device_id vc4_dsi_dt_match[] = {
1416 { .compatible = "brcm,bcm2711-dsi1", &bcm2711_dsi1_variant },
1417 { .compatible = "brcm,bcm2835-dsi0", &bcm2835_dsi0_variant },
1418 { .compatible = "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant },
1419 {}
1420 };
1421
dsi_handle_error(struct vc4_dsi * dsi,irqreturn_t * ret,u32 stat,u32 bit,const char * type)1422 static void dsi_handle_error(struct vc4_dsi *dsi,
1423 irqreturn_t *ret, u32 stat, u32 bit,
1424 const char *type)
1425 {
1426 if (!(stat & bit))
1427 return;
1428
1429 DRM_ERROR("DSI%d: %s error\n", dsi->variant->port, type);
1430 *ret = IRQ_HANDLED;
1431 }
1432
1433 /*
1434 * Initial handler for port 1 where we need the reg_dma workaround.
1435 * The register DMA writes sleep, so we can't do it in the top half.
1436 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1437 * parent interrupt contrller until our interrupt thread is done.
1438 */
vc4_dsi_irq_defer_to_thread_handler(int irq,void * data)1439 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1440 {
1441 struct vc4_dsi *dsi = data;
1442 u32 stat = DSI_PORT_READ(INT_STAT);
1443
1444 if (!stat)
1445 return IRQ_NONE;
1446
1447 return IRQ_WAKE_THREAD;
1448 }
1449
1450 /*
1451 * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1452 * 1 where we need the reg_dma workaround.
1453 */
vc4_dsi_irq_handler(int irq,void * data)1454 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1455 {
1456 struct vc4_dsi *dsi = data;
1457 u32 stat = DSI_PORT_READ(INT_STAT);
1458 irqreturn_t ret = IRQ_NONE;
1459
1460 DSI_PORT_WRITE(INT_STAT, stat);
1461
1462 dsi_handle_error(dsi, &ret, stat,
1463 DSI_PORT_BIT(INT_ERR_SYNC_ESC), "LPDT sync");
1464 dsi_handle_error(dsi, &ret, stat,
1465 DSI_PORT_BIT(INT_ERR_CONTROL), "data lane 0 sequence");
1466 dsi_handle_error(dsi, &ret, stat,
1467 DSI_PORT_BIT(INT_ERR_CONT_LP0), "LP0 contention");
1468 dsi_handle_error(dsi, &ret, stat,
1469 DSI_PORT_BIT(INT_ERR_CONT_LP1), "LP1 contention");
1470 dsi_handle_error(dsi, &ret, stat,
1471 DSI_PORT_BIT(INT_HSTX_TO), "HSTX timeout");
1472 dsi_handle_error(dsi, &ret, stat,
1473 DSI_PORT_BIT(INT_LPRX_TO), "LPRX timeout");
1474 dsi_handle_error(dsi, &ret, stat,
1475 DSI_PORT_BIT(INT_TA_TO), "turnaround timeout");
1476 dsi_handle_error(dsi, &ret, stat,
1477 DSI_PORT_BIT(INT_PR_TO), "peripheral reset timeout");
1478
1479 if (stat & ((dsi->variant->port ? DSI1_INT_TXPKT1_DONE :
1480 DSI0_INT_CMDC_DONE_MASK) |
1481 DSI_PORT_BIT(INT_PHY_DIR_RTF))) {
1482 complete(&dsi->xfer_completion);
1483 ret = IRQ_HANDLED;
1484 } else if (stat & DSI_PORT_BIT(INT_HSTX_TO)) {
1485 complete(&dsi->xfer_completion);
1486 dsi->xfer_result = -ETIMEDOUT;
1487 ret = IRQ_HANDLED;
1488 }
1489
1490 return ret;
1491 }
1492
1493 /**
1494 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1495 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1496 * @dsi: DSI encoder
1497 */
1498 static int
vc4_dsi_init_phy_clocks(struct vc4_dsi * dsi)1499 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1500 {
1501 struct device *dev = &dsi->pdev->dev;
1502 const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1503 static const struct {
1504 const char *name;
1505 int div;
1506 } phy_clocks[] = {
1507 { "byte", 8 },
1508 { "ddr2", 4 },
1509 { "ddr", 2 },
1510 };
1511 int i;
1512
1513 dsi->clk_onecell = devm_kzalloc(dev,
1514 sizeof(*dsi->clk_onecell) +
1515 ARRAY_SIZE(phy_clocks) *
1516 sizeof(struct clk_hw *),
1517 GFP_KERNEL);
1518 if (!dsi->clk_onecell)
1519 return -ENOMEM;
1520 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1521
1522 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1523 struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1524 struct clk_init_data init;
1525 char clk_name[16];
1526 int ret;
1527
1528 snprintf(clk_name, sizeof(clk_name),
1529 "dsi%u_%s", dsi->variant->port, phy_clocks[i].name);
1530
1531 /* We just use core fixed factor clock ops for the PHY
1532 * clocks. The clocks are actually gated by the
1533 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1534 * setting if we use the DDR/DDR2 clocks. However,
1535 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1536 * setting both our parent DSI PLL's rate and this
1537 * clock's rate, so it knows if DDR/DDR2 are going to
1538 * be used and could enable the gates itself.
1539 */
1540 fix->mult = 1;
1541 fix->div = phy_clocks[i].div;
1542 fix->hw.init = &init;
1543
1544 memset(&init, 0, sizeof(init));
1545 init.parent_names = &parent_name;
1546 init.num_parents = 1;
1547 init.name = clk_name;
1548 init.ops = &clk_fixed_factor_ops;
1549
1550 ret = devm_clk_hw_register(dev, &fix->hw);
1551 if (ret)
1552 return ret;
1553
1554 dsi->clk_onecell->hws[i] = &fix->hw;
1555 }
1556
1557 return of_clk_add_hw_provider(dev->of_node,
1558 of_clk_hw_onecell_get,
1559 dsi->clk_onecell);
1560 }
1561
vc4_dsi_dma_mem_release(void * ptr)1562 static void vc4_dsi_dma_mem_release(void *ptr)
1563 {
1564 struct vc4_dsi *dsi = ptr;
1565 struct device *dev = &dsi->pdev->dev;
1566
1567 dma_free_coherent(dev, 4, dsi->reg_dma_mem, dsi->reg_dma_paddr);
1568 dsi->reg_dma_mem = NULL;
1569 }
1570
vc4_dsi_dma_chan_release(void * ptr)1571 static void vc4_dsi_dma_chan_release(void *ptr)
1572 {
1573 struct vc4_dsi *dsi = ptr;
1574
1575 dma_release_channel(dsi->reg_dma_chan);
1576 dsi->reg_dma_chan = NULL;
1577 }
1578
vc4_dsi_release(struct kref * kref)1579 static void vc4_dsi_release(struct kref *kref)
1580 {
1581 struct vc4_dsi *dsi =
1582 container_of(kref, struct vc4_dsi, kref);
1583
1584 kfree(dsi);
1585 }
1586
vc4_dsi_get(struct vc4_dsi * dsi)1587 static void vc4_dsi_get(struct vc4_dsi *dsi)
1588 {
1589 kref_get(&dsi->kref);
1590 }
1591
vc4_dsi_put(struct vc4_dsi * dsi)1592 static void vc4_dsi_put(struct vc4_dsi *dsi)
1593 {
1594 kref_put(&dsi->kref, &vc4_dsi_release);
1595 }
1596
vc4_dsi_release_action(struct drm_device * drm,void * ptr)1597 static void vc4_dsi_release_action(struct drm_device *drm, void *ptr)
1598 {
1599 struct vc4_dsi *dsi = ptr;
1600
1601 vc4_dsi_put(dsi);
1602 }
1603
vc4_dsi_bind(struct device * dev,struct device * master,void * data)1604 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1605 {
1606 struct platform_device *pdev = to_platform_device(dev);
1607 struct drm_device *drm = dev_get_drvdata(master);
1608 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1609 struct drm_encoder *encoder = &dsi->encoder.base;
1610 int ret;
1611
1612 vc4_dsi_get(dsi);
1613
1614 ret = drmm_add_action_or_reset(drm, vc4_dsi_release_action, dsi);
1615 if (ret)
1616 return ret;
1617
1618 dsi->variant = of_device_get_match_data(dev);
1619
1620 INIT_LIST_HEAD(&dsi->bridge_chain);
1621 dsi->encoder.type = dsi->variant->port ?
1622 VC4_ENCODER_TYPE_DSI1 : VC4_ENCODER_TYPE_DSI0;
1623
1624 dsi->regs = vc4_ioremap_regs(pdev, 0);
1625 if (IS_ERR(dsi->regs))
1626 return PTR_ERR(dsi->regs);
1627
1628 dsi->regset.base = dsi->regs;
1629 dsi->regset.regs = dsi->variant->regs;
1630 dsi->regset.nregs = dsi->variant->nregs;
1631
1632 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1633 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1634 DSI_PORT_READ(ID), DSI_ID_VALUE);
1635 return -ENODEV;
1636 }
1637
1638 /* DSI1 on BCM2835/6/7 has a broken AXI slave that doesn't respond to
1639 * writes from the ARM. It does handle writes from the DMA engine,
1640 * so set up a channel for talking to it.
1641 */
1642 if (dsi->variant->broken_axi_workaround) {
1643 dma_cap_mask_t dma_mask;
1644
1645 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1646 &dsi->reg_dma_paddr,
1647 GFP_KERNEL);
1648 if (!dsi->reg_dma_mem) {
1649 DRM_ERROR("Failed to get DMA memory\n");
1650 return -ENOMEM;
1651 }
1652
1653 ret = devm_add_action_or_reset(dev, vc4_dsi_dma_mem_release, dsi);
1654 if (ret)
1655 return ret;
1656
1657 dma_cap_zero(dma_mask);
1658 dma_cap_set(DMA_MEMCPY, dma_mask);
1659
1660 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1661 if (IS_ERR(dsi->reg_dma_chan)) {
1662 ret = PTR_ERR(dsi->reg_dma_chan);
1663 if (ret != -EPROBE_DEFER)
1664 DRM_ERROR("Failed to get DMA channel: %d\n",
1665 ret);
1666 return ret;
1667 }
1668
1669 ret = devm_add_action_or_reset(dev, vc4_dsi_dma_chan_release, dsi);
1670 if (ret)
1671 return ret;
1672
1673 /* Get the physical address of the device's registers. The
1674 * struct resource for the regs gives us the bus address
1675 * instead.
1676 */
1677 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1678 0, NULL, NULL));
1679 }
1680
1681 init_completion(&dsi->xfer_completion);
1682 /* At startup enable error-reporting interrupts and nothing else. */
1683 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1684 /* Clear any existing interrupt state. */
1685 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1686
1687 if (dsi->reg_dma_mem)
1688 ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1689 vc4_dsi_irq_defer_to_thread_handler,
1690 vc4_dsi_irq_handler,
1691 IRQF_ONESHOT,
1692 "vc4 dsi", dsi);
1693 else
1694 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1695 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1696 if (ret) {
1697 if (ret != -EPROBE_DEFER)
1698 dev_err(dev, "Failed to get interrupt: %d\n", ret);
1699 return ret;
1700 }
1701
1702 dsi->escape_clock = devm_clk_get(dev, "escape");
1703 if (IS_ERR(dsi->escape_clock)) {
1704 ret = PTR_ERR(dsi->escape_clock);
1705 if (ret != -EPROBE_DEFER)
1706 dev_err(dev, "Failed to get escape clock: %d\n", ret);
1707 return ret;
1708 }
1709
1710 dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1711 if (IS_ERR(dsi->pll_phy_clock)) {
1712 ret = PTR_ERR(dsi->pll_phy_clock);
1713 if (ret != -EPROBE_DEFER)
1714 dev_err(dev, "Failed to get phy clock: %d\n", ret);
1715 return ret;
1716 }
1717
1718 dsi->pixel_clock = devm_clk_get(dev, "pixel");
1719 if (IS_ERR(dsi->pixel_clock)) {
1720 ret = PTR_ERR(dsi->pixel_clock);
1721 if (ret != -EPROBE_DEFER)
1722 dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1723 return ret;
1724 }
1725
1726 dsi->bridge = drmm_of_get_bridge(drm, dev->of_node, 0, 0);
1727 if (IS_ERR(dsi->bridge))
1728 return PTR_ERR(dsi->bridge);
1729
1730 /* The esc clock rate is supposed to always be 100Mhz. */
1731 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1732 if (ret) {
1733 dev_err(dev, "Failed to set esc clock: %d\n", ret);
1734 return ret;
1735 }
1736
1737 ret = vc4_dsi_init_phy_clocks(dsi);
1738 if (ret)
1739 return ret;
1740
1741 ret = drmm_encoder_init(drm, encoder,
1742 &vc4_dsi_encoder_funcs,
1743 DRM_MODE_ENCODER_DSI,
1744 NULL);
1745 if (ret)
1746 return ret;
1747
1748 drm_encoder_helper_add(encoder, &vc4_dsi_encoder_helper_funcs);
1749
1750 ret = devm_pm_runtime_enable(dev);
1751 if (ret)
1752 return ret;
1753
1754 ret = drm_bridge_attach(encoder, dsi->bridge, NULL, 0);
1755 if (ret)
1756 return ret;
1757 /* Disable the atomic helper calls into the bridge. We
1758 * manually call the bridge pre_enable / enable / etc. calls
1759 * from our driver, since we need to sequence them within the
1760 * encoder's enable/disable paths.
1761 */
1762 list_splice_init(&encoder->bridge_chain, &dsi->bridge_chain);
1763
1764 return 0;
1765 }
1766
vc4_dsi_unbind(struct device * dev,struct device * master,void * data)1767 static void vc4_dsi_unbind(struct device *dev, struct device *master,
1768 void *data)
1769 {
1770 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1771 struct drm_encoder *encoder = &dsi->encoder.base;
1772
1773 /*
1774 * Restore the bridge_chain so the bridge detach procedure can happen
1775 * normally.
1776 */
1777 list_splice_init(&dsi->bridge_chain, &encoder->bridge_chain);
1778 }
1779
1780 static const struct component_ops vc4_dsi_ops = {
1781 .bind = vc4_dsi_bind,
1782 .unbind = vc4_dsi_unbind,
1783 };
1784
vc4_dsi_dev_probe(struct platform_device * pdev)1785 static int vc4_dsi_dev_probe(struct platform_device *pdev)
1786 {
1787 struct device *dev = &pdev->dev;
1788 struct vc4_dsi *dsi;
1789
1790 dsi = kzalloc(sizeof(*dsi), GFP_KERNEL);
1791 if (!dsi)
1792 return -ENOMEM;
1793 dev_set_drvdata(dev, dsi);
1794
1795 kref_init(&dsi->kref);
1796 dsi->pdev = pdev;
1797 dsi->dsi_host.ops = &vc4_dsi_host_ops;
1798 dsi->dsi_host.dev = dev;
1799 mipi_dsi_host_register(&dsi->dsi_host);
1800
1801 return 0;
1802 }
1803
vc4_dsi_dev_remove(struct platform_device * pdev)1804 static int vc4_dsi_dev_remove(struct platform_device *pdev)
1805 {
1806 struct device *dev = &pdev->dev;
1807 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1808
1809 mipi_dsi_host_unregister(&dsi->dsi_host);
1810 vc4_dsi_put(dsi);
1811
1812 return 0;
1813 }
1814
1815 struct platform_driver vc4_dsi_driver = {
1816 .probe = vc4_dsi_dev_probe,
1817 .remove = vc4_dsi_dev_remove,
1818 .driver = {
1819 .name = "vc4_dsi",
1820 .of_match_table = vc4_dsi_dt_match,
1821 },
1822 };
1823