1 /*
2  * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
3  *
4  * Author: Mike Lavender, mike@steroidmicros.com
5  *
6  * Copyright (c) 2005, Intec Automation Inc.
7  *
8  * Some parts are based on lart.c by Abraham Van Der Merwe
9  *
10  * Cleaned up and generalized based on mtd_dataflash.c
11  *
12  * This code is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  */
17 
18 #include <linux/init.h>
19 #include <linux/err.h>
20 #include <linux/errno.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/interrupt.h>
24 #include <linux/mutex.h>
25 #include <linux/math64.h>
26 #include <linux/slab.h>
27 #include <linux/sched.h>
28 #include <linux/mod_devicetable.h>
29 
30 #include <linux/mtd/cfi.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/of_platform.h>
34 
35 #include <linux/spi/spi.h>
36 #include <linux/spi/flash.h>
37 
38 /* Flash opcodes. */
39 #define	OPCODE_WREN		0x06	/* Write enable */
40 #define	OPCODE_RDSR		0x05	/* Read status register */
41 #define	OPCODE_WRSR		0x01	/* Write status register 1 byte */
42 #define	OPCODE_NORM_READ	0x03	/* Read data bytes (low frequency) */
43 #define	OPCODE_FAST_READ	0x0b	/* Read data bytes (high frequency) */
44 #define	OPCODE_PP		0x02	/* Page program (up to 256 bytes) */
45 #define	OPCODE_BE_4K		0x20	/* Erase 4KiB block */
46 #define	OPCODE_BE_32K		0x52	/* Erase 32KiB block */
47 #define	OPCODE_CHIP_ERASE	0xc7	/* Erase whole flash chip */
48 #define	OPCODE_SE		0xd8	/* Sector erase (usually 64KiB) */
49 #define	OPCODE_RDID		0x9f	/* Read JEDEC ID */
50 
51 /* Used for SST flashes only. */
52 #define	OPCODE_BP		0x02	/* Byte program */
53 #define	OPCODE_WRDI		0x04	/* Write disable */
54 #define	OPCODE_AAI_WP		0xad	/* Auto address increment word program */
55 
56 /* Used for Macronix flashes only. */
57 #define	OPCODE_EN4B		0xb7	/* Enter 4-byte mode */
58 #define	OPCODE_EX4B		0xe9	/* Exit 4-byte mode */
59 
60 /* Used for Spansion flashes only. */
61 #define	OPCODE_BRWR		0x17	/* Bank register write */
62 
63 /* Status Register bits. */
64 #define	SR_WIP			1	/* Write in progress */
65 #define	SR_WEL			2	/* Write enable latch */
66 /* meaning of other SR_* bits may differ between vendors */
67 #define	SR_BP0			4	/* Block protect 0 */
68 #define	SR_BP1			8	/* Block protect 1 */
69 #define	SR_BP2			0x10	/* Block protect 2 */
70 #define	SR_SRWD			0x80	/* SR write protect */
71 
72 /* Define max times to check status register before we give up. */
73 #define	MAX_READY_WAIT_JIFFIES	(40 * HZ)	/* M25P16 specs 40s max chip erase */
74 #define	MAX_CMD_SIZE		6
75 
76 #ifdef CONFIG_M25PXX_USE_FAST_READ
77 #define OPCODE_READ 	OPCODE_FAST_READ
78 #define FAST_READ_DUMMY_BYTE 1
79 #else
80 #define OPCODE_READ 	OPCODE_NORM_READ
81 #define FAST_READ_DUMMY_BYTE 0
82 #endif
83 
84 #define JEDEC_MFR(_jedec_id)	((_jedec_id) >> 16)
85 
86 /****************************************************************************/
87 
88 struct m25p {
89 	struct spi_device	*spi;
90 	struct mutex		lock;
91 	struct mtd_info		mtd;
92 	u16			page_size;
93 	u16			addr_width;
94 	u8			erase_opcode;
95 	u8			*command;
96 };
97 
mtd_to_m25p(struct mtd_info * mtd)98 static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
99 {
100 	return container_of(mtd, struct m25p, mtd);
101 }
102 
103 /****************************************************************************/
104 
105 /*
106  * Internal helper functions
107  */
108 
109 /*
110  * Read the status register, returning its value in the location
111  * Return the status register value.
112  * Returns negative if error occurred.
113  */
read_sr(struct m25p * flash)114 static int read_sr(struct m25p *flash)
115 {
116 	ssize_t retval;
117 	u8 code = OPCODE_RDSR;
118 	u8 val;
119 
120 	retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
121 
122 	if (retval < 0) {
123 		dev_err(&flash->spi->dev, "error %d reading SR\n",
124 				(int) retval);
125 		return retval;
126 	}
127 
128 	return val;
129 }
130 
131 /*
132  * Write status register 1 byte
133  * Returns negative if error occurred.
134  */
write_sr(struct m25p * flash,u8 val)135 static int write_sr(struct m25p *flash, u8 val)
136 {
137 	flash->command[0] = OPCODE_WRSR;
138 	flash->command[1] = val;
139 
140 	return spi_write(flash->spi, flash->command, 2);
141 }
142 
143 /*
144  * Set write enable latch with Write Enable command.
145  * Returns negative if error occurred.
146  */
write_enable(struct m25p * flash)147 static inline int write_enable(struct m25p *flash)
148 {
149 	u8	code = OPCODE_WREN;
150 
151 	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
152 }
153 
154 /*
155  * Send write disble instruction to the chip.
156  */
write_disable(struct m25p * flash)157 static inline int write_disable(struct m25p *flash)
158 {
159 	u8	code = OPCODE_WRDI;
160 
161 	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
162 }
163 
164 /*
165  * Enable/disable 4-byte addressing mode.
166  */
set_4byte(struct m25p * flash,u32 jedec_id,int enable)167 static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
168 {
169 	switch (JEDEC_MFR(jedec_id)) {
170 	case CFI_MFR_MACRONIX:
171 		flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
172 		return spi_write(flash->spi, flash->command, 1);
173 	default:
174 		/* Spansion style */
175 		flash->command[0] = OPCODE_BRWR;
176 		flash->command[1] = enable << 7;
177 		return spi_write(flash->spi, flash->command, 2);
178 	}
179 }
180 
181 /*
182  * Service routine to read status register until ready, or timeout occurs.
183  * Returns non-zero if error.
184  */
wait_till_ready(struct m25p * flash)185 static int wait_till_ready(struct m25p *flash)
186 {
187 	unsigned long deadline;
188 	int sr;
189 
190 	deadline = jiffies + MAX_READY_WAIT_JIFFIES;
191 
192 	do {
193 		if ((sr = read_sr(flash)) < 0)
194 			break;
195 		else if (!(sr & SR_WIP))
196 			return 0;
197 
198 		cond_resched();
199 
200 	} while (!time_after_eq(jiffies, deadline));
201 
202 	return 1;
203 }
204 
205 /*
206  * Erase the whole flash memory
207  *
208  * Returns 0 if successful, non-zero otherwise.
209  */
erase_chip(struct m25p * flash)210 static int erase_chip(struct m25p *flash)
211 {
212 	pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__,
213 			(long long)(flash->mtd.size >> 10));
214 
215 	/* Wait until finished previous write command. */
216 	if (wait_till_ready(flash))
217 		return 1;
218 
219 	/* Send write enable, then erase commands. */
220 	write_enable(flash);
221 
222 	/* Set up command buffer. */
223 	flash->command[0] = OPCODE_CHIP_ERASE;
224 
225 	spi_write(flash->spi, flash->command, 1);
226 
227 	return 0;
228 }
229 
m25p_addr2cmd(struct m25p * flash,unsigned int addr,u8 * cmd)230 static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
231 {
232 	/* opcode is in cmd[0] */
233 	cmd[1] = addr >> (flash->addr_width * 8 -  8);
234 	cmd[2] = addr >> (flash->addr_width * 8 - 16);
235 	cmd[3] = addr >> (flash->addr_width * 8 - 24);
236 	cmd[4] = addr >> (flash->addr_width * 8 - 32);
237 }
238 
m25p_cmdsz(struct m25p * flash)239 static int m25p_cmdsz(struct m25p *flash)
240 {
241 	return 1 + flash->addr_width;
242 }
243 
244 /*
245  * Erase one sector of flash memory at offset ``offset'' which is any
246  * address within the sector which should be erased.
247  *
248  * Returns 0 if successful, non-zero otherwise.
249  */
erase_sector(struct m25p * flash,u32 offset)250 static int erase_sector(struct m25p *flash, u32 offset)
251 {
252 	pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev),
253 			__func__, flash->mtd.erasesize / 1024, offset);
254 
255 	/* Wait until finished previous write command. */
256 	if (wait_till_ready(flash))
257 		return 1;
258 
259 	/* Send write enable, then erase commands. */
260 	write_enable(flash);
261 
262 	/* Set up command buffer. */
263 	flash->command[0] = flash->erase_opcode;
264 	m25p_addr2cmd(flash, offset, flash->command);
265 
266 	spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
267 
268 	return 0;
269 }
270 
271 /****************************************************************************/
272 
273 /*
274  * MTD implementation
275  */
276 
277 /*
278  * Erase an address range on the flash chip.  The address range may extend
279  * one or more erase sectors.  Return an error is there is a problem erasing.
280  */
m25p80_erase(struct mtd_info * mtd,struct erase_info * instr)281 static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
282 {
283 	struct m25p *flash = mtd_to_m25p(mtd);
284 	u32 addr,len;
285 	uint32_t rem;
286 
287 	pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev),
288 			__func__, (long long)instr->addr,
289 			(long long)instr->len);
290 
291 	div_u64_rem(instr->len, mtd->erasesize, &rem);
292 	if (rem)
293 		return -EINVAL;
294 
295 	addr = instr->addr;
296 	len = instr->len;
297 
298 	mutex_lock(&flash->lock);
299 
300 	/* whole-chip erase? */
301 	if (len == flash->mtd.size) {
302 		if (erase_chip(flash)) {
303 			instr->state = MTD_ERASE_FAILED;
304 			mutex_unlock(&flash->lock);
305 			return -EIO;
306 		}
307 
308 	/* REVISIT in some cases we could speed up erasing large regions
309 	 * by using OPCODE_SE instead of OPCODE_BE_4K.  We may have set up
310 	 * to use "small sector erase", but that's not always optimal.
311 	 */
312 
313 	/* "sector"-at-a-time erase */
314 	} else {
315 		while (len) {
316 			if (erase_sector(flash, addr)) {
317 				instr->state = MTD_ERASE_FAILED;
318 				mutex_unlock(&flash->lock);
319 				return -EIO;
320 			}
321 
322 			addr += mtd->erasesize;
323 			len -= mtd->erasesize;
324 		}
325 	}
326 
327 	mutex_unlock(&flash->lock);
328 
329 	instr->state = MTD_ERASE_DONE;
330 	mtd_erase_callback(instr);
331 
332 	return 0;
333 }
334 
335 /*
336  * Read an address range from the flash chip.  The address range
337  * may be any size provided it is within the physical boundaries.
338  */
m25p80_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)339 static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
340 	size_t *retlen, u_char *buf)
341 {
342 	struct m25p *flash = mtd_to_m25p(mtd);
343 	struct spi_transfer t[2];
344 	struct spi_message m;
345 
346 	pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
347 			__func__, (u32)from, len);
348 
349 	spi_message_init(&m);
350 	memset(t, 0, (sizeof t));
351 
352 	/* NOTE:
353 	 * OPCODE_FAST_READ (if available) is faster.
354 	 * Should add 1 byte DUMMY_BYTE.
355 	 */
356 	t[0].tx_buf = flash->command;
357 	t[0].len = m25p_cmdsz(flash) + FAST_READ_DUMMY_BYTE;
358 	spi_message_add_tail(&t[0], &m);
359 
360 	t[1].rx_buf = buf;
361 	t[1].len = len;
362 	spi_message_add_tail(&t[1], &m);
363 
364 	mutex_lock(&flash->lock);
365 
366 	/* Wait till previous write/erase is done. */
367 	if (wait_till_ready(flash)) {
368 		/* REVISIT status return?? */
369 		mutex_unlock(&flash->lock);
370 		return 1;
371 	}
372 
373 	/* FIXME switch to OPCODE_FAST_READ.  It's required for higher
374 	 * clocks; and at this writing, every chip this driver handles
375 	 * supports that opcode.
376 	 */
377 
378 	/* Set up the write data buffer. */
379 	flash->command[0] = OPCODE_READ;
380 	m25p_addr2cmd(flash, from, flash->command);
381 
382 	spi_sync(flash->spi, &m);
383 
384 	*retlen = m.actual_length - m25p_cmdsz(flash) - FAST_READ_DUMMY_BYTE;
385 
386 	mutex_unlock(&flash->lock);
387 
388 	return 0;
389 }
390 
391 /*
392  * Write an address range to the flash chip.  Data must be written in
393  * FLASH_PAGESIZE chunks.  The address range may be any size provided
394  * it is within the physical boundaries.
395  */
m25p80_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)396 static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
397 	size_t *retlen, const u_char *buf)
398 {
399 	struct m25p *flash = mtd_to_m25p(mtd);
400 	u32 page_offset, page_size;
401 	struct spi_transfer t[2];
402 	struct spi_message m;
403 
404 	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
405 			__func__, (u32)to, len);
406 
407 	spi_message_init(&m);
408 	memset(t, 0, (sizeof t));
409 
410 	t[0].tx_buf = flash->command;
411 	t[0].len = m25p_cmdsz(flash);
412 	spi_message_add_tail(&t[0], &m);
413 
414 	t[1].tx_buf = buf;
415 	spi_message_add_tail(&t[1], &m);
416 
417 	mutex_lock(&flash->lock);
418 
419 	/* Wait until finished previous write command. */
420 	if (wait_till_ready(flash)) {
421 		mutex_unlock(&flash->lock);
422 		return 1;
423 	}
424 
425 	write_enable(flash);
426 
427 	/* Set up the opcode in the write buffer. */
428 	flash->command[0] = OPCODE_PP;
429 	m25p_addr2cmd(flash, to, flash->command);
430 
431 	page_offset = to & (flash->page_size - 1);
432 
433 	/* do all the bytes fit onto one page? */
434 	if (page_offset + len <= flash->page_size) {
435 		t[1].len = len;
436 
437 		spi_sync(flash->spi, &m);
438 
439 		*retlen = m.actual_length - m25p_cmdsz(flash);
440 	} else {
441 		u32 i;
442 
443 		/* the size of data remaining on the first page */
444 		page_size = flash->page_size - page_offset;
445 
446 		t[1].len = page_size;
447 		spi_sync(flash->spi, &m);
448 
449 		*retlen = m.actual_length - m25p_cmdsz(flash);
450 
451 		/* write everything in flash->page_size chunks */
452 		for (i = page_size; i < len; i += page_size) {
453 			page_size = len - i;
454 			if (page_size > flash->page_size)
455 				page_size = flash->page_size;
456 
457 			/* write the next page to flash */
458 			m25p_addr2cmd(flash, to + i, flash->command);
459 
460 			t[1].tx_buf = buf + i;
461 			t[1].len = page_size;
462 
463 			wait_till_ready(flash);
464 
465 			write_enable(flash);
466 
467 			spi_sync(flash->spi, &m);
468 
469 			*retlen += m.actual_length - m25p_cmdsz(flash);
470 		}
471 	}
472 
473 	mutex_unlock(&flash->lock);
474 
475 	return 0;
476 }
477 
sst_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)478 static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
479 		size_t *retlen, const u_char *buf)
480 {
481 	struct m25p *flash = mtd_to_m25p(mtd);
482 	struct spi_transfer t[2];
483 	struct spi_message m;
484 	size_t actual;
485 	int cmd_sz, ret;
486 
487 	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
488 			__func__, (u32)to, len);
489 
490 	spi_message_init(&m);
491 	memset(t, 0, (sizeof t));
492 
493 	t[0].tx_buf = flash->command;
494 	t[0].len = m25p_cmdsz(flash);
495 	spi_message_add_tail(&t[0], &m);
496 
497 	t[1].tx_buf = buf;
498 	spi_message_add_tail(&t[1], &m);
499 
500 	mutex_lock(&flash->lock);
501 
502 	/* Wait until finished previous write command. */
503 	ret = wait_till_ready(flash);
504 	if (ret)
505 		goto time_out;
506 
507 	write_enable(flash);
508 
509 	actual = to % 2;
510 	/* Start write from odd address. */
511 	if (actual) {
512 		flash->command[0] = OPCODE_BP;
513 		m25p_addr2cmd(flash, to, flash->command);
514 
515 		/* write one byte. */
516 		t[1].len = 1;
517 		spi_sync(flash->spi, &m);
518 		ret = wait_till_ready(flash);
519 		if (ret)
520 			goto time_out;
521 		*retlen += m.actual_length - m25p_cmdsz(flash);
522 	}
523 	to += actual;
524 
525 	flash->command[0] = OPCODE_AAI_WP;
526 	m25p_addr2cmd(flash, to, flash->command);
527 
528 	/* Write out most of the data here. */
529 	cmd_sz = m25p_cmdsz(flash);
530 	for (; actual < len - 1; actual += 2) {
531 		t[0].len = cmd_sz;
532 		/* write two bytes. */
533 		t[1].len = 2;
534 		t[1].tx_buf = buf + actual;
535 
536 		spi_sync(flash->spi, &m);
537 		ret = wait_till_ready(flash);
538 		if (ret)
539 			goto time_out;
540 		*retlen += m.actual_length - cmd_sz;
541 		cmd_sz = 1;
542 		to += 2;
543 	}
544 	write_disable(flash);
545 	ret = wait_till_ready(flash);
546 	if (ret)
547 		goto time_out;
548 
549 	/* Write out trailing byte if it exists. */
550 	if (actual != len) {
551 		write_enable(flash);
552 		flash->command[0] = OPCODE_BP;
553 		m25p_addr2cmd(flash, to, flash->command);
554 		t[0].len = m25p_cmdsz(flash);
555 		t[1].len = 1;
556 		t[1].tx_buf = buf + actual;
557 
558 		spi_sync(flash->spi, &m);
559 		ret = wait_till_ready(flash);
560 		if (ret)
561 			goto time_out;
562 		*retlen += m.actual_length - m25p_cmdsz(flash);
563 		write_disable(flash);
564 	}
565 
566 time_out:
567 	mutex_unlock(&flash->lock);
568 	return ret;
569 }
570 
571 /****************************************************************************/
572 
573 /*
574  * SPI device driver setup and teardown
575  */
576 
577 struct flash_info {
578 	/* JEDEC id zero means "no ID" (most older chips); otherwise it has
579 	 * a high byte of zero plus three data bytes: the manufacturer id,
580 	 * then a two byte device id.
581 	 */
582 	u32		jedec_id;
583 	u16             ext_id;
584 
585 	/* The size listed here is what works with OPCODE_SE, which isn't
586 	 * necessarily called a "sector" by the vendor.
587 	 */
588 	unsigned	sector_size;
589 	u16		n_sectors;
590 
591 	u16		page_size;
592 	u16		addr_width;
593 
594 	u16		flags;
595 #define	SECT_4K		0x01		/* OPCODE_BE_4K works uniformly */
596 #define	M25P_NO_ERASE	0x02		/* No erase command needed */
597 };
598 
599 #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
600 	((kernel_ulong_t)&(struct flash_info) {				\
601 		.jedec_id = (_jedec_id),				\
602 		.ext_id = (_ext_id),					\
603 		.sector_size = (_sector_size),				\
604 		.n_sectors = (_n_sectors),				\
605 		.page_size = 256,					\
606 		.flags = (_flags),					\
607 	})
608 
609 #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width)	\
610 	((kernel_ulong_t)&(struct flash_info) {				\
611 		.sector_size = (_sector_size),				\
612 		.n_sectors = (_n_sectors),				\
613 		.page_size = (_page_size),				\
614 		.addr_width = (_addr_width),				\
615 		.flags = M25P_NO_ERASE,					\
616 	})
617 
618 /* NOTE: double check command sets and memory organization when you add
619  * more flash chips.  This current list focusses on newer chips, which
620  * have been converging on command sets which including JEDEC ID.
621  */
622 static const struct spi_device_id m25p_ids[] = {
623 	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
624 	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
625 	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
626 
627 	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
628 	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
629 	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
630 
631 	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
632 	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
633 	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
634 	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
635 
636 	/* EON -- en25xxx */
637 	{ "en25f32", INFO(0x1c3116, 0, 64 * 1024,  64, SECT_4K) },
638 	{ "en25p32", INFO(0x1c2016, 0, 64 * 1024,  64, 0) },
639 	{ "en25q32b", INFO(0x1c3016, 0, 64 * 1024,  64, 0) },
640 	{ "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
641 
642 	/* Intel/Numonyx -- xxxs33b */
643 	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
644 	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
645 	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },
646 
647 	/* Macronix */
648 	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
649 	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
650 	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
651 	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
652 	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
653 	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
654 	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
655 	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
656 	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
657 
658 	/* Spansion -- single (large) sector size only, at least
659 	 * for the chips listed here (without boot sectors).
660 	 */
661 	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
662 	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
663 	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
664 	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
665 	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SECT_4K) },
666 	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
667 	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
668 	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, 0) },
669 	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
670 	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
671 	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
672 	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
673 	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) },
674 	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) },
675 	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K) },
676 	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
677 
678 	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
679 	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K) },
680 	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) },
681 	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) },
682 	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) },
683 	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K) },
684 	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K) },
685 	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K) },
686 	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K) },
687 
688 	/* ST Microelectronics -- newer production may have feature updates */
689 	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
690 	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
691 	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
692 	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
693 	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
694 	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
695 	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
696 	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
697 	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },
698 
699 	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
700 	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
701 	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
702 	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
703 	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
704 	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
705 	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
706 	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
707 	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },
708 
709 	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
710 	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
711 	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },
712 
713 	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
714 	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
715 
716 	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
717 	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
718 	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
719 	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
720 
721 	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
722 	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
723 	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
724 	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
725 	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
726 	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
727 	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
728 	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
729 	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
730 	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
731 
732 	/* Catalyst / On Semiconductor -- non-JEDEC */
733 	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1) },
734 	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2) },
735 	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
736 	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
737 	{ "cat25128", CAT25_INFO(2048, 8, 64, 2) },
738 	{ },
739 };
740 MODULE_DEVICE_TABLE(spi, m25p_ids);
741 
jedec_probe(struct spi_device * spi)742 static const struct spi_device_id *__devinit jedec_probe(struct spi_device *spi)
743 {
744 	int			tmp;
745 	u8			code = OPCODE_RDID;
746 	u8			id[5];
747 	u32			jedec;
748 	u16                     ext_jedec;
749 	struct flash_info	*info;
750 
751 	/* JEDEC also defines an optional "extended device information"
752 	 * string for after vendor-specific data, after the three bytes
753 	 * we use here.  Supporting some chips might require using it.
754 	 */
755 	tmp = spi_write_then_read(spi, &code, 1, id, 5);
756 	if (tmp < 0) {
757 		pr_debug("%s: error %d reading JEDEC ID\n",
758 				dev_name(&spi->dev), tmp);
759 		return ERR_PTR(tmp);
760 	}
761 	jedec = id[0];
762 	jedec = jedec << 8;
763 	jedec |= id[1];
764 	jedec = jedec << 8;
765 	jedec |= id[2];
766 
767 	ext_jedec = id[3] << 8 | id[4];
768 
769 	for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
770 		info = (void *)m25p_ids[tmp].driver_data;
771 		if (info->jedec_id == jedec) {
772 			if (info->ext_id != 0 && info->ext_id != ext_jedec)
773 				continue;
774 			return &m25p_ids[tmp];
775 		}
776 	}
777 	dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
778 	return ERR_PTR(-ENODEV);
779 }
780 
781 
782 /*
783  * board specific setup should have ensured the SPI clock used here
784  * matches what the READ command supports, at least until this driver
785  * understands FAST_READ (for clocks over 25 MHz).
786  */
m25p_probe(struct spi_device * spi)787 static int __devinit m25p_probe(struct spi_device *spi)
788 {
789 	const struct spi_device_id	*id = spi_get_device_id(spi);
790 	struct flash_platform_data	*data;
791 	struct m25p			*flash;
792 	struct flash_info		*info;
793 	unsigned			i;
794 	struct mtd_part_parser_data	ppdata;
795 
796 #ifdef CONFIG_MTD_OF_PARTS
797 	if (!of_device_is_available(spi->dev.of_node))
798 		return -ENODEV;
799 #endif
800 
801 	/* Platform data helps sort out which chip type we have, as
802 	 * well as how this board partitions it.  If we don't have
803 	 * a chip ID, try the JEDEC id commands; they'll work for most
804 	 * newer chips, even if we don't recognize the particular chip.
805 	 */
806 	data = spi->dev.platform_data;
807 	if (data && data->type) {
808 		const struct spi_device_id *plat_id;
809 
810 		for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
811 			plat_id = &m25p_ids[i];
812 			if (strcmp(data->type, plat_id->name))
813 				continue;
814 			break;
815 		}
816 
817 		if (i < ARRAY_SIZE(m25p_ids) - 1)
818 			id = plat_id;
819 		else
820 			dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
821 	}
822 
823 	info = (void *)id->driver_data;
824 
825 	if (info->jedec_id) {
826 		const struct spi_device_id *jid;
827 
828 		jid = jedec_probe(spi);
829 		if (IS_ERR(jid)) {
830 			return PTR_ERR(jid);
831 		} else if (jid != id) {
832 			/*
833 			 * JEDEC knows better, so overwrite platform ID. We
834 			 * can't trust partitions any longer, but we'll let
835 			 * mtd apply them anyway, since some partitions may be
836 			 * marked read-only, and we don't want to lose that
837 			 * information, even if it's not 100% accurate.
838 			 */
839 			dev_warn(&spi->dev, "found %s, expected %s\n",
840 				 jid->name, id->name);
841 			id = jid;
842 			info = (void *)jid->driver_data;
843 		}
844 	}
845 
846 	flash = devm_kzalloc(&spi->dev, sizeof(*flash), GFP_KERNEL);
847 	if (!flash)
848 		return -ENOMEM;
849 
850 	flash->command = devm_kzalloc(&spi->dev, MAX_CMD_SIZE, GFP_KERNEL);
851 	if (!flash->command)
852 		return -ENOMEM;
853 
854 	flash->spi = spi;
855 	mutex_init(&flash->lock);
856 	dev_set_drvdata(&spi->dev, flash);
857 
858 	/*
859 	 * Atmel, SST and Intel/Numonyx serial flash tend to power
860 	 * up with the software protection bits set
861 	 */
862 
863 	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
864 	    JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
865 	    JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
866 		write_enable(flash);
867 		write_sr(flash, 0);
868 	}
869 
870 	if (data && data->name)
871 		flash->mtd.name = data->name;
872 	else
873 		flash->mtd.name = dev_name(&spi->dev);
874 
875 	flash->mtd.type = MTD_NORFLASH;
876 	flash->mtd.writesize = 1;
877 	flash->mtd.flags = MTD_CAP_NORFLASH;
878 	flash->mtd.size = info->sector_size * info->n_sectors;
879 	flash->mtd._erase = m25p80_erase;
880 	flash->mtd._read = m25p80_read;
881 
882 	/* sst flash chips use AAI word program */
883 	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_SST)
884 		flash->mtd._write = sst_write;
885 	else
886 		flash->mtd._write = m25p80_write;
887 
888 	/* prefer "small sector" erase if possible */
889 	if (info->flags & SECT_4K) {
890 		flash->erase_opcode = OPCODE_BE_4K;
891 		flash->mtd.erasesize = 4096;
892 	} else {
893 		flash->erase_opcode = OPCODE_SE;
894 		flash->mtd.erasesize = info->sector_size;
895 	}
896 
897 	if (info->flags & M25P_NO_ERASE)
898 		flash->mtd.flags |= MTD_NO_ERASE;
899 
900 	ppdata.of_node = spi->dev.of_node;
901 	flash->mtd.dev.parent = &spi->dev;
902 	flash->page_size = info->page_size;
903 	flash->mtd.writebufsize = flash->page_size;
904 
905 	if (info->addr_width)
906 		flash->addr_width = info->addr_width;
907 	else {
908 		/* enable 4-byte addressing if the device exceeds 16MiB */
909 		if (flash->mtd.size > 0x1000000) {
910 			flash->addr_width = 4;
911 			set_4byte(flash, info->jedec_id, 1);
912 		} else
913 			flash->addr_width = 3;
914 	}
915 
916 	dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
917 			(long long)flash->mtd.size >> 10);
918 
919 	pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
920 			".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
921 		flash->mtd.name,
922 		(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
923 		flash->mtd.erasesize, flash->mtd.erasesize / 1024,
924 		flash->mtd.numeraseregions);
925 
926 	if (flash->mtd.numeraseregions)
927 		for (i = 0; i < flash->mtd.numeraseregions; i++)
928 			pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
929 				".erasesize = 0x%.8x (%uKiB), "
930 				".numblocks = %d }\n",
931 				i, (long long)flash->mtd.eraseregions[i].offset,
932 				flash->mtd.eraseregions[i].erasesize,
933 				flash->mtd.eraseregions[i].erasesize / 1024,
934 				flash->mtd.eraseregions[i].numblocks);
935 
936 
937 	/* partitions should match sector boundaries; and it may be good to
938 	 * use readonly partitions for writeprotected sectors (BP2..BP0).
939 	 */
940 	return mtd_device_parse_register(&flash->mtd, NULL, &ppdata,
941 			data ? data->parts : NULL,
942 			data ? data->nr_parts : 0);
943 }
944 
945 
m25p_remove(struct spi_device * spi)946 static int __devexit m25p_remove(struct spi_device *spi)
947 {
948 	struct m25p	*flash = dev_get_drvdata(&spi->dev);
949 
950 	/* Clean up MTD stuff. */
951 	mtd_device_unregister(&flash->mtd);
952 
953 	return 0;
954 }
955 
956 
957 static struct spi_driver m25p80_driver = {
958 	.driver = {
959 		.name	= "m25p80",
960 		.owner	= THIS_MODULE,
961 	},
962 	.id_table	= m25p_ids,
963 	.probe	= m25p_probe,
964 	.remove	= __devexit_p(m25p_remove),
965 
966 	/* REVISIT: many of these chips have deep power-down modes, which
967 	 * should clearly be entered on suspend() to minimize power use.
968 	 * And also when they're otherwise idle...
969 	 */
970 };
971 
972 module_spi_driver(m25p80_driver);
973 
974 MODULE_LICENSE("GPL");
975 MODULE_AUTHOR("Mike Lavender");
976 MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");
977