1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #ifndef __ARM64_KVM_MMU_H__
8 #define __ARM64_KVM_MMU_H__
9
10 #include <asm/page.h>
11 #include <asm/memory.h>
12 #include <asm/mmu.h>
13 #include <asm/cpufeature.h>
14
15 /*
16 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
17 * "negative" addresses. This makes it impossible to directly share
18 * mappings with the kernel.
19 *
20 * Instead, give the HYP mode its own VA region at a fixed offset from
21 * the kernel by just masking the top bits (which are all ones for a
22 * kernel address). We need to find out how many bits to mask.
23 *
24 * We want to build a set of page tables that cover both parts of the
25 * idmap (the trampoline page used to initialize EL2), and our normal
26 * runtime VA space, at the same time.
27 *
28 * Given that the kernel uses VA_BITS for its entire address space,
29 * and that half of that space (VA_BITS - 1) is used for the linear
30 * mapping, we can also limit the EL2 space to (VA_BITS - 1).
31 *
32 * The main question is "Within the VA_BITS space, does EL2 use the
33 * top or the bottom half of that space to shadow the kernel's linear
34 * mapping?". As we need to idmap the trampoline page, this is
35 * determined by the range in which this page lives.
36 *
37 * If the page is in the bottom half, we have to use the top half. If
38 * the page is in the top half, we have to use the bottom half:
39 *
40 * T = __pa_symbol(__hyp_idmap_text_start)
41 * if (T & BIT(VA_BITS - 1))
42 * HYP_VA_MIN = 0 //idmap in upper half
43 * else
44 * HYP_VA_MIN = 1 << (VA_BITS - 1)
45 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
46 *
47 * When using VHE, there are no separate hyp mappings and all KVM
48 * functionality is already mapped as part of the main kernel
49 * mappings, and none of this applies in that case.
50 */
51
52 #ifdef __ASSEMBLY__
53
54 #include <asm/alternative.h>
55
56 /*
57 * Convert a kernel VA into a HYP VA.
58 * reg: VA to be converted.
59 *
60 * The actual code generation takes place in kvm_update_va_mask, and
61 * the instructions below are only there to reserve the space and
62 * perform the register allocation (kvm_update_va_mask uses the
63 * specific registers encoded in the instructions).
64 */
65 .macro kern_hyp_va reg
66 alternative_cb ARM64_ALWAYS_SYSTEM, kvm_update_va_mask
67 and \reg, \reg, #1 /* mask with va_mask */
68 ror \reg, \reg, #1 /* rotate to the first tag bit */
69 add \reg, \reg, #0 /* insert the low 12 bits of the tag */
70 add \reg, \reg, #0, lsl 12 /* insert the top 12 bits of the tag */
71 ror \reg, \reg, #63 /* rotate back */
72 alternative_cb_end
73 .endm
74
75 /*
76 * Convert a hypervisor VA to a PA
77 * reg: hypervisor address to be converted in place
78 * tmp: temporary register
79 */
80 .macro hyp_pa reg, tmp
81 ldr_l \tmp, hyp_physvirt_offset
82 add \reg, \reg, \tmp
83 .endm
84
85 /*
86 * Convert a hypervisor VA to a kernel image address
87 * reg: hypervisor address to be converted in place
88 * tmp: temporary register
89 *
90 * The actual code generation takes place in kvm_get_kimage_voffset, and
91 * the instructions below are only there to reserve the space and
92 * perform the register allocation (kvm_get_kimage_voffset uses the
93 * specific registers encoded in the instructions).
94 */
95 .macro hyp_kimg_va reg, tmp
96 /* Convert hyp VA -> PA. */
97 hyp_pa \reg, \tmp
98
99 /* Load kimage_voffset. */
100 alternative_cb ARM64_ALWAYS_SYSTEM, kvm_get_kimage_voffset
101 movz \tmp, #0
102 movk \tmp, #0, lsl #16
103 movk \tmp, #0, lsl #32
104 movk \tmp, #0, lsl #48
105 alternative_cb_end
106
107 /* Convert PA -> kimg VA. */
108 add \reg, \reg, \tmp
109 .endm
110
111 #else
112
113 #include <linux/pgtable.h>
114 #include <asm/pgalloc.h>
115 #include <asm/cache.h>
116 #include <asm/cacheflush.h>
117 #include <asm/mmu_context.h>
118 #include <asm/kvm_host.h>
119
120 void kvm_update_va_mask(struct alt_instr *alt,
121 __le32 *origptr, __le32 *updptr, int nr_inst);
122 void kvm_compute_layout(void);
123 void kvm_apply_hyp_relocations(void);
124
125 #define __hyp_pa(x) (((phys_addr_t)(x)) + hyp_physvirt_offset)
126
__kern_hyp_va(unsigned long v)127 static __always_inline unsigned long __kern_hyp_va(unsigned long v)
128 {
129 asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
130 "ror %0, %0, #1\n"
131 "add %0, %0, #0\n"
132 "add %0, %0, #0, lsl 12\n"
133 "ror %0, %0, #63\n",
134 ARM64_ALWAYS_SYSTEM,
135 kvm_update_va_mask)
136 : "+r" (v));
137 return v;
138 }
139
140 #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v))))
141
142 /*
143 * We currently support using a VM-specified IPA size. For backward
144 * compatibility, the default IPA size is fixed to 40bits.
145 */
146 #define KVM_PHYS_SHIFT (40)
147
148 #define kvm_phys_shift(kvm) VTCR_EL2_IPA(kvm->arch.vtcr)
149 #define kvm_phys_size(kvm) (_AC(1, ULL) << kvm_phys_shift(kvm))
150 #define kvm_phys_mask(kvm) (kvm_phys_size(kvm) - _AC(1, ULL))
151
152 #include <asm/kvm_pgtable.h>
153 #include <asm/stage2_pgtable.h>
154
155 int kvm_share_hyp(void *from, void *to);
156 void kvm_unshare_hyp(void *from, void *to);
157 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot);
158 int __create_hyp_mappings(unsigned long start, unsigned long size,
159 unsigned long phys, enum kvm_pgtable_prot prot);
160 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr);
161 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
162 void __iomem **kaddr,
163 void __iomem **haddr);
164 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
165 void **haddr);
166 void free_hyp_pgds(void);
167
168 void stage2_unmap_vm(struct kvm *kvm);
169 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu);
170 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu);
171 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
172 phys_addr_t pa, unsigned long size, bool writable);
173
174 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu);
175
176 phys_addr_t kvm_mmu_get_httbr(void);
177 phys_addr_t kvm_get_idmap_vector(void);
178 int kvm_mmu_init(u32 *hyp_va_bits);
179
__kvm_vector_slot2addr(void * base,enum arm64_hyp_spectre_vector slot)180 static inline void *__kvm_vector_slot2addr(void *base,
181 enum arm64_hyp_spectre_vector slot)
182 {
183 int idx = slot - (slot != HYP_VECTOR_DIRECT);
184
185 return base + (idx * SZ_2K);
186 }
187
188 struct kvm;
189
190 #define kvm_flush_dcache_to_poc(a,l) \
191 dcache_clean_inval_poc((unsigned long)(a), (unsigned long)(a)+(l))
192
vcpu_has_cache_enabled(struct kvm_vcpu * vcpu)193 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
194 {
195 return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
196 }
197
__clean_dcache_guest_page(void * va,size_t size)198 static inline void __clean_dcache_guest_page(void *va, size_t size)
199 {
200 /*
201 * With FWB, we ensure that the guest always accesses memory using
202 * cacheable attributes, and we don't have to clean to PoC when
203 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
204 * PoU is not required either in this case.
205 */
206 if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
207 return;
208
209 kvm_flush_dcache_to_poc(va, size);
210 }
211
__invalidate_icache_guest_page(void * va,size_t size)212 static inline void __invalidate_icache_guest_page(void *va, size_t size)
213 {
214 if (icache_is_aliasing()) {
215 /* any kind of VIPT cache */
216 icache_inval_all_pou();
217 } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
218 /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
219 icache_inval_pou((unsigned long)va, (unsigned long)va + size);
220 }
221 }
222
223 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
224 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
225
kvm_get_vmid_bits(void)226 static inline unsigned int kvm_get_vmid_bits(void)
227 {
228 int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
229
230 return get_vmid_bits(reg);
231 }
232
233 /*
234 * We are not in the kvm->srcu critical section most of the time, so we take
235 * the SRCU read lock here. Since we copy the data from the user page, we
236 * can immediately drop the lock again.
237 */
kvm_read_guest_lock(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)238 static inline int kvm_read_guest_lock(struct kvm *kvm,
239 gpa_t gpa, void *data, unsigned long len)
240 {
241 int srcu_idx = srcu_read_lock(&kvm->srcu);
242 int ret = kvm_read_guest(kvm, gpa, data, len);
243
244 srcu_read_unlock(&kvm->srcu, srcu_idx);
245
246 return ret;
247 }
248
kvm_write_guest_lock(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)249 static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
250 const void *data, unsigned long len)
251 {
252 int srcu_idx = srcu_read_lock(&kvm->srcu);
253 int ret = kvm_write_guest(kvm, gpa, data, len);
254
255 srcu_read_unlock(&kvm->srcu, srcu_idx);
256
257 return ret;
258 }
259
260 #define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr)
261
262 /*
263 * When this is (directly or indirectly) used on the TLB invalidation
264 * path, we rely on a previously issued DSB so that page table updates
265 * and VMID reads are correctly ordered.
266 */
kvm_get_vttbr(struct kvm_s2_mmu * mmu)267 static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu)
268 {
269 struct kvm_vmid *vmid = &mmu->vmid;
270 u64 vmid_field, baddr;
271 u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
272
273 baddr = mmu->pgd_phys;
274 vmid_field = atomic64_read(&vmid->id) << VTTBR_VMID_SHIFT;
275 vmid_field &= VTTBR_VMID_MASK(kvm_arm_vmid_bits);
276 return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
277 }
278
279 /*
280 * Must be called from hyp code running at EL2 with an updated VTTBR
281 * and interrupts disabled.
282 */
__load_stage2(struct kvm_s2_mmu * mmu,struct kvm_arch * arch)283 static __always_inline void __load_stage2(struct kvm_s2_mmu *mmu,
284 struct kvm_arch *arch)
285 {
286 write_sysreg(arch->vtcr, vtcr_el2);
287 write_sysreg(kvm_get_vttbr(mmu), vttbr_el2);
288
289 /*
290 * ARM errata 1165522 and 1530923 require the actual execution of the
291 * above before we can switch to the EL1/EL0 translation regime used by
292 * the guest.
293 */
294 asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
295 }
296
kvm_s2_mmu_to_kvm(struct kvm_s2_mmu * mmu)297 static inline struct kvm *kvm_s2_mmu_to_kvm(struct kvm_s2_mmu *mmu)
298 {
299 return container_of(mmu->arch, struct kvm, arch);
300 }
301 #endif /* __ASSEMBLY__ */
302 #endif /* __ARM64_KVM_MMU_H__ */
303