1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Dynamic DMA mapping support.
4  *
5  * This implementation is a fallback for platforms that do not support
6  * I/O TLBs (aka DMA address translation hardware).
7  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
8  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
9  * Copyright (C) 2000, 2003 Hewlett-Packard Co
10  *	David Mosberger-Tang <davidm@hpl.hp.com>
11  *
12  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
13  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
14  *			unnecessary i-cache flushing.
15  * 04/07/.. ak		Better overflow handling. Assorted fixes.
16  * 05/09/10 linville	Add support for syncing ranges, support syncing for
17  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
18  * 08/12/11 beckyb	Add highmem support
19  */
20 
21 #define pr_fmt(fmt) "software IO TLB: " fmt
22 
23 #include <linux/cache.h>
24 #include <linux/cc_platform.h>
25 #include <linux/ctype.h>
26 #include <linux/debugfs.h>
27 #include <linux/dma-direct.h>
28 #include <linux/dma-map-ops.h>
29 #include <linux/export.h>
30 #include <linux/gfp.h>
31 #include <linux/highmem.h>
32 #include <linux/io.h>
33 #include <linux/iommu-helper.h>
34 #include <linux/init.h>
35 #include <linux/memblock.h>
36 #include <linux/mm.h>
37 #include <linux/pfn.h>
38 #include <linux/scatterlist.h>
39 #include <linux/set_memory.h>
40 #include <linux/spinlock.h>
41 #include <linux/string.h>
42 #include <linux/swiotlb.h>
43 #include <linux/types.h>
44 #ifdef CONFIG_DMA_RESTRICTED_POOL
45 #include <linux/of.h>
46 #include <linux/of_fdt.h>
47 #include <linux/of_reserved_mem.h>
48 #include <linux/slab.h>
49 #endif
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/swiotlb.h>
53 
54 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
55 
56 /*
57  * Minimum IO TLB size to bother booting with.  Systems with mainly
58  * 64bit capable cards will only lightly use the swiotlb.  If we can't
59  * allocate a contiguous 1MB, we're probably in trouble anyway.
60  */
61 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
62 
63 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
64 
65 static bool swiotlb_force_bounce;
66 static bool swiotlb_force_disable;
67 
68 struct io_tlb_mem io_tlb_default_mem;
69 
70 phys_addr_t swiotlb_unencrypted_base;
71 
72 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
73 
74 static int __init
setup_io_tlb_npages(char * str)75 setup_io_tlb_npages(char *str)
76 {
77 	if (isdigit(*str)) {
78 		/* avoid tail segment of size < IO_TLB_SEGSIZE */
79 		default_nslabs =
80 			ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
81 	}
82 	if (*str == ',')
83 		++str;
84 	if (!strcmp(str, "force"))
85 		swiotlb_force_bounce = true;
86 	else if (!strcmp(str, "noforce"))
87 		swiotlb_force_disable = true;
88 
89 	return 0;
90 }
91 early_param("swiotlb", setup_io_tlb_npages);
92 
swiotlb_max_segment(void)93 unsigned int swiotlb_max_segment(void)
94 {
95 	if (!io_tlb_default_mem.nslabs)
96 		return 0;
97 	return rounddown(io_tlb_default_mem.nslabs << IO_TLB_SHIFT, PAGE_SIZE);
98 }
99 EXPORT_SYMBOL_GPL(swiotlb_max_segment);
100 
swiotlb_size_or_default(void)101 unsigned long swiotlb_size_or_default(void)
102 {
103 	return default_nslabs << IO_TLB_SHIFT;
104 }
105 
swiotlb_adjust_size(unsigned long size)106 void __init swiotlb_adjust_size(unsigned long size)
107 {
108 	/*
109 	 * If swiotlb parameter has not been specified, give a chance to
110 	 * architectures such as those supporting memory encryption to
111 	 * adjust/expand SWIOTLB size for their use.
112 	 */
113 	if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
114 		return;
115 	size = ALIGN(size, IO_TLB_SIZE);
116 	default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
117 	pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
118 }
119 
swiotlb_print_info(void)120 void swiotlb_print_info(void)
121 {
122 	struct io_tlb_mem *mem = &io_tlb_default_mem;
123 
124 	if (!mem->nslabs) {
125 		pr_warn("No low mem\n");
126 		return;
127 	}
128 
129 	pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
130 	       (mem->nslabs << IO_TLB_SHIFT) >> 20);
131 }
132 
io_tlb_offset(unsigned long val)133 static inline unsigned long io_tlb_offset(unsigned long val)
134 {
135 	return val & (IO_TLB_SEGSIZE - 1);
136 }
137 
nr_slots(u64 val)138 static inline unsigned long nr_slots(u64 val)
139 {
140 	return DIV_ROUND_UP(val, IO_TLB_SIZE);
141 }
142 
143 /*
144  * Remap swioltb memory in the unencrypted physical address space
145  * when swiotlb_unencrypted_base is set. (e.g. for Hyper-V AMD SEV-SNP
146  * Isolation VMs).
147  */
148 #ifdef CONFIG_HAS_IOMEM
swiotlb_mem_remap(struct io_tlb_mem * mem,unsigned long bytes)149 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes)
150 {
151 	void *vaddr = NULL;
152 
153 	if (swiotlb_unencrypted_base) {
154 		phys_addr_t paddr = mem->start + swiotlb_unencrypted_base;
155 
156 		vaddr = memremap(paddr, bytes, MEMREMAP_WB);
157 		if (!vaddr)
158 			pr_err("Failed to map the unencrypted memory %pa size %lx.\n",
159 			       &paddr, bytes);
160 	}
161 
162 	return vaddr;
163 }
164 #else
swiotlb_mem_remap(struct io_tlb_mem * mem,unsigned long bytes)165 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes)
166 {
167 	return NULL;
168 }
169 #endif
170 
171 /*
172  * Early SWIOTLB allocation may be too early to allow an architecture to
173  * perform the desired operations.  This function allows the architecture to
174  * call SWIOTLB when the operations are possible.  It needs to be called
175  * before the SWIOTLB memory is used.
176  */
swiotlb_update_mem_attributes(void)177 void __init swiotlb_update_mem_attributes(void)
178 {
179 	struct io_tlb_mem *mem = &io_tlb_default_mem;
180 	void *vaddr;
181 	unsigned long bytes;
182 
183 	if (!mem->nslabs || mem->late_alloc)
184 		return;
185 	vaddr = phys_to_virt(mem->start);
186 	bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
187 	set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
188 
189 	mem->vaddr = swiotlb_mem_remap(mem, bytes);
190 	if (!mem->vaddr)
191 		mem->vaddr = vaddr;
192 }
193 
swiotlb_init_io_tlb_mem(struct io_tlb_mem * mem,phys_addr_t start,unsigned long nslabs,unsigned int flags,bool late_alloc)194 static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start,
195 		unsigned long nslabs, unsigned int flags, bool late_alloc)
196 {
197 	void *vaddr = phys_to_virt(start);
198 	unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
199 
200 	mem->nslabs = nslabs;
201 	mem->start = start;
202 	mem->end = mem->start + bytes;
203 	mem->index = 0;
204 	mem->late_alloc = late_alloc;
205 
206 	mem->force_bounce = swiotlb_force_bounce || (flags & SWIOTLB_FORCE);
207 
208 	spin_lock_init(&mem->lock);
209 	for (i = 0; i < mem->nslabs; i++) {
210 		mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i);
211 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
212 		mem->slots[i].alloc_size = 0;
213 	}
214 
215 	/*
216 	 * If swiotlb_unencrypted_base is set, the bounce buffer memory will
217 	 * be remapped and cleared in swiotlb_update_mem_attributes.
218 	 */
219 	if (swiotlb_unencrypted_base)
220 		return;
221 
222 	memset(vaddr, 0, bytes);
223 	mem->vaddr = vaddr;
224 	return;
225 }
226 
227 /*
228  * Statically reserve bounce buffer space and initialize bounce buffer data
229  * structures for the software IO TLB used to implement the DMA API.
230  */
swiotlb_init_remap(bool addressing_limit,unsigned int flags,int (* remap)(void * tlb,unsigned long nslabs))231 void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags,
232 		int (*remap)(void *tlb, unsigned long nslabs))
233 {
234 	struct io_tlb_mem *mem = &io_tlb_default_mem;
235 	unsigned long nslabs = default_nslabs;
236 	size_t alloc_size;
237 	size_t bytes;
238 	void *tlb;
239 
240 	if (!addressing_limit && !swiotlb_force_bounce)
241 		return;
242 	if (swiotlb_force_disable)
243 		return;
244 
245 	/*
246 	 * By default allocate the bounce buffer memory from low memory, but
247 	 * allow to pick a location everywhere for hypervisors with guest
248 	 * memory encryption.
249 	 */
250 retry:
251 	bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT);
252 	if (flags & SWIOTLB_ANY)
253 		tlb = memblock_alloc(bytes, PAGE_SIZE);
254 	else
255 		tlb = memblock_alloc_low(bytes, PAGE_SIZE);
256 	if (!tlb) {
257 		pr_warn("%s: failed to allocate tlb structure\n", __func__);
258 		return;
259 	}
260 
261 	if (remap && remap(tlb, nslabs) < 0) {
262 		memblock_free(tlb, PAGE_ALIGN(bytes));
263 
264 		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
265 		if (nslabs < IO_TLB_MIN_SLABS)
266 			panic("%s: Failed to remap %zu bytes\n",
267 			      __func__, bytes);
268 		goto retry;
269 	}
270 
271 	alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
272 	mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
273 	if (!mem->slots)
274 		panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
275 		      __func__, alloc_size, PAGE_SIZE);
276 
277 	swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, flags, false);
278 
279 	if (flags & SWIOTLB_VERBOSE)
280 		swiotlb_print_info();
281 }
282 
swiotlb_init(bool addressing_limit,unsigned int flags)283 void __init swiotlb_init(bool addressing_limit, unsigned int flags)
284 {
285 	return swiotlb_init_remap(addressing_limit, flags, NULL);
286 }
287 
288 /*
289  * Systems with larger DMA zones (those that don't support ISA) can
290  * initialize the swiotlb later using the slab allocator if needed.
291  * This should be just like above, but with some error catching.
292  */
swiotlb_init_late(size_t size,gfp_t gfp_mask,int (* remap)(void * tlb,unsigned long nslabs))293 int swiotlb_init_late(size_t size, gfp_t gfp_mask,
294 		int (*remap)(void *tlb, unsigned long nslabs))
295 {
296 	struct io_tlb_mem *mem = &io_tlb_default_mem;
297 	unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
298 	unsigned char *vstart = NULL;
299 	unsigned int order;
300 	bool retried = false;
301 	int rc = 0;
302 
303 	if (swiotlb_force_disable)
304 		return 0;
305 
306 retry:
307 	order = get_order(nslabs << IO_TLB_SHIFT);
308 	nslabs = SLABS_PER_PAGE << order;
309 
310 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
311 		vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
312 						  order);
313 		if (vstart)
314 			break;
315 		order--;
316 		nslabs = SLABS_PER_PAGE << order;
317 		retried = true;
318 	}
319 
320 	if (!vstart)
321 		return -ENOMEM;
322 
323 	if (remap)
324 		rc = remap(vstart, nslabs);
325 	if (rc) {
326 		free_pages((unsigned long)vstart, order);
327 
328 		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
329 		if (nslabs < IO_TLB_MIN_SLABS)
330 			return rc;
331 		retried = true;
332 		goto retry;
333 	}
334 
335 	if (retried) {
336 		pr_warn("only able to allocate %ld MB\n",
337 			(PAGE_SIZE << order) >> 20);
338 	}
339 
340 	mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
341 		get_order(array_size(sizeof(*mem->slots), nslabs)));
342 	if (!mem->slots) {
343 		free_pages((unsigned long)vstart, order);
344 		return -ENOMEM;
345 	}
346 
347 	set_memory_decrypted((unsigned long)vstart,
348 			     (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT);
349 	swiotlb_init_io_tlb_mem(mem, virt_to_phys(vstart), nslabs, 0, true);
350 
351 	swiotlb_print_info();
352 	return 0;
353 }
354 
swiotlb_exit(void)355 void __init swiotlb_exit(void)
356 {
357 	struct io_tlb_mem *mem = &io_tlb_default_mem;
358 	unsigned long tbl_vaddr;
359 	size_t tbl_size, slots_size;
360 
361 	if (swiotlb_force_bounce)
362 		return;
363 
364 	if (!mem->nslabs)
365 		return;
366 
367 	pr_info("tearing down default memory pool\n");
368 	tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
369 	tbl_size = PAGE_ALIGN(mem->end - mem->start);
370 	slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));
371 
372 	set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
373 	if (mem->late_alloc) {
374 		free_pages(tbl_vaddr, get_order(tbl_size));
375 		free_pages((unsigned long)mem->slots, get_order(slots_size));
376 	} else {
377 		memblock_free_late(mem->start, tbl_size);
378 		memblock_free_late(__pa(mem->slots), slots_size);
379 	}
380 
381 	memset(mem, 0, sizeof(*mem));
382 }
383 
384 /*
385  * Return the offset into a iotlb slot required to keep the device happy.
386  */
swiotlb_align_offset(struct device * dev,u64 addr)387 static unsigned int swiotlb_align_offset(struct device *dev, u64 addr)
388 {
389 	return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1);
390 }
391 
392 /*
393  * Bounce: copy the swiotlb buffer from or back to the original dma location
394  */
swiotlb_bounce(struct device * dev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir)395 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
396 			   enum dma_data_direction dir)
397 {
398 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
399 	int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
400 	phys_addr_t orig_addr = mem->slots[index].orig_addr;
401 	size_t alloc_size = mem->slots[index].alloc_size;
402 	unsigned long pfn = PFN_DOWN(orig_addr);
403 	unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start;
404 	unsigned int tlb_offset, orig_addr_offset;
405 
406 	if (orig_addr == INVALID_PHYS_ADDR)
407 		return;
408 
409 	tlb_offset = tlb_addr & (IO_TLB_SIZE - 1);
410 	orig_addr_offset = swiotlb_align_offset(dev, orig_addr);
411 	if (tlb_offset < orig_addr_offset) {
412 		dev_WARN_ONCE(dev, 1,
413 			"Access before mapping start detected. orig offset %u, requested offset %u.\n",
414 			orig_addr_offset, tlb_offset);
415 		return;
416 	}
417 
418 	tlb_offset -= orig_addr_offset;
419 	if (tlb_offset > alloc_size) {
420 		dev_WARN_ONCE(dev, 1,
421 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n",
422 			alloc_size, size, tlb_offset);
423 		return;
424 	}
425 
426 	orig_addr += tlb_offset;
427 	alloc_size -= tlb_offset;
428 
429 	if (size > alloc_size) {
430 		dev_WARN_ONCE(dev, 1,
431 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
432 			alloc_size, size);
433 		size = alloc_size;
434 	}
435 
436 	if (PageHighMem(pfn_to_page(pfn))) {
437 		/* The buffer does not have a mapping.  Map it in and copy */
438 		unsigned int offset = orig_addr & ~PAGE_MASK;
439 		char *buffer;
440 		unsigned int sz = 0;
441 		unsigned long flags;
442 
443 		while (size) {
444 			sz = min_t(size_t, PAGE_SIZE - offset, size);
445 
446 			local_irq_save(flags);
447 			buffer = kmap_atomic(pfn_to_page(pfn));
448 			if (dir == DMA_TO_DEVICE)
449 				memcpy(vaddr, buffer + offset, sz);
450 			else
451 				memcpy(buffer + offset, vaddr, sz);
452 			kunmap_atomic(buffer);
453 			local_irq_restore(flags);
454 
455 			size -= sz;
456 			pfn++;
457 			vaddr += sz;
458 			offset = 0;
459 		}
460 	} else if (dir == DMA_TO_DEVICE) {
461 		memcpy(vaddr, phys_to_virt(orig_addr), size);
462 	} else {
463 		memcpy(phys_to_virt(orig_addr), vaddr, size);
464 	}
465 }
466 
slot_addr(phys_addr_t start,phys_addr_t idx)467 static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx)
468 {
469 	return start + (idx << IO_TLB_SHIFT);
470 }
471 
472 /*
473  * Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
474  */
get_max_slots(unsigned long boundary_mask)475 static inline unsigned long get_max_slots(unsigned long boundary_mask)
476 {
477 	if (boundary_mask == ~0UL)
478 		return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
479 	return nr_slots(boundary_mask + 1);
480 }
481 
wrap_index(struct io_tlb_mem * mem,unsigned int index)482 static unsigned int wrap_index(struct io_tlb_mem *mem, unsigned int index)
483 {
484 	if (index >= mem->nslabs)
485 		return 0;
486 	return index;
487 }
488 
489 /*
490  * Find a suitable number of IO TLB entries size that will fit this request and
491  * allocate a buffer from that IO TLB pool.
492  */
swiotlb_find_slots(struct device * dev,phys_addr_t orig_addr,size_t alloc_size,unsigned int alloc_align_mask)493 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
494 			      size_t alloc_size, unsigned int alloc_align_mask)
495 {
496 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
497 	unsigned long boundary_mask = dma_get_seg_boundary(dev);
498 	dma_addr_t tbl_dma_addr =
499 		phys_to_dma_unencrypted(dev, mem->start) & boundary_mask;
500 	unsigned long max_slots = get_max_slots(boundary_mask);
501 	unsigned int iotlb_align_mask =
502 		dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1);
503 	unsigned int nslots = nr_slots(alloc_size), stride;
504 	unsigned int index, wrap, count = 0, i;
505 	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
506 	unsigned long flags;
507 
508 	BUG_ON(!nslots);
509 
510 	/*
511 	 * For mappings with an alignment requirement don't bother looping to
512 	 * unaligned slots once we found an aligned one.  For allocations of
513 	 * PAGE_SIZE or larger only look for page aligned allocations.
514 	 */
515 	stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1;
516 	if (alloc_size >= PAGE_SIZE)
517 		stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT));
518 	stride = max(stride, (alloc_align_mask >> IO_TLB_SHIFT) + 1);
519 
520 	spin_lock_irqsave(&mem->lock, flags);
521 	if (unlikely(nslots > mem->nslabs - mem->used))
522 		goto not_found;
523 
524 	index = wrap = wrap_index(mem, ALIGN(mem->index, stride));
525 	do {
526 		if (orig_addr &&
527 		    (slot_addr(tbl_dma_addr, index) & iotlb_align_mask) !=
528 			    (orig_addr & iotlb_align_mask)) {
529 			index = wrap_index(mem, index + 1);
530 			continue;
531 		}
532 
533 		/*
534 		 * If we find a slot that indicates we have 'nslots' number of
535 		 * contiguous buffers, we allocate the buffers from that slot
536 		 * and mark the entries as '0' indicating unavailable.
537 		 */
538 		if (!iommu_is_span_boundary(index, nslots,
539 					    nr_slots(tbl_dma_addr),
540 					    max_slots)) {
541 			if (mem->slots[index].list >= nslots)
542 				goto found;
543 		}
544 		index = wrap_index(mem, index + stride);
545 	} while (index != wrap);
546 
547 not_found:
548 	spin_unlock_irqrestore(&mem->lock, flags);
549 	return -1;
550 
551 found:
552 	for (i = index; i < index + nslots; i++) {
553 		mem->slots[i].list = 0;
554 		mem->slots[i].alloc_size =
555 			alloc_size - (offset + ((i - index) << IO_TLB_SHIFT));
556 	}
557 	for (i = index - 1;
558 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
559 	     mem->slots[i].list; i--)
560 		mem->slots[i].list = ++count;
561 
562 	/*
563 	 * Update the indices to avoid searching in the next round.
564 	 */
565 	if (index + nslots < mem->nslabs)
566 		mem->index = index + nslots;
567 	else
568 		mem->index = 0;
569 	mem->used += nslots;
570 
571 	spin_unlock_irqrestore(&mem->lock, flags);
572 	return index;
573 }
574 
swiotlb_tbl_map_single(struct device * dev,phys_addr_t orig_addr,size_t mapping_size,size_t alloc_size,unsigned int alloc_align_mask,enum dma_data_direction dir,unsigned long attrs)575 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
576 		size_t mapping_size, size_t alloc_size,
577 		unsigned int alloc_align_mask, enum dma_data_direction dir,
578 		unsigned long attrs)
579 {
580 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
581 	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
582 	unsigned int i;
583 	int index;
584 	phys_addr_t tlb_addr;
585 
586 	if (!mem || !mem->nslabs)
587 		panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
588 
589 	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
590 		pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
591 
592 	if (mapping_size > alloc_size) {
593 		dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
594 			      mapping_size, alloc_size);
595 		return (phys_addr_t)DMA_MAPPING_ERROR;
596 	}
597 
598 	index = swiotlb_find_slots(dev, orig_addr,
599 				   alloc_size + offset, alloc_align_mask);
600 	if (index == -1) {
601 		if (!(attrs & DMA_ATTR_NO_WARN))
602 			dev_warn_ratelimited(dev,
603 	"swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
604 				 alloc_size, mem->nslabs, mem->used);
605 		return (phys_addr_t)DMA_MAPPING_ERROR;
606 	}
607 
608 	/*
609 	 * Save away the mapping from the original address to the DMA address.
610 	 * This is needed when we sync the memory.  Then we sync the buffer if
611 	 * needed.
612 	 */
613 	for (i = 0; i < nr_slots(alloc_size + offset); i++)
614 		mem->slots[index + i].orig_addr = slot_addr(orig_addr, i);
615 	tlb_addr = slot_addr(mem->start, index) + offset;
616 	/*
617 	 * When dir == DMA_FROM_DEVICE we could omit the copy from the orig
618 	 * to the tlb buffer, if we knew for sure the device will
619 	 * overwirte the entire current content. But we don't. Thus
620 	 * unconditional bounce may prevent leaking swiotlb content (i.e.
621 	 * kernel memory) to user-space.
622 	 */
623 	swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE);
624 	return tlb_addr;
625 }
626 
swiotlb_release_slots(struct device * dev,phys_addr_t tlb_addr)627 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr)
628 {
629 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
630 	unsigned long flags;
631 	unsigned int offset = swiotlb_align_offset(dev, tlb_addr);
632 	int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
633 	int nslots = nr_slots(mem->slots[index].alloc_size + offset);
634 	int count, i;
635 
636 	/*
637 	 * Return the buffer to the free list by setting the corresponding
638 	 * entries to indicate the number of contiguous entries available.
639 	 * While returning the entries to the free list, we merge the entries
640 	 * with slots below and above the pool being returned.
641 	 */
642 	spin_lock_irqsave(&mem->lock, flags);
643 	if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
644 		count = mem->slots[index + nslots].list;
645 	else
646 		count = 0;
647 
648 	/*
649 	 * Step 1: return the slots to the free list, merging the slots with
650 	 * superceeding slots
651 	 */
652 	for (i = index + nslots - 1; i >= index; i--) {
653 		mem->slots[i].list = ++count;
654 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
655 		mem->slots[i].alloc_size = 0;
656 	}
657 
658 	/*
659 	 * Step 2: merge the returned slots with the preceding slots, if
660 	 * available (non zero)
661 	 */
662 	for (i = index - 1;
663 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
664 	     i--)
665 		mem->slots[i].list = ++count;
666 	mem->used -= nslots;
667 	spin_unlock_irqrestore(&mem->lock, flags);
668 }
669 
670 /*
671  * tlb_addr is the physical address of the bounce buffer to unmap.
672  */
swiotlb_tbl_unmap_single(struct device * dev,phys_addr_t tlb_addr,size_t mapping_size,enum dma_data_direction dir,unsigned long attrs)673 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
674 			      size_t mapping_size, enum dma_data_direction dir,
675 			      unsigned long attrs)
676 {
677 	/*
678 	 * First, sync the memory before unmapping the entry
679 	 */
680 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
681 	    (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
682 		swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
683 
684 	swiotlb_release_slots(dev, tlb_addr);
685 }
686 
swiotlb_sync_single_for_device(struct device * dev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir)687 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
688 		size_t size, enum dma_data_direction dir)
689 {
690 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
691 		swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE);
692 	else
693 		BUG_ON(dir != DMA_FROM_DEVICE);
694 }
695 
swiotlb_sync_single_for_cpu(struct device * dev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir)696 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
697 		size_t size, enum dma_data_direction dir)
698 {
699 	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
700 		swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE);
701 	else
702 		BUG_ON(dir != DMA_TO_DEVICE);
703 }
704 
705 /*
706  * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
707  * to the device copy the data into it as well.
708  */
swiotlb_map(struct device * dev,phys_addr_t paddr,size_t size,enum dma_data_direction dir,unsigned long attrs)709 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
710 		enum dma_data_direction dir, unsigned long attrs)
711 {
712 	phys_addr_t swiotlb_addr;
713 	dma_addr_t dma_addr;
714 
715 	trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size);
716 
717 	swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir,
718 			attrs);
719 	if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
720 		return DMA_MAPPING_ERROR;
721 
722 	/* Ensure that the address returned is DMA'ble */
723 	dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
724 	if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
725 		swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
726 			attrs | DMA_ATTR_SKIP_CPU_SYNC);
727 		dev_WARN_ONCE(dev, 1,
728 			"swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
729 			&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
730 		return DMA_MAPPING_ERROR;
731 	}
732 
733 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
734 		arch_sync_dma_for_device(swiotlb_addr, size, dir);
735 	return dma_addr;
736 }
737 
swiotlb_max_mapping_size(struct device * dev)738 size_t swiotlb_max_mapping_size(struct device *dev)
739 {
740 	int min_align_mask = dma_get_min_align_mask(dev);
741 	int min_align = 0;
742 
743 	/*
744 	 * swiotlb_find_slots() skips slots according to
745 	 * min align mask. This affects max mapping size.
746 	 * Take it into acount here.
747 	 */
748 	if (min_align_mask)
749 		min_align = roundup(min_align_mask, IO_TLB_SIZE);
750 
751 	return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align;
752 }
753 
is_swiotlb_active(struct device * dev)754 bool is_swiotlb_active(struct device *dev)
755 {
756 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
757 
758 	return mem && mem->nslabs;
759 }
760 EXPORT_SYMBOL_GPL(is_swiotlb_active);
761 
swiotlb_create_debugfs_files(struct io_tlb_mem * mem,const char * dirname)762 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
763 					 const char *dirname)
764 {
765 	mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs);
766 	if (!mem->nslabs)
767 		return;
768 
769 	debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
770 	debugfs_create_ulong("io_tlb_used", 0400, mem->debugfs, &mem->used);
771 }
772 
swiotlb_create_default_debugfs(void)773 static int __init __maybe_unused swiotlb_create_default_debugfs(void)
774 {
775 	swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb");
776 	return 0;
777 }
778 
779 #ifdef CONFIG_DEBUG_FS
780 late_initcall(swiotlb_create_default_debugfs);
781 #endif
782 
783 #ifdef CONFIG_DMA_RESTRICTED_POOL
784 
swiotlb_alloc(struct device * dev,size_t size)785 struct page *swiotlb_alloc(struct device *dev, size_t size)
786 {
787 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
788 	phys_addr_t tlb_addr;
789 	int index;
790 
791 	if (!mem)
792 		return NULL;
793 
794 	index = swiotlb_find_slots(dev, 0, size, 0);
795 	if (index == -1)
796 		return NULL;
797 
798 	tlb_addr = slot_addr(mem->start, index);
799 
800 	return pfn_to_page(PFN_DOWN(tlb_addr));
801 }
802 
swiotlb_free(struct device * dev,struct page * page,size_t size)803 bool swiotlb_free(struct device *dev, struct page *page, size_t size)
804 {
805 	phys_addr_t tlb_addr = page_to_phys(page);
806 
807 	if (!is_swiotlb_buffer(dev, tlb_addr))
808 		return false;
809 
810 	swiotlb_release_slots(dev, tlb_addr);
811 
812 	return true;
813 }
814 
rmem_swiotlb_device_init(struct reserved_mem * rmem,struct device * dev)815 static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
816 				    struct device *dev)
817 {
818 	struct io_tlb_mem *mem = rmem->priv;
819 	unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;
820 
821 	/*
822 	 * Since multiple devices can share the same pool, the private data,
823 	 * io_tlb_mem struct, will be initialized by the first device attached
824 	 * to it.
825 	 */
826 	if (!mem) {
827 		mem = kzalloc(sizeof(*mem), GFP_KERNEL);
828 		if (!mem)
829 			return -ENOMEM;
830 
831 		mem->slots = kcalloc(nslabs, sizeof(*mem->slots), GFP_KERNEL);
832 		if (!mem->slots) {
833 			kfree(mem);
834 			return -ENOMEM;
835 		}
836 
837 		set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
838 				     rmem->size >> PAGE_SHIFT);
839 		swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, SWIOTLB_FORCE,
840 				false);
841 		mem->for_alloc = true;
842 
843 		rmem->priv = mem;
844 
845 		swiotlb_create_debugfs_files(mem, rmem->name);
846 	}
847 
848 	dev->dma_io_tlb_mem = mem;
849 
850 	return 0;
851 }
852 
rmem_swiotlb_device_release(struct reserved_mem * rmem,struct device * dev)853 static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
854 					struct device *dev)
855 {
856 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
857 }
858 
859 static const struct reserved_mem_ops rmem_swiotlb_ops = {
860 	.device_init = rmem_swiotlb_device_init,
861 	.device_release = rmem_swiotlb_device_release,
862 };
863 
rmem_swiotlb_setup(struct reserved_mem * rmem)864 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
865 {
866 	unsigned long node = rmem->fdt_node;
867 
868 	if (of_get_flat_dt_prop(node, "reusable", NULL) ||
869 	    of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
870 	    of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
871 	    of_get_flat_dt_prop(node, "no-map", NULL))
872 		return -EINVAL;
873 
874 	if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
875 		pr_err("Restricted DMA pool must be accessible within the linear mapping.");
876 		return -EINVAL;
877 	}
878 
879 	rmem->ops = &rmem_swiotlb_ops;
880 	pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
881 		&rmem->base, (unsigned long)rmem->size / SZ_1M);
882 	return 0;
883 }
884 
885 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
886 #endif /* CONFIG_DMA_RESTRICTED_POOL */
887