/* * MTD SPI driver for ST M25Pxx (and similar) serial flash chips * * Author: Mike Lavender, mike@steroidmicros.com * * Copyright (c) 2005, Intec Automation Inc. * * Some parts are based on lart.c by Abraham Van Der Merwe * * Cleaned up and generalized based on mtd_dataflash.c * * This code is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Flash opcodes. */ #define OPCODE_WREN 0x06 /* Write enable */ #define OPCODE_RDSR 0x05 /* Read status register */ #define OPCODE_WRSR 0x01 /* Write status register 1 byte */ #define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */ #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */ #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */ #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */ #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */ #define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */ #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */ #define OPCODE_RDID 0x9f /* Read JEDEC ID */ /* Used for SST flashes only. */ #define OPCODE_BP 0x02 /* Byte program */ #define OPCODE_WRDI 0x04 /* Write disable */ #define OPCODE_AAI_WP 0xad /* Auto address increment word program */ /* Used for Macronix flashes only. */ #define OPCODE_EN4B 0xb7 /* Enter 4-byte mode */ #define OPCODE_EX4B 0xe9 /* Exit 4-byte mode */ /* Used for Spansion flashes only. */ #define OPCODE_BRWR 0x17 /* Bank register write */ /* Status Register bits. */ #define SR_WIP 1 /* Write in progress */ #define SR_WEL 2 /* Write enable latch */ /* meaning of other SR_* bits may differ between vendors */ #define SR_BP0 4 /* Block protect 0 */ #define SR_BP1 8 /* Block protect 1 */ #define SR_BP2 0x10 /* Block protect 2 */ #define SR_SRWD 0x80 /* SR write protect */ /* Define max times to check status register before we give up. */ #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */ #define MAX_CMD_SIZE 6 #ifdef CONFIG_M25PXX_USE_FAST_READ #define OPCODE_READ OPCODE_FAST_READ #define FAST_READ_DUMMY_BYTE 1 #else #define OPCODE_READ OPCODE_NORM_READ #define FAST_READ_DUMMY_BYTE 0 #endif #define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16) /****************************************************************************/ struct m25p { struct spi_device *spi; struct mutex lock; struct mtd_info mtd; u16 page_size; u16 addr_width; u8 erase_opcode; u8 *command; }; static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd) { return container_of(mtd, struct m25p, mtd); } /****************************************************************************/ /* * Internal helper functions */ /* * Read the status register, returning its value in the location * Return the status register value. * Returns negative if error occurred. */ static int read_sr(struct m25p *flash) { ssize_t retval; u8 code = OPCODE_RDSR; u8 val; retval = spi_write_then_read(flash->spi, &code, 1, &val, 1); if (retval < 0) { dev_err(&flash->spi->dev, "error %d reading SR\n", (int) retval); return retval; } return val; } /* * Write status register 1 byte * Returns negative if error occurred. */ static int write_sr(struct m25p *flash, u8 val) { flash->command[0] = OPCODE_WRSR; flash->command[1] = val; return spi_write(flash->spi, flash->command, 2); } /* * Set write enable latch with Write Enable command. * Returns negative if error occurred. */ static inline int write_enable(struct m25p *flash) { u8 code = OPCODE_WREN; return spi_write_then_read(flash->spi, &code, 1, NULL, 0); } /* * Send write disble instruction to the chip. */ static inline int write_disable(struct m25p *flash) { u8 code = OPCODE_WRDI; return spi_write_then_read(flash->spi, &code, 1, NULL, 0); } /* * Enable/disable 4-byte addressing mode. */ static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable) { switch (JEDEC_MFR(jedec_id)) { case CFI_MFR_MACRONIX: flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B; return spi_write(flash->spi, flash->command, 1); default: /* Spansion style */ flash->command[0] = OPCODE_BRWR; flash->command[1] = enable << 7; return spi_write(flash->spi, flash->command, 2); } } /* * Service routine to read status register until ready, or timeout occurs. * Returns non-zero if error. */ static int wait_till_ready(struct m25p *flash) { unsigned long deadline; int sr; deadline = jiffies + MAX_READY_WAIT_JIFFIES; do { if ((sr = read_sr(flash)) < 0) break; else if (!(sr & SR_WIP)) return 0; cond_resched(); } while (!time_after_eq(jiffies, deadline)); return 1; } /* * Erase the whole flash memory * * Returns 0 if successful, non-zero otherwise. */ static int erase_chip(struct m25p *flash) { pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__, (long long)(flash->mtd.size >> 10)); /* Wait until finished previous write command. */ if (wait_till_ready(flash)) return 1; /* Send write enable, then erase commands. */ write_enable(flash); /* Set up command buffer. */ flash->command[0] = OPCODE_CHIP_ERASE; spi_write(flash->spi, flash->command, 1); return 0; } static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd) { /* opcode is in cmd[0] */ cmd[1] = addr >> (flash->addr_width * 8 - 8); cmd[2] = addr >> (flash->addr_width * 8 - 16); cmd[3] = addr >> (flash->addr_width * 8 - 24); cmd[4] = addr >> (flash->addr_width * 8 - 32); } static int m25p_cmdsz(struct m25p *flash) { return 1 + flash->addr_width; } /* * Erase one sector of flash memory at offset ``offset'' which is any * address within the sector which should be erased. * * Returns 0 if successful, non-zero otherwise. */ static int erase_sector(struct m25p *flash, u32 offset) { pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev), __func__, flash->mtd.erasesize / 1024, offset); /* Wait until finished previous write command. */ if (wait_till_ready(flash)) return 1; /* Send write enable, then erase commands. */ write_enable(flash); /* Set up command buffer. */ flash->command[0] = flash->erase_opcode; m25p_addr2cmd(flash, offset, flash->command); spi_write(flash->spi, flash->command, m25p_cmdsz(flash)); return 0; } /****************************************************************************/ /* * MTD implementation */ /* * Erase an address range on the flash chip. The address range may extend * one or more erase sectors. Return an error is there is a problem erasing. */ static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr) { struct m25p *flash = mtd_to_m25p(mtd); u32 addr,len; uint32_t rem; pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev), __func__, (long long)instr->addr, (long long)instr->len); div_u64_rem(instr->len, mtd->erasesize, &rem); if (rem) return -EINVAL; addr = instr->addr; len = instr->len; mutex_lock(&flash->lock); /* whole-chip erase? */ if (len == flash->mtd.size) { if (erase_chip(flash)) { instr->state = MTD_ERASE_FAILED; mutex_unlock(&flash->lock); return -EIO; } /* REVISIT in some cases we could speed up erasing large regions * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up * to use "small sector erase", but that's not always optimal. */ /* "sector"-at-a-time erase */ } else { while (len) { if (erase_sector(flash, addr)) { instr->state = MTD_ERASE_FAILED; mutex_unlock(&flash->lock); return -EIO; } addr += mtd->erasesize; len -= mtd->erasesize; } } mutex_unlock(&flash->lock); instr->state = MTD_ERASE_DONE; mtd_erase_callback(instr); return 0; } /* * Read an address range from the flash chip. The address range * may be any size provided it is within the physical boundaries. */ static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct m25p *flash = mtd_to_m25p(mtd); struct spi_transfer t[2]; struct spi_message m; pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev), __func__, (u32)from, len); spi_message_init(&m); memset(t, 0, (sizeof t)); /* NOTE: * OPCODE_FAST_READ (if available) is faster. * Should add 1 byte DUMMY_BYTE. */ t[0].tx_buf = flash->command; t[0].len = m25p_cmdsz(flash) + FAST_READ_DUMMY_BYTE; spi_message_add_tail(&t[0], &m); t[1].rx_buf = buf; t[1].len = len; spi_message_add_tail(&t[1], &m); mutex_lock(&flash->lock); /* Wait till previous write/erase is done. */ if (wait_till_ready(flash)) { /* REVISIT status return?? */ mutex_unlock(&flash->lock); return 1; } /* FIXME switch to OPCODE_FAST_READ. It's required for higher * clocks; and at this writing, every chip this driver handles * supports that opcode. */ /* Set up the write data buffer. */ flash->command[0] = OPCODE_READ; m25p_addr2cmd(flash, from, flash->command); spi_sync(flash->spi, &m); *retlen = m.actual_length - m25p_cmdsz(flash) - FAST_READ_DUMMY_BYTE; mutex_unlock(&flash->lock); return 0; } /* * Write an address range to the flash chip. Data must be written in * FLASH_PAGESIZE chunks. The address range may be any size provided * it is within the physical boundaries. */ static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct m25p *flash = mtd_to_m25p(mtd); u32 page_offset, page_size; struct spi_transfer t[2]; struct spi_message m; pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev), __func__, (u32)to, len); spi_message_init(&m); memset(t, 0, (sizeof t)); t[0].tx_buf = flash->command; t[0].len = m25p_cmdsz(flash); spi_message_add_tail(&t[0], &m); t[1].tx_buf = buf; spi_message_add_tail(&t[1], &m); mutex_lock(&flash->lock); /* Wait until finished previous write command. */ if (wait_till_ready(flash)) { mutex_unlock(&flash->lock); return 1; } write_enable(flash); /* Set up the opcode in the write buffer. */ flash->command[0] = OPCODE_PP; m25p_addr2cmd(flash, to, flash->command); page_offset = to & (flash->page_size - 1); /* do all the bytes fit onto one page? */ if (page_offset + len <= flash->page_size) { t[1].len = len; spi_sync(flash->spi, &m); *retlen = m.actual_length - m25p_cmdsz(flash); } else { u32 i; /* the size of data remaining on the first page */ page_size = flash->page_size - page_offset; t[1].len = page_size; spi_sync(flash->spi, &m); *retlen = m.actual_length - m25p_cmdsz(flash); /* write everything in flash->page_size chunks */ for (i = page_size; i < len; i += page_size) { page_size = len - i; if (page_size > flash->page_size) page_size = flash->page_size; /* write the next page to flash */ m25p_addr2cmd(flash, to + i, flash->command); t[1].tx_buf = buf + i; t[1].len = page_size; wait_till_ready(flash); write_enable(flash); spi_sync(flash->spi, &m); *retlen += m.actual_length - m25p_cmdsz(flash); } } mutex_unlock(&flash->lock); return 0; } static int sst_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct m25p *flash = mtd_to_m25p(mtd); struct spi_transfer t[2]; struct spi_message m; size_t actual; int cmd_sz, ret; pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev), __func__, (u32)to, len); spi_message_init(&m); memset(t, 0, (sizeof t)); t[0].tx_buf = flash->command; t[0].len = m25p_cmdsz(flash); spi_message_add_tail(&t[0], &m); t[1].tx_buf = buf; spi_message_add_tail(&t[1], &m); mutex_lock(&flash->lock); /* Wait until finished previous write command. */ ret = wait_till_ready(flash); if (ret) goto time_out; write_enable(flash); actual = to % 2; /* Start write from odd address. */ if (actual) { flash->command[0] = OPCODE_BP; m25p_addr2cmd(flash, to, flash->command); /* write one byte. */ t[1].len = 1; spi_sync(flash->spi, &m); ret = wait_till_ready(flash); if (ret) goto time_out; *retlen += m.actual_length - m25p_cmdsz(flash); } to += actual; flash->command[0] = OPCODE_AAI_WP; m25p_addr2cmd(flash, to, flash->command); /* Write out most of the data here. */ cmd_sz = m25p_cmdsz(flash); for (; actual < len - 1; actual += 2) { t[0].len = cmd_sz; /* write two bytes. */ t[1].len = 2; t[1].tx_buf = buf + actual; spi_sync(flash->spi, &m); ret = wait_till_ready(flash); if (ret) goto time_out; *retlen += m.actual_length - cmd_sz; cmd_sz = 1; to += 2; } write_disable(flash); ret = wait_till_ready(flash); if (ret) goto time_out; /* Write out trailing byte if it exists. */ if (actual != len) { write_enable(flash); flash->command[0] = OPCODE_BP; m25p_addr2cmd(flash, to, flash->command); t[0].len = m25p_cmdsz(flash); t[1].len = 1; t[1].tx_buf = buf + actual; spi_sync(flash->spi, &m); ret = wait_till_ready(flash); if (ret) goto time_out; *retlen += m.actual_length - m25p_cmdsz(flash); write_disable(flash); } time_out: mutex_unlock(&flash->lock); return ret; } /****************************************************************************/ /* * SPI device driver setup and teardown */ struct flash_info { /* JEDEC id zero means "no ID" (most older chips); otherwise it has * a high byte of zero plus three data bytes: the manufacturer id, * then a two byte device id. */ u32 jedec_id; u16 ext_id; /* The size listed here is what works with OPCODE_SE, which isn't * necessarily called a "sector" by the vendor. */ unsigned sector_size; u16 n_sectors; u16 page_size; u16 addr_width; u16 flags; #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */ #define M25P_NO_ERASE 0x02 /* No erase command needed */ }; #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \ ((kernel_ulong_t)&(struct flash_info) { \ .jedec_id = (_jedec_id), \ .ext_id = (_ext_id), \ .sector_size = (_sector_size), \ .n_sectors = (_n_sectors), \ .page_size = 256, \ .flags = (_flags), \ }) #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width) \ ((kernel_ulong_t)&(struct flash_info) { \ .sector_size = (_sector_size), \ .n_sectors = (_n_sectors), \ .page_size = (_page_size), \ .addr_width = (_addr_width), \ .flags = M25P_NO_ERASE, \ }) /* NOTE: double check command sets and memory organization when you add * more flash chips. This current list focusses on newer chips, which * have been converging on command sets which including JEDEC ID. */ static const struct spi_device_id m25p_ids[] = { /* Atmel -- some are (confusingly) marketed as "DataFlash" */ { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) }, { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) }, { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) }, { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) }, { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) }, { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) }, { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) }, { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) }, { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) }, /* EON -- en25xxx */ { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) }, { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) }, { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) }, { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) }, /* Intel/Numonyx -- xxxs33b */ { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) }, { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) }, { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) }, /* Macronix */ { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) }, { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) }, { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) }, { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) }, { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) }, { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) }, { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) }, { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) }, { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) }, /* Spansion -- single (large) sector size only, at least * for the chips listed here (without boot sectors). */ { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) }, { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) }, { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) }, { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) }, { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SECT_4K) }, { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) }, { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) }, { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, 0) }, { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) }, { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) }, { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) }, { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) }, { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) }, { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) }, { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) }, { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, /* SST -- large erase sizes are "overlays", "sectors" are 4K */ { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K) }, { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) }, { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) }, { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) }, { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K) }, { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K) }, { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K) }, { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K) }, /* ST Microelectronics -- newer production may have feature updates */ { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) }, { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) }, { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) }, { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) }, { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) }, { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) }, { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) }, { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) }, { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) }, { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) }, { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) }, { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) }, { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) }, { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) }, { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) }, { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) }, { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) }, { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) }, { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) }, { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) }, { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) }, { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) }, { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) }, { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) }, { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) }, { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) }, { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) }, /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) }, { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) }, { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) }, { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) }, { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) }, { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) }, { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) }, { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) }, { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, /* Catalyst / On Semiconductor -- non-JEDEC */ { "cat25c11", CAT25_INFO( 16, 8, 16, 1) }, { "cat25c03", CAT25_INFO( 32, 8, 16, 2) }, { "cat25c09", CAT25_INFO( 128, 8, 32, 2) }, { "cat25c17", CAT25_INFO( 256, 8, 32, 2) }, { "cat25128", CAT25_INFO(2048, 8, 64, 2) }, { }, }; MODULE_DEVICE_TABLE(spi, m25p_ids); static const struct spi_device_id *__devinit jedec_probe(struct spi_device *spi) { int tmp; u8 code = OPCODE_RDID; u8 id[5]; u32 jedec; u16 ext_jedec; struct flash_info *info; /* JEDEC also defines an optional "extended device information" * string for after vendor-specific data, after the three bytes * we use here. Supporting some chips might require using it. */ tmp = spi_write_then_read(spi, &code, 1, id, 5); if (tmp < 0) { pr_debug("%s: error %d reading JEDEC ID\n", dev_name(&spi->dev), tmp); return ERR_PTR(tmp); } jedec = id[0]; jedec = jedec << 8; jedec |= id[1]; jedec = jedec << 8; jedec |= id[2]; ext_jedec = id[3] << 8 | id[4]; for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) { info = (void *)m25p_ids[tmp].driver_data; if (info->jedec_id == jedec) { if (info->ext_id != 0 && info->ext_id != ext_jedec) continue; return &m25p_ids[tmp]; } } dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec); return ERR_PTR(-ENODEV); } /* * board specific setup should have ensured the SPI clock used here * matches what the READ command supports, at least until this driver * understands FAST_READ (for clocks over 25 MHz). */ static int __devinit m25p_probe(struct spi_device *spi) { const struct spi_device_id *id = spi_get_device_id(spi); struct flash_platform_data *data; struct m25p *flash; struct flash_info *info; unsigned i; struct mtd_part_parser_data ppdata; #ifdef CONFIG_MTD_OF_PARTS if (!of_device_is_available(spi->dev.of_node)) return -ENODEV; #endif /* Platform data helps sort out which chip type we have, as * well as how this board partitions it. If we don't have * a chip ID, try the JEDEC id commands; they'll work for most * newer chips, even if we don't recognize the particular chip. */ data = spi->dev.platform_data; if (data && data->type) { const struct spi_device_id *plat_id; for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) { plat_id = &m25p_ids[i]; if (strcmp(data->type, plat_id->name)) continue; break; } if (i < ARRAY_SIZE(m25p_ids) - 1) id = plat_id; else dev_warn(&spi->dev, "unrecognized id %s\n", data->type); } info = (void *)id->driver_data; if (info->jedec_id) { const struct spi_device_id *jid; jid = jedec_probe(spi); if (IS_ERR(jid)) { return PTR_ERR(jid); } else if (jid != id) { /* * JEDEC knows better, so overwrite platform ID. We * can't trust partitions any longer, but we'll let * mtd apply them anyway, since some partitions may be * marked read-only, and we don't want to lose that * information, even if it's not 100% accurate. */ dev_warn(&spi->dev, "found %s, expected %s\n", jid->name, id->name); id = jid; info = (void *)jid->driver_data; } } flash = devm_kzalloc(&spi->dev, sizeof(*flash), GFP_KERNEL); if (!flash) return -ENOMEM; flash->command = devm_kzalloc(&spi->dev, MAX_CMD_SIZE, GFP_KERNEL); if (!flash->command) return -ENOMEM; flash->spi = spi; mutex_init(&flash->lock); dev_set_drvdata(&spi->dev, flash); /* * Atmel, SST and Intel/Numonyx serial flash tend to power * up with the software protection bits set */ if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL || JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL || JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) { write_enable(flash); write_sr(flash, 0); } if (data && data->name) flash->mtd.name = data->name; else flash->mtd.name = dev_name(&spi->dev); flash->mtd.type = MTD_NORFLASH; flash->mtd.writesize = 1; flash->mtd.flags = MTD_CAP_NORFLASH; flash->mtd.size = info->sector_size * info->n_sectors; flash->mtd._erase = m25p80_erase; flash->mtd._read = m25p80_read; /* sst flash chips use AAI word program */ if (JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) flash->mtd._write = sst_write; else flash->mtd._write = m25p80_write; /* prefer "small sector" erase if possible */ if (info->flags & SECT_4K) { flash->erase_opcode = OPCODE_BE_4K; flash->mtd.erasesize = 4096; } else { flash->erase_opcode = OPCODE_SE; flash->mtd.erasesize = info->sector_size; } if (info->flags & M25P_NO_ERASE) flash->mtd.flags |= MTD_NO_ERASE; ppdata.of_node = spi->dev.of_node; flash->mtd.dev.parent = &spi->dev; flash->page_size = info->page_size; flash->mtd.writebufsize = flash->page_size; if (info->addr_width) flash->addr_width = info->addr_width; else { /* enable 4-byte addressing if the device exceeds 16MiB */ if (flash->mtd.size > 0x1000000) { flash->addr_width = 4; set_4byte(flash, info->jedec_id, 1); } else flash->addr_width = 3; } dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name, (long long)flash->mtd.size >> 10); pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) " ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", flash->mtd.name, (long long)flash->mtd.size, (long long)(flash->mtd.size >> 20), flash->mtd.erasesize, flash->mtd.erasesize / 1024, flash->mtd.numeraseregions); if (flash->mtd.numeraseregions) for (i = 0; i < flash->mtd.numeraseregions; i++) pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, " ".erasesize = 0x%.8x (%uKiB), " ".numblocks = %d }\n", i, (long long)flash->mtd.eraseregions[i].offset, flash->mtd.eraseregions[i].erasesize, flash->mtd.eraseregions[i].erasesize / 1024, flash->mtd.eraseregions[i].numblocks); /* partitions should match sector boundaries; and it may be good to * use readonly partitions for writeprotected sectors (BP2..BP0). */ return mtd_device_parse_register(&flash->mtd, NULL, &ppdata, data ? data->parts : NULL, data ? data->nr_parts : 0); } static int __devexit m25p_remove(struct spi_device *spi) { struct m25p *flash = dev_get_drvdata(&spi->dev); /* Clean up MTD stuff. */ mtd_device_unregister(&flash->mtd); return 0; } static struct spi_driver m25p80_driver = { .driver = { .name = "m25p80", .owner = THIS_MODULE, }, .id_table = m25p_ids, .probe = m25p_probe, .remove = __devexit_p(m25p_remove), /* REVISIT: many of these chips have deep power-down modes, which * should clearly be entered on suspend() to minimize power use. * And also when they're otherwise idle... */ }; module_spi_driver(m25p80_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Mike Lavender"); MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");