1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 #include <linux/user_namespace.h>
114 #include <linux/static_key.h>
115 #include <linux/memcontrol.h>
116 
117 #include <asm/uaccess.h>
118 
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <linux/net_tstamp.h>
126 #include <net/xfrm.h>
127 #include <linux/ipsec.h>
128 #include <net/cls_cgroup.h>
129 #include <net/netprio_cgroup.h>
130 
131 #include <linux/filter.h>
132 
133 #include <trace/events/sock.h>
134 
135 #ifdef CONFIG_INET
136 #include <net/tcp.h>
137 #endif
138 
139 static DEFINE_MUTEX(proto_list_mutex);
140 static LIST_HEAD(proto_list);
141 
142 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
mem_cgroup_sockets_init(struct cgroup * cgrp,struct cgroup_subsys * ss)143 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss)
144 {
145 	struct proto *proto;
146 	int ret = 0;
147 
148 	mutex_lock(&proto_list_mutex);
149 	list_for_each_entry(proto, &proto_list, node) {
150 		if (proto->init_cgroup) {
151 			ret = proto->init_cgroup(cgrp, ss);
152 			if (ret)
153 				goto out;
154 		}
155 	}
156 
157 	mutex_unlock(&proto_list_mutex);
158 	return ret;
159 out:
160 	list_for_each_entry_continue_reverse(proto, &proto_list, node)
161 		if (proto->destroy_cgroup)
162 			proto->destroy_cgroup(cgrp);
163 	mutex_unlock(&proto_list_mutex);
164 	return ret;
165 }
166 
mem_cgroup_sockets_destroy(struct cgroup * cgrp)167 void mem_cgroup_sockets_destroy(struct cgroup *cgrp)
168 {
169 	struct proto *proto;
170 
171 	mutex_lock(&proto_list_mutex);
172 	list_for_each_entry_reverse(proto, &proto_list, node)
173 		if (proto->destroy_cgroup)
174 			proto->destroy_cgroup(cgrp);
175 	mutex_unlock(&proto_list_mutex);
176 }
177 #endif
178 
179 /*
180  * Each address family might have different locking rules, so we have
181  * one slock key per address family:
182  */
183 static struct lock_class_key af_family_keys[AF_MAX];
184 static struct lock_class_key af_family_slock_keys[AF_MAX];
185 
186 struct static_key memcg_socket_limit_enabled;
187 EXPORT_SYMBOL(memcg_socket_limit_enabled);
188 
189 /*
190  * Make lock validator output more readable. (we pre-construct these
191  * strings build-time, so that runtime initialization of socket
192  * locks is fast):
193  */
194 static const char *const af_family_key_strings[AF_MAX+1] = {
195   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
196   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
197   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
198   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
199   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
200   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
201   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
202   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
203   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
204   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
205   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
206   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
207   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
208   "sk_lock-AF_NFC"   , "sk_lock-AF_MAX"
209 };
210 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
211   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
212   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
213   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
214   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
215   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
216   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
217   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
218   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
219   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
220   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
221   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
222   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
223   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
224   "slock-AF_NFC"   , "slock-AF_MAX"
225 };
226 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
227   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
228   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
229   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
230   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
231   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
232   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
233   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
234   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
235   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
236   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
237   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
238   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
239   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
240   "clock-AF_NFC"   , "clock-AF_MAX"
241 };
242 
243 /*
244  * sk_callback_lock locking rules are per-address-family,
245  * so split the lock classes by using a per-AF key:
246  */
247 static struct lock_class_key af_callback_keys[AF_MAX];
248 
249 /* Take into consideration the size of the struct sk_buff overhead in the
250  * determination of these values, since that is non-constant across
251  * platforms.  This makes socket queueing behavior and performance
252  * not depend upon such differences.
253  */
254 #define _SK_MEM_PACKETS		256
255 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
256 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
257 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
258 
259 /* Run time adjustable parameters. */
260 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
261 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
262 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
263 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
264 
265 /* Maximal space eaten by iovec or ancillary data plus some space */
266 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
267 EXPORT_SYMBOL(sysctl_optmem_max);
268 
269 #if defined(CONFIG_CGROUPS)
270 #if !defined(CONFIG_NET_CLS_CGROUP)
271 int net_cls_subsys_id = -1;
272 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
273 #endif
274 #if !defined(CONFIG_NETPRIO_CGROUP)
275 int net_prio_subsys_id = -1;
276 EXPORT_SYMBOL_GPL(net_prio_subsys_id);
277 #endif
278 #endif
279 
sock_set_timeout(long * timeo_p,char __user * optval,int optlen)280 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
281 {
282 	struct timeval tv;
283 
284 	if (optlen < sizeof(tv))
285 		return -EINVAL;
286 	if (copy_from_user(&tv, optval, sizeof(tv)))
287 		return -EFAULT;
288 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
289 		return -EDOM;
290 
291 	if (tv.tv_sec < 0) {
292 		static int warned __read_mostly;
293 
294 		*timeo_p = 0;
295 		if (warned < 10 && net_ratelimit()) {
296 			warned++;
297 			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
298 			       "tries to set negative timeout\n",
299 				current->comm, task_pid_nr(current));
300 		}
301 		return 0;
302 	}
303 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
304 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
305 		return 0;
306 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
307 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
308 	return 0;
309 }
310 
sock_warn_obsolete_bsdism(const char * name)311 static void sock_warn_obsolete_bsdism(const char *name)
312 {
313 	static int warned;
314 	static char warncomm[TASK_COMM_LEN];
315 	if (strcmp(warncomm, current->comm) && warned < 5) {
316 		strcpy(warncomm,  current->comm);
317 		printk(KERN_WARNING "process `%s' is using obsolete "
318 		       "%s SO_BSDCOMPAT\n", warncomm, name);
319 		warned++;
320 	}
321 }
322 
323 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
324 
sock_disable_timestamp(struct sock * sk,unsigned long flags)325 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
326 {
327 	if (sk->sk_flags & flags) {
328 		sk->sk_flags &= ~flags;
329 		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
330 			net_disable_timestamp();
331 	}
332 }
333 
334 
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)335 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
336 {
337 	int err;
338 	int skb_len;
339 	unsigned long flags;
340 	struct sk_buff_head *list = &sk->sk_receive_queue;
341 
342 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
343 		atomic_inc(&sk->sk_drops);
344 		trace_sock_rcvqueue_full(sk, skb);
345 		return -ENOMEM;
346 	}
347 
348 	err = sk_filter(sk, skb);
349 	if (err)
350 		return err;
351 
352 	if (!sk_rmem_schedule(sk, skb->truesize)) {
353 		atomic_inc(&sk->sk_drops);
354 		return -ENOBUFS;
355 	}
356 
357 	skb->dev = NULL;
358 	skb_set_owner_r(skb, sk);
359 
360 	/* Cache the SKB length before we tack it onto the receive
361 	 * queue.  Once it is added it no longer belongs to us and
362 	 * may be freed by other threads of control pulling packets
363 	 * from the queue.
364 	 */
365 	skb_len = skb->len;
366 
367 	/* we escape from rcu protected region, make sure we dont leak
368 	 * a norefcounted dst
369 	 */
370 	skb_dst_force(skb);
371 
372 	spin_lock_irqsave(&list->lock, flags);
373 	skb->dropcount = atomic_read(&sk->sk_drops);
374 	__skb_queue_tail(list, skb);
375 	spin_unlock_irqrestore(&list->lock, flags);
376 
377 	if (!sock_flag(sk, SOCK_DEAD))
378 		sk->sk_data_ready(sk, skb_len);
379 	return 0;
380 }
381 EXPORT_SYMBOL(sock_queue_rcv_skb);
382 
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)383 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
384 {
385 	int rc = NET_RX_SUCCESS;
386 
387 	if (sk_filter(sk, skb))
388 		goto discard_and_relse;
389 
390 	skb->dev = NULL;
391 
392 	if (sk_rcvqueues_full(sk, skb)) {
393 		atomic_inc(&sk->sk_drops);
394 		goto discard_and_relse;
395 	}
396 	if (nested)
397 		bh_lock_sock_nested(sk);
398 	else
399 		bh_lock_sock(sk);
400 	if (!sock_owned_by_user(sk)) {
401 		/*
402 		 * trylock + unlock semantics:
403 		 */
404 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
405 
406 		rc = sk_backlog_rcv(sk, skb);
407 
408 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
409 	} else if (sk_add_backlog(sk, skb)) {
410 		bh_unlock_sock(sk);
411 		atomic_inc(&sk->sk_drops);
412 		goto discard_and_relse;
413 	}
414 
415 	bh_unlock_sock(sk);
416 out:
417 	sock_put(sk);
418 	return rc;
419 discard_and_relse:
420 	kfree_skb(skb);
421 	goto out;
422 }
423 EXPORT_SYMBOL(sk_receive_skb);
424 
sk_reset_txq(struct sock * sk)425 void sk_reset_txq(struct sock *sk)
426 {
427 	sk_tx_queue_clear(sk);
428 }
429 EXPORT_SYMBOL(sk_reset_txq);
430 
__sk_dst_check(struct sock * sk,u32 cookie)431 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
432 {
433 	struct dst_entry *dst = __sk_dst_get(sk);
434 
435 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
436 		sk_tx_queue_clear(sk);
437 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
438 		dst_release(dst);
439 		return NULL;
440 	}
441 
442 	return dst;
443 }
444 EXPORT_SYMBOL(__sk_dst_check);
445 
sk_dst_check(struct sock * sk,u32 cookie)446 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
447 {
448 	struct dst_entry *dst = sk_dst_get(sk);
449 
450 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
451 		sk_dst_reset(sk);
452 		dst_release(dst);
453 		return NULL;
454 	}
455 
456 	return dst;
457 }
458 EXPORT_SYMBOL(sk_dst_check);
459 
sock_bindtodevice(struct sock * sk,char __user * optval,int optlen)460 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
461 {
462 	int ret = -ENOPROTOOPT;
463 #ifdef CONFIG_NETDEVICES
464 	struct net *net = sock_net(sk);
465 	char devname[IFNAMSIZ];
466 	int index;
467 
468 	/* Sorry... */
469 	ret = -EPERM;
470 	if (!capable(CAP_NET_RAW))
471 		goto out;
472 
473 	ret = -EINVAL;
474 	if (optlen < 0)
475 		goto out;
476 
477 	/* Bind this socket to a particular device like "eth0",
478 	 * as specified in the passed interface name. If the
479 	 * name is "" or the option length is zero the socket
480 	 * is not bound.
481 	 */
482 	if (optlen > IFNAMSIZ - 1)
483 		optlen = IFNAMSIZ - 1;
484 	memset(devname, 0, sizeof(devname));
485 
486 	ret = -EFAULT;
487 	if (copy_from_user(devname, optval, optlen))
488 		goto out;
489 
490 	index = 0;
491 	if (devname[0] != '\0') {
492 		struct net_device *dev;
493 
494 		rcu_read_lock();
495 		dev = dev_get_by_name_rcu(net, devname);
496 		if (dev)
497 			index = dev->ifindex;
498 		rcu_read_unlock();
499 		ret = -ENODEV;
500 		if (!dev)
501 			goto out;
502 	}
503 
504 	lock_sock(sk);
505 	sk->sk_bound_dev_if = index;
506 	sk_dst_reset(sk);
507 	release_sock(sk);
508 
509 	ret = 0;
510 
511 out:
512 #endif
513 
514 	return ret;
515 }
516 
sock_valbool_flag(struct sock * sk,int bit,int valbool)517 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
518 {
519 	if (valbool)
520 		sock_set_flag(sk, bit);
521 	else
522 		sock_reset_flag(sk, bit);
523 }
524 
525 /*
526  *	This is meant for all protocols to use and covers goings on
527  *	at the socket level. Everything here is generic.
528  */
529 
sock_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)530 int sock_setsockopt(struct socket *sock, int level, int optname,
531 		    char __user *optval, unsigned int optlen)
532 {
533 	struct sock *sk = sock->sk;
534 	int val;
535 	int valbool;
536 	struct linger ling;
537 	int ret = 0;
538 
539 	/*
540 	 *	Options without arguments
541 	 */
542 
543 	if (optname == SO_BINDTODEVICE)
544 		return sock_bindtodevice(sk, optval, optlen);
545 
546 	if (optlen < sizeof(int))
547 		return -EINVAL;
548 
549 	if (get_user(val, (int __user *)optval))
550 		return -EFAULT;
551 
552 	valbool = val ? 1 : 0;
553 
554 	lock_sock(sk);
555 
556 	switch (optname) {
557 	case SO_DEBUG:
558 		if (val && !capable(CAP_NET_ADMIN))
559 			ret = -EACCES;
560 		else
561 			sock_valbool_flag(sk, SOCK_DBG, valbool);
562 		break;
563 	case SO_REUSEADDR:
564 		sk->sk_reuse = valbool;
565 		break;
566 	case SO_TYPE:
567 	case SO_PROTOCOL:
568 	case SO_DOMAIN:
569 	case SO_ERROR:
570 		ret = -ENOPROTOOPT;
571 		break;
572 	case SO_DONTROUTE:
573 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
574 		break;
575 	case SO_BROADCAST:
576 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
577 		break;
578 	case SO_SNDBUF:
579 		/* Don't error on this BSD doesn't and if you think
580 		   about it this is right. Otherwise apps have to
581 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
582 		   are treated in BSD as hints */
583 
584 		if (val > sysctl_wmem_max)
585 			val = sysctl_wmem_max;
586 set_sndbuf:
587 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
588 		if ((val * 2) < SOCK_MIN_SNDBUF)
589 			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
590 		else
591 			sk->sk_sndbuf = val * 2;
592 
593 		/*
594 		 *	Wake up sending tasks if we
595 		 *	upped the value.
596 		 */
597 		sk->sk_write_space(sk);
598 		break;
599 
600 	case SO_SNDBUFFORCE:
601 		if (!capable(CAP_NET_ADMIN)) {
602 			ret = -EPERM;
603 			break;
604 		}
605 		goto set_sndbuf;
606 
607 	case SO_RCVBUF:
608 		/* Don't error on this BSD doesn't and if you think
609 		   about it this is right. Otherwise apps have to
610 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
611 		   are treated in BSD as hints */
612 
613 		if (val > sysctl_rmem_max)
614 			val = sysctl_rmem_max;
615 set_rcvbuf:
616 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
617 		/*
618 		 * We double it on the way in to account for
619 		 * "struct sk_buff" etc. overhead.   Applications
620 		 * assume that the SO_RCVBUF setting they make will
621 		 * allow that much actual data to be received on that
622 		 * socket.
623 		 *
624 		 * Applications are unaware that "struct sk_buff" and
625 		 * other overheads allocate from the receive buffer
626 		 * during socket buffer allocation.
627 		 *
628 		 * And after considering the possible alternatives,
629 		 * returning the value we actually used in getsockopt
630 		 * is the most desirable behavior.
631 		 */
632 		if ((val * 2) < SOCK_MIN_RCVBUF)
633 			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
634 		else
635 			sk->sk_rcvbuf = val * 2;
636 		break;
637 
638 	case SO_RCVBUFFORCE:
639 		if (!capable(CAP_NET_ADMIN)) {
640 			ret = -EPERM;
641 			break;
642 		}
643 		goto set_rcvbuf;
644 
645 	case SO_KEEPALIVE:
646 #ifdef CONFIG_INET
647 		if (sk->sk_protocol == IPPROTO_TCP &&
648 		    sk->sk_type == SOCK_STREAM)
649 			tcp_set_keepalive(sk, valbool);
650 #endif
651 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
652 		break;
653 
654 	case SO_OOBINLINE:
655 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
656 		break;
657 
658 	case SO_NO_CHECK:
659 		sk->sk_no_check = valbool;
660 		break;
661 
662 	case SO_PRIORITY:
663 		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
664 			sk->sk_priority = val;
665 		else
666 			ret = -EPERM;
667 		break;
668 
669 	case SO_LINGER:
670 		if (optlen < sizeof(ling)) {
671 			ret = -EINVAL;	/* 1003.1g */
672 			break;
673 		}
674 		if (copy_from_user(&ling, optval, sizeof(ling))) {
675 			ret = -EFAULT;
676 			break;
677 		}
678 		if (!ling.l_onoff)
679 			sock_reset_flag(sk, SOCK_LINGER);
680 		else {
681 #if (BITS_PER_LONG == 32)
682 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
683 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
684 			else
685 #endif
686 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
687 			sock_set_flag(sk, SOCK_LINGER);
688 		}
689 		break;
690 
691 	case SO_BSDCOMPAT:
692 		sock_warn_obsolete_bsdism("setsockopt");
693 		break;
694 
695 	case SO_PASSCRED:
696 		if (valbool)
697 			set_bit(SOCK_PASSCRED, &sock->flags);
698 		else
699 			clear_bit(SOCK_PASSCRED, &sock->flags);
700 		break;
701 
702 	case SO_TIMESTAMP:
703 	case SO_TIMESTAMPNS:
704 		if (valbool)  {
705 			if (optname == SO_TIMESTAMP)
706 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
707 			else
708 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
709 			sock_set_flag(sk, SOCK_RCVTSTAMP);
710 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
711 		} else {
712 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
713 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
714 		}
715 		break;
716 
717 	case SO_TIMESTAMPING:
718 		if (val & ~SOF_TIMESTAMPING_MASK) {
719 			ret = -EINVAL;
720 			break;
721 		}
722 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
723 				  val & SOF_TIMESTAMPING_TX_HARDWARE);
724 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
725 				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
726 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
727 				  val & SOF_TIMESTAMPING_RX_HARDWARE);
728 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
729 			sock_enable_timestamp(sk,
730 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
731 		else
732 			sock_disable_timestamp(sk,
733 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
734 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
735 				  val & SOF_TIMESTAMPING_SOFTWARE);
736 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
737 				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
738 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
739 				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
740 		break;
741 
742 	case SO_RCVLOWAT:
743 		if (val < 0)
744 			val = INT_MAX;
745 		sk->sk_rcvlowat = val ? : 1;
746 		break;
747 
748 	case SO_RCVTIMEO:
749 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
750 		break;
751 
752 	case SO_SNDTIMEO:
753 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
754 		break;
755 
756 	case SO_ATTACH_FILTER:
757 		ret = -EINVAL;
758 		if (optlen == sizeof(struct sock_fprog)) {
759 			struct sock_fprog fprog;
760 
761 			ret = -EFAULT;
762 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
763 				break;
764 
765 			ret = sk_attach_filter(&fprog, sk);
766 		}
767 		break;
768 
769 	case SO_DETACH_FILTER:
770 		ret = sk_detach_filter(sk);
771 		break;
772 
773 	case SO_PASSSEC:
774 		if (valbool)
775 			set_bit(SOCK_PASSSEC, &sock->flags);
776 		else
777 			clear_bit(SOCK_PASSSEC, &sock->flags);
778 		break;
779 	case SO_MARK:
780 		if (!capable(CAP_NET_ADMIN))
781 			ret = -EPERM;
782 		else
783 			sk->sk_mark = val;
784 		break;
785 
786 		/* We implement the SO_SNDLOWAT etc to
787 		   not be settable (1003.1g 5.3) */
788 	case SO_RXQ_OVFL:
789 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
790 		break;
791 
792 	case SO_WIFI_STATUS:
793 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
794 		break;
795 
796 	case SO_PEEK_OFF:
797 		if (sock->ops->set_peek_off)
798 			ret = sock->ops->set_peek_off(sk, val);
799 		else
800 			ret = -EOPNOTSUPP;
801 		break;
802 
803 	case SO_NOFCS:
804 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
805 		break;
806 
807 	default:
808 		ret = -ENOPROTOOPT;
809 		break;
810 	}
811 	release_sock(sk);
812 	return ret;
813 }
814 EXPORT_SYMBOL(sock_setsockopt);
815 
816 
cred_to_ucred(struct pid * pid,const struct cred * cred,struct ucred * ucred,bool use_effective)817 void cred_to_ucred(struct pid *pid, const struct cred *cred,
818 		   struct ucred *ucred, bool use_effective)
819 {
820 	ucred->pid = pid_vnr(pid);
821 	ucred->uid = ucred->gid = -1;
822 	if (cred) {
823 		struct user_namespace *current_ns = current_user_ns();
824 
825 		if (use_effective) {
826 			ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
827 			ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
828 		} else {
829 			ucred->uid = user_ns_map_uid(current_ns, cred, cred->uid);
830 			ucred->gid = user_ns_map_gid(current_ns, cred, cred->gid);
831 		}
832 	}
833 }
834 EXPORT_SYMBOL_GPL(cred_to_ucred);
835 
sock_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)836 int sock_getsockopt(struct socket *sock, int level, int optname,
837 		    char __user *optval, int __user *optlen)
838 {
839 	struct sock *sk = sock->sk;
840 
841 	union {
842 		int val;
843 		struct linger ling;
844 		struct timeval tm;
845 	} v;
846 
847 	int lv = sizeof(int);
848 	int len;
849 
850 	if (get_user(len, optlen))
851 		return -EFAULT;
852 	if (len < 0)
853 		return -EINVAL;
854 
855 	memset(&v, 0, sizeof(v));
856 
857 	switch (optname) {
858 	case SO_DEBUG:
859 		v.val = sock_flag(sk, SOCK_DBG);
860 		break;
861 
862 	case SO_DONTROUTE:
863 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
864 		break;
865 
866 	case SO_BROADCAST:
867 		v.val = !!sock_flag(sk, SOCK_BROADCAST);
868 		break;
869 
870 	case SO_SNDBUF:
871 		v.val = sk->sk_sndbuf;
872 		break;
873 
874 	case SO_RCVBUF:
875 		v.val = sk->sk_rcvbuf;
876 		break;
877 
878 	case SO_REUSEADDR:
879 		v.val = sk->sk_reuse;
880 		break;
881 
882 	case SO_KEEPALIVE:
883 		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
884 		break;
885 
886 	case SO_TYPE:
887 		v.val = sk->sk_type;
888 		break;
889 
890 	case SO_PROTOCOL:
891 		v.val = sk->sk_protocol;
892 		break;
893 
894 	case SO_DOMAIN:
895 		v.val = sk->sk_family;
896 		break;
897 
898 	case SO_ERROR:
899 		v.val = -sock_error(sk);
900 		if (v.val == 0)
901 			v.val = xchg(&sk->sk_err_soft, 0);
902 		break;
903 
904 	case SO_OOBINLINE:
905 		v.val = !!sock_flag(sk, SOCK_URGINLINE);
906 		break;
907 
908 	case SO_NO_CHECK:
909 		v.val = sk->sk_no_check;
910 		break;
911 
912 	case SO_PRIORITY:
913 		v.val = sk->sk_priority;
914 		break;
915 
916 	case SO_LINGER:
917 		lv		= sizeof(v.ling);
918 		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
919 		v.ling.l_linger	= sk->sk_lingertime / HZ;
920 		break;
921 
922 	case SO_BSDCOMPAT:
923 		sock_warn_obsolete_bsdism("getsockopt");
924 		break;
925 
926 	case SO_TIMESTAMP:
927 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
928 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
929 		break;
930 
931 	case SO_TIMESTAMPNS:
932 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
933 		break;
934 
935 	case SO_TIMESTAMPING:
936 		v.val = 0;
937 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
938 			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
939 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
940 			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
941 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
942 			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
943 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
944 			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
945 		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
946 			v.val |= SOF_TIMESTAMPING_SOFTWARE;
947 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
948 			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
949 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
950 			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
951 		break;
952 
953 	case SO_RCVTIMEO:
954 		lv = sizeof(struct timeval);
955 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
956 			v.tm.tv_sec = 0;
957 			v.tm.tv_usec = 0;
958 		} else {
959 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
960 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
961 		}
962 		break;
963 
964 	case SO_SNDTIMEO:
965 		lv = sizeof(struct timeval);
966 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
967 			v.tm.tv_sec = 0;
968 			v.tm.tv_usec = 0;
969 		} else {
970 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
971 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
972 		}
973 		break;
974 
975 	case SO_RCVLOWAT:
976 		v.val = sk->sk_rcvlowat;
977 		break;
978 
979 	case SO_SNDLOWAT:
980 		v.val = 1;
981 		break;
982 
983 	case SO_PASSCRED:
984 		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
985 		break;
986 
987 	case SO_PEERCRED:
988 	{
989 		struct ucred peercred;
990 		if (len > sizeof(peercred))
991 			len = sizeof(peercred);
992 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred,
993 			      &peercred, true);
994 		if (copy_to_user(optval, &peercred, len))
995 			return -EFAULT;
996 		goto lenout;
997 	}
998 
999 	case SO_PEERNAME:
1000 	{
1001 		char address[128];
1002 
1003 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1004 			return -ENOTCONN;
1005 		if (lv < len)
1006 			return -EINVAL;
1007 		if (copy_to_user(optval, address, len))
1008 			return -EFAULT;
1009 		goto lenout;
1010 	}
1011 
1012 	/* Dubious BSD thing... Probably nobody even uses it, but
1013 	 * the UNIX standard wants it for whatever reason... -DaveM
1014 	 */
1015 	case SO_ACCEPTCONN:
1016 		v.val = sk->sk_state == TCP_LISTEN;
1017 		break;
1018 
1019 	case SO_PASSSEC:
1020 		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
1021 		break;
1022 
1023 	case SO_PEERSEC:
1024 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1025 
1026 	case SO_MARK:
1027 		v.val = sk->sk_mark;
1028 		break;
1029 
1030 	case SO_RXQ_OVFL:
1031 		v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
1032 		break;
1033 
1034 	case SO_WIFI_STATUS:
1035 		v.val = !!sock_flag(sk, SOCK_WIFI_STATUS);
1036 		break;
1037 
1038 	case SO_PEEK_OFF:
1039 		if (!sock->ops->set_peek_off)
1040 			return -EOPNOTSUPP;
1041 
1042 		v.val = sk->sk_peek_off;
1043 		break;
1044 	case SO_NOFCS:
1045 		v.val = !!sock_flag(sk, SOCK_NOFCS);
1046 		break;
1047 	default:
1048 		return -ENOPROTOOPT;
1049 	}
1050 
1051 	if (len > lv)
1052 		len = lv;
1053 	if (copy_to_user(optval, &v, len))
1054 		return -EFAULT;
1055 lenout:
1056 	if (put_user(len, optlen))
1057 		return -EFAULT;
1058 	return 0;
1059 }
1060 
1061 /*
1062  * Initialize an sk_lock.
1063  *
1064  * (We also register the sk_lock with the lock validator.)
1065  */
sock_lock_init(struct sock * sk)1066 static inline void sock_lock_init(struct sock *sk)
1067 {
1068 	sock_lock_init_class_and_name(sk,
1069 			af_family_slock_key_strings[sk->sk_family],
1070 			af_family_slock_keys + sk->sk_family,
1071 			af_family_key_strings[sk->sk_family],
1072 			af_family_keys + sk->sk_family);
1073 }
1074 
1075 /*
1076  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1077  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1078  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1079  */
sock_copy(struct sock * nsk,const struct sock * osk)1080 static void sock_copy(struct sock *nsk, const struct sock *osk)
1081 {
1082 #ifdef CONFIG_SECURITY_NETWORK
1083 	void *sptr = nsk->sk_security;
1084 #endif
1085 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1086 
1087 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1088 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1089 
1090 #ifdef CONFIG_SECURITY_NETWORK
1091 	nsk->sk_security = sptr;
1092 	security_sk_clone(osk, nsk);
1093 #endif
1094 }
1095 
sk_prot_clear_portaddr_nulls(struct sock * sk,int size)1096 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1097 {
1098 	unsigned long nulls1, nulls2;
1099 
1100 	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1101 	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1102 	if (nulls1 > nulls2)
1103 		swap(nulls1, nulls2);
1104 
1105 	if (nulls1 != 0)
1106 		memset((char *)sk, 0, nulls1);
1107 	memset((char *)sk + nulls1 + sizeof(void *), 0,
1108 	       nulls2 - nulls1 - sizeof(void *));
1109 	memset((char *)sk + nulls2 + sizeof(void *), 0,
1110 	       size - nulls2 - sizeof(void *));
1111 }
1112 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1113 
sk_prot_alloc(struct proto * prot,gfp_t priority,int family)1114 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1115 		int family)
1116 {
1117 	struct sock *sk;
1118 	struct kmem_cache *slab;
1119 
1120 	slab = prot->slab;
1121 	if (slab != NULL) {
1122 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1123 		if (!sk)
1124 			return sk;
1125 		if (priority & __GFP_ZERO) {
1126 			if (prot->clear_sk)
1127 				prot->clear_sk(sk, prot->obj_size);
1128 			else
1129 				sk_prot_clear_nulls(sk, prot->obj_size);
1130 		}
1131 	} else
1132 		sk = kmalloc(prot->obj_size, priority);
1133 
1134 	if (sk != NULL) {
1135 		kmemcheck_annotate_bitfield(sk, flags);
1136 
1137 		if (security_sk_alloc(sk, family, priority))
1138 			goto out_free;
1139 
1140 		if (!try_module_get(prot->owner))
1141 			goto out_free_sec;
1142 		sk_tx_queue_clear(sk);
1143 	}
1144 
1145 	return sk;
1146 
1147 out_free_sec:
1148 	security_sk_free(sk);
1149 out_free:
1150 	if (slab != NULL)
1151 		kmem_cache_free(slab, sk);
1152 	else
1153 		kfree(sk);
1154 	return NULL;
1155 }
1156 
sk_prot_free(struct proto * prot,struct sock * sk)1157 static void sk_prot_free(struct proto *prot, struct sock *sk)
1158 {
1159 	struct kmem_cache *slab;
1160 	struct module *owner;
1161 
1162 	owner = prot->owner;
1163 	slab = prot->slab;
1164 
1165 	security_sk_free(sk);
1166 	if (slab != NULL)
1167 		kmem_cache_free(slab, sk);
1168 	else
1169 		kfree(sk);
1170 	module_put(owner);
1171 }
1172 
1173 #ifdef CONFIG_CGROUPS
sock_update_classid(struct sock * sk)1174 void sock_update_classid(struct sock *sk)
1175 {
1176 	u32 classid;
1177 
1178 	rcu_read_lock();  /* doing current task, which cannot vanish. */
1179 	classid = task_cls_classid(current);
1180 	rcu_read_unlock();
1181 	if (classid && classid != sk->sk_classid)
1182 		sk->sk_classid = classid;
1183 }
1184 EXPORT_SYMBOL(sock_update_classid);
1185 
sock_update_netprioidx(struct sock * sk)1186 void sock_update_netprioidx(struct sock *sk)
1187 {
1188 	if (in_interrupt())
1189 		return;
1190 
1191 	sk->sk_cgrp_prioidx = task_netprioidx(current);
1192 }
1193 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1194 #endif
1195 
1196 /**
1197  *	sk_alloc - All socket objects are allocated here
1198  *	@net: the applicable net namespace
1199  *	@family: protocol family
1200  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1201  *	@prot: struct proto associated with this new sock instance
1202  */
sk_alloc(struct net * net,int family,gfp_t priority,struct proto * prot)1203 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1204 		      struct proto *prot)
1205 {
1206 	struct sock *sk;
1207 
1208 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1209 	if (sk) {
1210 		sk->sk_family = family;
1211 		/*
1212 		 * See comment in struct sock definition to understand
1213 		 * why we need sk_prot_creator -acme
1214 		 */
1215 		sk->sk_prot = sk->sk_prot_creator = prot;
1216 		sock_lock_init(sk);
1217 		sock_net_set(sk, get_net(net));
1218 		atomic_set(&sk->sk_wmem_alloc, 1);
1219 
1220 		sock_update_classid(sk);
1221 		sock_update_netprioidx(sk);
1222 	}
1223 
1224 	return sk;
1225 }
1226 EXPORT_SYMBOL(sk_alloc);
1227 
__sk_free(struct sock * sk)1228 static void __sk_free(struct sock *sk)
1229 {
1230 	struct sk_filter *filter;
1231 
1232 	if (sk->sk_destruct)
1233 		sk->sk_destruct(sk);
1234 
1235 	filter = rcu_dereference_check(sk->sk_filter,
1236 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1237 	if (filter) {
1238 		sk_filter_uncharge(sk, filter);
1239 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1240 	}
1241 
1242 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1243 
1244 	if (atomic_read(&sk->sk_omem_alloc))
1245 		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1246 		       __func__, atomic_read(&sk->sk_omem_alloc));
1247 
1248 	if (sk->sk_peer_cred)
1249 		put_cred(sk->sk_peer_cred);
1250 	put_pid(sk->sk_peer_pid);
1251 	put_net(sock_net(sk));
1252 	sk_prot_free(sk->sk_prot_creator, sk);
1253 }
1254 
sk_free(struct sock * sk)1255 void sk_free(struct sock *sk)
1256 {
1257 	/*
1258 	 * We subtract one from sk_wmem_alloc and can know if
1259 	 * some packets are still in some tx queue.
1260 	 * If not null, sock_wfree() will call __sk_free(sk) later
1261 	 */
1262 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1263 		__sk_free(sk);
1264 }
1265 EXPORT_SYMBOL(sk_free);
1266 
1267 /*
1268  * Last sock_put should drop reference to sk->sk_net. It has already
1269  * been dropped in sk_change_net. Taking reference to stopping namespace
1270  * is not an option.
1271  * Take reference to a socket to remove it from hash _alive_ and after that
1272  * destroy it in the context of init_net.
1273  */
sk_release_kernel(struct sock * sk)1274 void sk_release_kernel(struct sock *sk)
1275 {
1276 	if (sk == NULL || sk->sk_socket == NULL)
1277 		return;
1278 
1279 	sock_hold(sk);
1280 	sock_release(sk->sk_socket);
1281 	release_net(sock_net(sk));
1282 	sock_net_set(sk, get_net(&init_net));
1283 	sock_put(sk);
1284 }
1285 EXPORT_SYMBOL(sk_release_kernel);
1286 
sk_update_clone(const struct sock * sk,struct sock * newsk)1287 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1288 {
1289 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1290 		sock_update_memcg(newsk);
1291 }
1292 
1293 /**
1294  *	sk_clone_lock - clone a socket, and lock its clone
1295  *	@sk: the socket to clone
1296  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1297  *
1298  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1299  */
sk_clone_lock(const struct sock * sk,const gfp_t priority)1300 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1301 {
1302 	struct sock *newsk;
1303 
1304 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1305 	if (newsk != NULL) {
1306 		struct sk_filter *filter;
1307 
1308 		sock_copy(newsk, sk);
1309 
1310 		/* SANITY */
1311 		get_net(sock_net(newsk));
1312 		sk_node_init(&newsk->sk_node);
1313 		sock_lock_init(newsk);
1314 		bh_lock_sock(newsk);
1315 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1316 		newsk->sk_backlog.len = 0;
1317 
1318 		atomic_set(&newsk->sk_rmem_alloc, 0);
1319 		/*
1320 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1321 		 */
1322 		atomic_set(&newsk->sk_wmem_alloc, 1);
1323 		atomic_set(&newsk->sk_omem_alloc, 0);
1324 		skb_queue_head_init(&newsk->sk_receive_queue);
1325 		skb_queue_head_init(&newsk->sk_write_queue);
1326 #ifdef CONFIG_NET_DMA
1327 		skb_queue_head_init(&newsk->sk_async_wait_queue);
1328 #endif
1329 
1330 		spin_lock_init(&newsk->sk_dst_lock);
1331 		rwlock_init(&newsk->sk_callback_lock);
1332 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1333 				af_callback_keys + newsk->sk_family,
1334 				af_family_clock_key_strings[newsk->sk_family]);
1335 
1336 		newsk->sk_dst_cache	= NULL;
1337 		newsk->sk_wmem_queued	= 0;
1338 		newsk->sk_forward_alloc = 0;
1339 		newsk->sk_send_head	= NULL;
1340 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1341 
1342 		sock_reset_flag(newsk, SOCK_DONE);
1343 		skb_queue_head_init(&newsk->sk_error_queue);
1344 
1345 		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1346 		if (filter != NULL)
1347 			sk_filter_charge(newsk, filter);
1348 
1349 		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1350 			/* It is still raw copy of parent, so invalidate
1351 			 * destructor and make plain sk_free() */
1352 			newsk->sk_destruct = NULL;
1353 			bh_unlock_sock(newsk);
1354 			sk_free(newsk);
1355 			newsk = NULL;
1356 			goto out;
1357 		}
1358 
1359 		newsk->sk_err	   = 0;
1360 		newsk->sk_priority = 0;
1361 		/*
1362 		 * Before updating sk_refcnt, we must commit prior changes to memory
1363 		 * (Documentation/RCU/rculist_nulls.txt for details)
1364 		 */
1365 		smp_wmb();
1366 		atomic_set(&newsk->sk_refcnt, 2);
1367 
1368 		/*
1369 		 * Increment the counter in the same struct proto as the master
1370 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1371 		 * is the same as sk->sk_prot->socks, as this field was copied
1372 		 * with memcpy).
1373 		 *
1374 		 * This _changes_ the previous behaviour, where
1375 		 * tcp_create_openreq_child always was incrementing the
1376 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1377 		 * to be taken into account in all callers. -acme
1378 		 */
1379 		sk_refcnt_debug_inc(newsk);
1380 		sk_set_socket(newsk, NULL);
1381 		newsk->sk_wq = NULL;
1382 
1383 		sk_update_clone(sk, newsk);
1384 
1385 		if (newsk->sk_prot->sockets_allocated)
1386 			sk_sockets_allocated_inc(newsk);
1387 
1388 		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1389 			net_enable_timestamp();
1390 	}
1391 out:
1392 	return newsk;
1393 }
1394 EXPORT_SYMBOL_GPL(sk_clone_lock);
1395 
sk_setup_caps(struct sock * sk,struct dst_entry * dst)1396 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1397 {
1398 	__sk_dst_set(sk, dst);
1399 	sk->sk_route_caps = dst->dev->features;
1400 	if (sk->sk_route_caps & NETIF_F_GSO)
1401 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1402 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1403 	if (sk_can_gso(sk)) {
1404 		if (dst->header_len) {
1405 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1406 		} else {
1407 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1408 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1409 			sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1410 		}
1411 	}
1412 }
1413 EXPORT_SYMBOL_GPL(sk_setup_caps);
1414 
sk_init(void)1415 void __init sk_init(void)
1416 {
1417 	if (totalram_pages <= 4096) {
1418 		sysctl_wmem_max = 32767;
1419 		sysctl_rmem_max = 32767;
1420 		sysctl_wmem_default = 32767;
1421 		sysctl_rmem_default = 32767;
1422 	} else if (totalram_pages >= 131072) {
1423 		sysctl_wmem_max = 131071;
1424 		sysctl_rmem_max = 131071;
1425 	}
1426 }
1427 
1428 /*
1429  *	Simple resource managers for sockets.
1430  */
1431 
1432 
1433 /*
1434  * Write buffer destructor automatically called from kfree_skb.
1435  */
sock_wfree(struct sk_buff * skb)1436 void sock_wfree(struct sk_buff *skb)
1437 {
1438 	struct sock *sk = skb->sk;
1439 	unsigned int len = skb->truesize;
1440 
1441 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1442 		/*
1443 		 * Keep a reference on sk_wmem_alloc, this will be released
1444 		 * after sk_write_space() call
1445 		 */
1446 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1447 		sk->sk_write_space(sk);
1448 		len = 1;
1449 	}
1450 	/*
1451 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1452 	 * could not do because of in-flight packets
1453 	 */
1454 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1455 		__sk_free(sk);
1456 }
1457 EXPORT_SYMBOL(sock_wfree);
1458 
1459 /*
1460  * Read buffer destructor automatically called from kfree_skb.
1461  */
sock_rfree(struct sk_buff * skb)1462 void sock_rfree(struct sk_buff *skb)
1463 {
1464 	struct sock *sk = skb->sk;
1465 	unsigned int len = skb->truesize;
1466 
1467 	atomic_sub(len, &sk->sk_rmem_alloc);
1468 	sk_mem_uncharge(sk, len);
1469 }
1470 EXPORT_SYMBOL(sock_rfree);
1471 
1472 
sock_i_uid(struct sock * sk)1473 int sock_i_uid(struct sock *sk)
1474 {
1475 	int uid;
1476 
1477 	read_lock_bh(&sk->sk_callback_lock);
1478 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1479 	read_unlock_bh(&sk->sk_callback_lock);
1480 	return uid;
1481 }
1482 EXPORT_SYMBOL(sock_i_uid);
1483 
sock_i_ino(struct sock * sk)1484 unsigned long sock_i_ino(struct sock *sk)
1485 {
1486 	unsigned long ino;
1487 
1488 	read_lock_bh(&sk->sk_callback_lock);
1489 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1490 	read_unlock_bh(&sk->sk_callback_lock);
1491 	return ino;
1492 }
1493 EXPORT_SYMBOL(sock_i_ino);
1494 
1495 /*
1496  * Allocate a skb from the socket's send buffer.
1497  */
sock_wmalloc(struct sock * sk,unsigned long size,int force,gfp_t priority)1498 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1499 			     gfp_t priority)
1500 {
1501 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1502 		struct sk_buff *skb = alloc_skb(size, priority);
1503 		if (skb) {
1504 			skb_set_owner_w(skb, sk);
1505 			return skb;
1506 		}
1507 	}
1508 	return NULL;
1509 }
1510 EXPORT_SYMBOL(sock_wmalloc);
1511 
1512 /*
1513  * Allocate a skb from the socket's receive buffer.
1514  */
sock_rmalloc(struct sock * sk,unsigned long size,int force,gfp_t priority)1515 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1516 			     gfp_t priority)
1517 {
1518 	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1519 		struct sk_buff *skb = alloc_skb(size, priority);
1520 		if (skb) {
1521 			skb_set_owner_r(skb, sk);
1522 			return skb;
1523 		}
1524 	}
1525 	return NULL;
1526 }
1527 
1528 /*
1529  * Allocate a memory block from the socket's option memory buffer.
1530  */
sock_kmalloc(struct sock * sk,int size,gfp_t priority)1531 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1532 {
1533 	if ((unsigned)size <= sysctl_optmem_max &&
1534 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1535 		void *mem;
1536 		/* First do the add, to avoid the race if kmalloc
1537 		 * might sleep.
1538 		 */
1539 		atomic_add(size, &sk->sk_omem_alloc);
1540 		mem = kmalloc(size, priority);
1541 		if (mem)
1542 			return mem;
1543 		atomic_sub(size, &sk->sk_omem_alloc);
1544 	}
1545 	return NULL;
1546 }
1547 EXPORT_SYMBOL(sock_kmalloc);
1548 
1549 /*
1550  * Free an option memory block.
1551  */
sock_kfree_s(struct sock * sk,void * mem,int size)1552 void sock_kfree_s(struct sock *sk, void *mem, int size)
1553 {
1554 	kfree(mem);
1555 	atomic_sub(size, &sk->sk_omem_alloc);
1556 }
1557 EXPORT_SYMBOL(sock_kfree_s);
1558 
1559 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1560    I think, these locks should be removed for datagram sockets.
1561  */
sock_wait_for_wmem(struct sock * sk,long timeo)1562 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1563 {
1564 	DEFINE_WAIT(wait);
1565 
1566 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1567 	for (;;) {
1568 		if (!timeo)
1569 			break;
1570 		if (signal_pending(current))
1571 			break;
1572 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1573 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1574 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1575 			break;
1576 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1577 			break;
1578 		if (sk->sk_err)
1579 			break;
1580 		timeo = schedule_timeout(timeo);
1581 	}
1582 	finish_wait(sk_sleep(sk), &wait);
1583 	return timeo;
1584 }
1585 
1586 
1587 /*
1588  *	Generic send/receive buffer handlers
1589  */
1590 
sock_alloc_send_pskb(struct sock * sk,unsigned long header_len,unsigned long data_len,int noblock,int * errcode)1591 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1592 				     unsigned long data_len, int noblock,
1593 				     int *errcode)
1594 {
1595 	struct sk_buff *skb;
1596 	gfp_t gfp_mask;
1597 	long timeo;
1598 	int err;
1599 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1600 
1601 	err = -EMSGSIZE;
1602 	if (npages > MAX_SKB_FRAGS)
1603 		goto failure;
1604 
1605 	gfp_mask = sk->sk_allocation;
1606 	if (gfp_mask & __GFP_WAIT)
1607 		gfp_mask |= __GFP_REPEAT;
1608 
1609 	timeo = sock_sndtimeo(sk, noblock);
1610 	while (1) {
1611 		err = sock_error(sk);
1612 		if (err != 0)
1613 			goto failure;
1614 
1615 		err = -EPIPE;
1616 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1617 			goto failure;
1618 
1619 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1620 			skb = alloc_skb(header_len, gfp_mask);
1621 			if (skb) {
1622 				int i;
1623 
1624 				/* No pages, we're done... */
1625 				if (!data_len)
1626 					break;
1627 
1628 				skb->truesize += data_len;
1629 				skb_shinfo(skb)->nr_frags = npages;
1630 				for (i = 0; i < npages; i++) {
1631 					struct page *page;
1632 
1633 					page = alloc_pages(sk->sk_allocation, 0);
1634 					if (!page) {
1635 						err = -ENOBUFS;
1636 						skb_shinfo(skb)->nr_frags = i;
1637 						kfree_skb(skb);
1638 						goto failure;
1639 					}
1640 
1641 					__skb_fill_page_desc(skb, i,
1642 							page, 0,
1643 							(data_len >= PAGE_SIZE ?
1644 							 PAGE_SIZE :
1645 							 data_len));
1646 					data_len -= PAGE_SIZE;
1647 				}
1648 
1649 				/* Full success... */
1650 				break;
1651 			}
1652 			err = -ENOBUFS;
1653 			goto failure;
1654 		}
1655 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1656 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1657 		err = -EAGAIN;
1658 		if (!timeo)
1659 			goto failure;
1660 		if (signal_pending(current))
1661 			goto interrupted;
1662 		timeo = sock_wait_for_wmem(sk, timeo);
1663 	}
1664 
1665 	skb_set_owner_w(skb, sk);
1666 	return skb;
1667 
1668 interrupted:
1669 	err = sock_intr_errno(timeo);
1670 failure:
1671 	*errcode = err;
1672 	return NULL;
1673 }
1674 EXPORT_SYMBOL(sock_alloc_send_pskb);
1675 
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)1676 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1677 				    int noblock, int *errcode)
1678 {
1679 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1680 }
1681 EXPORT_SYMBOL(sock_alloc_send_skb);
1682 
__lock_sock(struct sock * sk)1683 static void __lock_sock(struct sock *sk)
1684 	__releases(&sk->sk_lock.slock)
1685 	__acquires(&sk->sk_lock.slock)
1686 {
1687 	DEFINE_WAIT(wait);
1688 
1689 	for (;;) {
1690 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1691 					TASK_UNINTERRUPTIBLE);
1692 		spin_unlock_bh(&sk->sk_lock.slock);
1693 		schedule();
1694 		spin_lock_bh(&sk->sk_lock.slock);
1695 		if (!sock_owned_by_user(sk))
1696 			break;
1697 	}
1698 	finish_wait(&sk->sk_lock.wq, &wait);
1699 }
1700 
__release_sock(struct sock * sk)1701 static void __release_sock(struct sock *sk)
1702 	__releases(&sk->sk_lock.slock)
1703 	__acquires(&sk->sk_lock.slock)
1704 {
1705 	struct sk_buff *skb = sk->sk_backlog.head;
1706 
1707 	do {
1708 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1709 		bh_unlock_sock(sk);
1710 
1711 		do {
1712 			struct sk_buff *next = skb->next;
1713 
1714 			WARN_ON_ONCE(skb_dst_is_noref(skb));
1715 			skb->next = NULL;
1716 			sk_backlog_rcv(sk, skb);
1717 
1718 			/*
1719 			 * We are in process context here with softirqs
1720 			 * disabled, use cond_resched_softirq() to preempt.
1721 			 * This is safe to do because we've taken the backlog
1722 			 * queue private:
1723 			 */
1724 			cond_resched_softirq();
1725 
1726 			skb = next;
1727 		} while (skb != NULL);
1728 
1729 		bh_lock_sock(sk);
1730 	} while ((skb = sk->sk_backlog.head) != NULL);
1731 
1732 	/*
1733 	 * Doing the zeroing here guarantee we can not loop forever
1734 	 * while a wild producer attempts to flood us.
1735 	 */
1736 	sk->sk_backlog.len = 0;
1737 }
1738 
1739 /**
1740  * sk_wait_data - wait for data to arrive at sk_receive_queue
1741  * @sk:    sock to wait on
1742  * @timeo: for how long
1743  *
1744  * Now socket state including sk->sk_err is changed only under lock,
1745  * hence we may omit checks after joining wait queue.
1746  * We check receive queue before schedule() only as optimization;
1747  * it is very likely that release_sock() added new data.
1748  */
sk_wait_data(struct sock * sk,long * timeo)1749 int sk_wait_data(struct sock *sk, long *timeo)
1750 {
1751 	int rc;
1752 	DEFINE_WAIT(wait);
1753 
1754 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1755 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1756 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1757 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1758 	finish_wait(sk_sleep(sk), &wait);
1759 	return rc;
1760 }
1761 EXPORT_SYMBOL(sk_wait_data);
1762 
1763 /**
1764  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1765  *	@sk: socket
1766  *	@size: memory size to allocate
1767  *	@kind: allocation type
1768  *
1769  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1770  *	rmem allocation. This function assumes that protocols which have
1771  *	memory_pressure use sk_wmem_queued as write buffer accounting.
1772  */
__sk_mem_schedule(struct sock * sk,int size,int kind)1773 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1774 {
1775 	struct proto *prot = sk->sk_prot;
1776 	int amt = sk_mem_pages(size);
1777 	long allocated;
1778 	int parent_status = UNDER_LIMIT;
1779 
1780 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1781 
1782 	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1783 
1784 	/* Under limit. */
1785 	if (parent_status == UNDER_LIMIT &&
1786 			allocated <= sk_prot_mem_limits(sk, 0)) {
1787 		sk_leave_memory_pressure(sk);
1788 		return 1;
1789 	}
1790 
1791 	/* Under pressure. (we or our parents) */
1792 	if ((parent_status > SOFT_LIMIT) ||
1793 			allocated > sk_prot_mem_limits(sk, 1))
1794 		sk_enter_memory_pressure(sk);
1795 
1796 	/* Over hard limit (we or our parents) */
1797 	if ((parent_status == OVER_LIMIT) ||
1798 			(allocated > sk_prot_mem_limits(sk, 2)))
1799 		goto suppress_allocation;
1800 
1801 	/* guarantee minimum buffer size under pressure */
1802 	if (kind == SK_MEM_RECV) {
1803 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1804 			return 1;
1805 
1806 	} else { /* SK_MEM_SEND */
1807 		if (sk->sk_type == SOCK_STREAM) {
1808 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1809 				return 1;
1810 		} else if (atomic_read(&sk->sk_wmem_alloc) <
1811 			   prot->sysctl_wmem[0])
1812 				return 1;
1813 	}
1814 
1815 	if (sk_has_memory_pressure(sk)) {
1816 		int alloc;
1817 
1818 		if (!sk_under_memory_pressure(sk))
1819 			return 1;
1820 		alloc = sk_sockets_allocated_read_positive(sk);
1821 		if (sk_prot_mem_limits(sk, 2) > alloc *
1822 		    sk_mem_pages(sk->sk_wmem_queued +
1823 				 atomic_read(&sk->sk_rmem_alloc) +
1824 				 sk->sk_forward_alloc))
1825 			return 1;
1826 	}
1827 
1828 suppress_allocation:
1829 
1830 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1831 		sk_stream_moderate_sndbuf(sk);
1832 
1833 		/* Fail only if socket is _under_ its sndbuf.
1834 		 * In this case we cannot block, so that we have to fail.
1835 		 */
1836 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1837 			return 1;
1838 	}
1839 
1840 	trace_sock_exceed_buf_limit(sk, prot, allocated);
1841 
1842 	/* Alas. Undo changes. */
1843 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1844 
1845 	sk_memory_allocated_sub(sk, amt);
1846 
1847 	return 0;
1848 }
1849 EXPORT_SYMBOL(__sk_mem_schedule);
1850 
1851 /**
1852  *	__sk_reclaim - reclaim memory_allocated
1853  *	@sk: socket
1854  */
__sk_mem_reclaim(struct sock * sk)1855 void __sk_mem_reclaim(struct sock *sk)
1856 {
1857 	sk_memory_allocated_sub(sk,
1858 				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
1859 	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1860 
1861 	if (sk_under_memory_pressure(sk) &&
1862 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1863 		sk_leave_memory_pressure(sk);
1864 }
1865 EXPORT_SYMBOL(__sk_mem_reclaim);
1866 
1867 
1868 /*
1869  * Set of default routines for initialising struct proto_ops when
1870  * the protocol does not support a particular function. In certain
1871  * cases where it makes no sense for a protocol to have a "do nothing"
1872  * function, some default processing is provided.
1873  */
1874 
sock_no_bind(struct socket * sock,struct sockaddr * saddr,int len)1875 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1876 {
1877 	return -EOPNOTSUPP;
1878 }
1879 EXPORT_SYMBOL(sock_no_bind);
1880 
sock_no_connect(struct socket * sock,struct sockaddr * saddr,int len,int flags)1881 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1882 		    int len, int flags)
1883 {
1884 	return -EOPNOTSUPP;
1885 }
1886 EXPORT_SYMBOL(sock_no_connect);
1887 
sock_no_socketpair(struct socket * sock1,struct socket * sock2)1888 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1889 {
1890 	return -EOPNOTSUPP;
1891 }
1892 EXPORT_SYMBOL(sock_no_socketpair);
1893 
sock_no_accept(struct socket * sock,struct socket * newsock,int flags)1894 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1895 {
1896 	return -EOPNOTSUPP;
1897 }
1898 EXPORT_SYMBOL(sock_no_accept);
1899 
sock_no_getname(struct socket * sock,struct sockaddr * saddr,int * len,int peer)1900 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1901 		    int *len, int peer)
1902 {
1903 	return -EOPNOTSUPP;
1904 }
1905 EXPORT_SYMBOL(sock_no_getname);
1906 
sock_no_poll(struct file * file,struct socket * sock,poll_table * pt)1907 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1908 {
1909 	return 0;
1910 }
1911 EXPORT_SYMBOL(sock_no_poll);
1912 
sock_no_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)1913 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1914 {
1915 	return -EOPNOTSUPP;
1916 }
1917 EXPORT_SYMBOL(sock_no_ioctl);
1918 
sock_no_listen(struct socket * sock,int backlog)1919 int sock_no_listen(struct socket *sock, int backlog)
1920 {
1921 	return -EOPNOTSUPP;
1922 }
1923 EXPORT_SYMBOL(sock_no_listen);
1924 
sock_no_shutdown(struct socket * sock,int how)1925 int sock_no_shutdown(struct socket *sock, int how)
1926 {
1927 	return -EOPNOTSUPP;
1928 }
1929 EXPORT_SYMBOL(sock_no_shutdown);
1930 
sock_no_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)1931 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1932 		    char __user *optval, unsigned int optlen)
1933 {
1934 	return -EOPNOTSUPP;
1935 }
1936 EXPORT_SYMBOL(sock_no_setsockopt);
1937 
sock_no_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1938 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1939 		    char __user *optval, int __user *optlen)
1940 {
1941 	return -EOPNOTSUPP;
1942 }
1943 EXPORT_SYMBOL(sock_no_getsockopt);
1944 
sock_no_sendmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * m,size_t len)1945 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1946 		    size_t len)
1947 {
1948 	return -EOPNOTSUPP;
1949 }
1950 EXPORT_SYMBOL(sock_no_sendmsg);
1951 
sock_no_recvmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * m,size_t len,int flags)1952 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1953 		    size_t len, int flags)
1954 {
1955 	return -EOPNOTSUPP;
1956 }
1957 EXPORT_SYMBOL(sock_no_recvmsg);
1958 
sock_no_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1959 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1960 {
1961 	/* Mirror missing mmap method error code */
1962 	return -ENODEV;
1963 }
1964 EXPORT_SYMBOL(sock_no_mmap);
1965 
sock_no_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)1966 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1967 {
1968 	ssize_t res;
1969 	struct msghdr msg = {.msg_flags = flags};
1970 	struct kvec iov;
1971 	char *kaddr = kmap(page);
1972 	iov.iov_base = kaddr + offset;
1973 	iov.iov_len = size;
1974 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1975 	kunmap(page);
1976 	return res;
1977 }
1978 EXPORT_SYMBOL(sock_no_sendpage);
1979 
1980 /*
1981  *	Default Socket Callbacks
1982  */
1983 
sock_def_wakeup(struct sock * sk)1984 static void sock_def_wakeup(struct sock *sk)
1985 {
1986 	struct socket_wq *wq;
1987 
1988 	rcu_read_lock();
1989 	wq = rcu_dereference(sk->sk_wq);
1990 	if (wq_has_sleeper(wq))
1991 		wake_up_interruptible_all(&wq->wait);
1992 	rcu_read_unlock();
1993 }
1994 
sock_def_error_report(struct sock * sk)1995 static void sock_def_error_report(struct sock *sk)
1996 {
1997 	struct socket_wq *wq;
1998 
1999 	rcu_read_lock();
2000 	wq = rcu_dereference(sk->sk_wq);
2001 	if (wq_has_sleeper(wq))
2002 		wake_up_interruptible_poll(&wq->wait, POLLERR);
2003 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2004 	rcu_read_unlock();
2005 }
2006 
sock_def_readable(struct sock * sk,int len)2007 static void sock_def_readable(struct sock *sk, int len)
2008 {
2009 	struct socket_wq *wq;
2010 
2011 	rcu_read_lock();
2012 	wq = rcu_dereference(sk->sk_wq);
2013 	if (wq_has_sleeper(wq))
2014 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2015 						POLLRDNORM | POLLRDBAND);
2016 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2017 	rcu_read_unlock();
2018 }
2019 
sock_def_write_space(struct sock * sk)2020 static void sock_def_write_space(struct sock *sk)
2021 {
2022 	struct socket_wq *wq;
2023 
2024 	rcu_read_lock();
2025 
2026 	/* Do not wake up a writer until he can make "significant"
2027 	 * progress.  --DaveM
2028 	 */
2029 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2030 		wq = rcu_dereference(sk->sk_wq);
2031 		if (wq_has_sleeper(wq))
2032 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2033 						POLLWRNORM | POLLWRBAND);
2034 
2035 		/* Should agree with poll, otherwise some programs break */
2036 		if (sock_writeable(sk))
2037 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2038 	}
2039 
2040 	rcu_read_unlock();
2041 }
2042 
sock_def_destruct(struct sock * sk)2043 static void sock_def_destruct(struct sock *sk)
2044 {
2045 	kfree(sk->sk_protinfo);
2046 }
2047 
sk_send_sigurg(struct sock * sk)2048 void sk_send_sigurg(struct sock *sk)
2049 {
2050 	if (sk->sk_socket && sk->sk_socket->file)
2051 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2052 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2053 }
2054 EXPORT_SYMBOL(sk_send_sigurg);
2055 
sk_reset_timer(struct sock * sk,struct timer_list * timer,unsigned long expires)2056 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2057 		    unsigned long expires)
2058 {
2059 	if (!mod_timer(timer, expires))
2060 		sock_hold(sk);
2061 }
2062 EXPORT_SYMBOL(sk_reset_timer);
2063 
sk_stop_timer(struct sock * sk,struct timer_list * timer)2064 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2065 {
2066 	if (timer_pending(timer) && del_timer(timer))
2067 		__sock_put(sk);
2068 }
2069 EXPORT_SYMBOL(sk_stop_timer);
2070 
sock_init_data(struct socket * sock,struct sock * sk)2071 void sock_init_data(struct socket *sock, struct sock *sk)
2072 {
2073 	skb_queue_head_init(&sk->sk_receive_queue);
2074 	skb_queue_head_init(&sk->sk_write_queue);
2075 	skb_queue_head_init(&sk->sk_error_queue);
2076 #ifdef CONFIG_NET_DMA
2077 	skb_queue_head_init(&sk->sk_async_wait_queue);
2078 #endif
2079 
2080 	sk->sk_send_head	=	NULL;
2081 
2082 	init_timer(&sk->sk_timer);
2083 
2084 	sk->sk_allocation	=	GFP_KERNEL;
2085 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2086 	sk->sk_sndbuf		=	sysctl_wmem_default;
2087 	sk->sk_state		=	TCP_CLOSE;
2088 	sk_set_socket(sk, sock);
2089 
2090 	sock_set_flag(sk, SOCK_ZAPPED);
2091 
2092 	if (sock) {
2093 		sk->sk_type	=	sock->type;
2094 		sk->sk_wq	=	sock->wq;
2095 		sock->sk	=	sk;
2096 	} else
2097 		sk->sk_wq	=	NULL;
2098 
2099 	spin_lock_init(&sk->sk_dst_lock);
2100 	rwlock_init(&sk->sk_callback_lock);
2101 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2102 			af_callback_keys + sk->sk_family,
2103 			af_family_clock_key_strings[sk->sk_family]);
2104 
2105 	sk->sk_state_change	=	sock_def_wakeup;
2106 	sk->sk_data_ready	=	sock_def_readable;
2107 	sk->sk_write_space	=	sock_def_write_space;
2108 	sk->sk_error_report	=	sock_def_error_report;
2109 	sk->sk_destruct		=	sock_def_destruct;
2110 
2111 	sk->sk_sndmsg_page	=	NULL;
2112 	sk->sk_sndmsg_off	=	0;
2113 	sk->sk_peek_off		=	-1;
2114 
2115 	sk->sk_peer_pid 	=	NULL;
2116 	sk->sk_peer_cred	=	NULL;
2117 	sk->sk_write_pending	=	0;
2118 	sk->sk_rcvlowat		=	1;
2119 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2120 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2121 
2122 	sk->sk_stamp = ktime_set(-1L, 0);
2123 
2124 	/*
2125 	 * Before updating sk_refcnt, we must commit prior changes to memory
2126 	 * (Documentation/RCU/rculist_nulls.txt for details)
2127 	 */
2128 	smp_wmb();
2129 	atomic_set(&sk->sk_refcnt, 1);
2130 	atomic_set(&sk->sk_drops, 0);
2131 }
2132 EXPORT_SYMBOL(sock_init_data);
2133 
lock_sock_nested(struct sock * sk,int subclass)2134 void lock_sock_nested(struct sock *sk, int subclass)
2135 {
2136 	might_sleep();
2137 	spin_lock_bh(&sk->sk_lock.slock);
2138 	if (sk->sk_lock.owned)
2139 		__lock_sock(sk);
2140 	sk->sk_lock.owned = 1;
2141 	spin_unlock(&sk->sk_lock.slock);
2142 	/*
2143 	 * The sk_lock has mutex_lock() semantics here:
2144 	 */
2145 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2146 	local_bh_enable();
2147 }
2148 EXPORT_SYMBOL(lock_sock_nested);
2149 
release_sock(struct sock * sk)2150 void release_sock(struct sock *sk)
2151 {
2152 	/*
2153 	 * The sk_lock has mutex_unlock() semantics:
2154 	 */
2155 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2156 
2157 	spin_lock_bh(&sk->sk_lock.slock);
2158 	if (sk->sk_backlog.tail)
2159 		__release_sock(sk);
2160 	sk->sk_lock.owned = 0;
2161 	if (waitqueue_active(&sk->sk_lock.wq))
2162 		wake_up(&sk->sk_lock.wq);
2163 	spin_unlock_bh(&sk->sk_lock.slock);
2164 }
2165 EXPORT_SYMBOL(release_sock);
2166 
2167 /**
2168  * lock_sock_fast - fast version of lock_sock
2169  * @sk: socket
2170  *
2171  * This version should be used for very small section, where process wont block
2172  * return false if fast path is taken
2173  *   sk_lock.slock locked, owned = 0, BH disabled
2174  * return true if slow path is taken
2175  *   sk_lock.slock unlocked, owned = 1, BH enabled
2176  */
lock_sock_fast(struct sock * sk)2177 bool lock_sock_fast(struct sock *sk)
2178 {
2179 	might_sleep();
2180 	spin_lock_bh(&sk->sk_lock.slock);
2181 
2182 	if (!sk->sk_lock.owned)
2183 		/*
2184 		 * Note : We must disable BH
2185 		 */
2186 		return false;
2187 
2188 	__lock_sock(sk);
2189 	sk->sk_lock.owned = 1;
2190 	spin_unlock(&sk->sk_lock.slock);
2191 	/*
2192 	 * The sk_lock has mutex_lock() semantics here:
2193 	 */
2194 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2195 	local_bh_enable();
2196 	return true;
2197 }
2198 EXPORT_SYMBOL(lock_sock_fast);
2199 
sock_get_timestamp(struct sock * sk,struct timeval __user * userstamp)2200 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2201 {
2202 	struct timeval tv;
2203 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2204 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2205 	tv = ktime_to_timeval(sk->sk_stamp);
2206 	if (tv.tv_sec == -1)
2207 		return -ENOENT;
2208 	if (tv.tv_sec == 0) {
2209 		sk->sk_stamp = ktime_get_real();
2210 		tv = ktime_to_timeval(sk->sk_stamp);
2211 	}
2212 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2213 }
2214 EXPORT_SYMBOL(sock_get_timestamp);
2215 
sock_get_timestampns(struct sock * sk,struct timespec __user * userstamp)2216 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2217 {
2218 	struct timespec ts;
2219 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2220 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2221 	ts = ktime_to_timespec(sk->sk_stamp);
2222 	if (ts.tv_sec == -1)
2223 		return -ENOENT;
2224 	if (ts.tv_sec == 0) {
2225 		sk->sk_stamp = ktime_get_real();
2226 		ts = ktime_to_timespec(sk->sk_stamp);
2227 	}
2228 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2229 }
2230 EXPORT_SYMBOL(sock_get_timestampns);
2231 
sock_enable_timestamp(struct sock * sk,int flag)2232 void sock_enable_timestamp(struct sock *sk, int flag)
2233 {
2234 	if (!sock_flag(sk, flag)) {
2235 		unsigned long previous_flags = sk->sk_flags;
2236 
2237 		sock_set_flag(sk, flag);
2238 		/*
2239 		 * we just set one of the two flags which require net
2240 		 * time stamping, but time stamping might have been on
2241 		 * already because of the other one
2242 		 */
2243 		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2244 			net_enable_timestamp();
2245 	}
2246 }
2247 
2248 /*
2249  *	Get a socket option on an socket.
2250  *
2251  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2252  *	asynchronous errors should be reported by getsockopt. We assume
2253  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2254  */
sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)2255 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2256 			   char __user *optval, int __user *optlen)
2257 {
2258 	struct sock *sk = sock->sk;
2259 
2260 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2261 }
2262 EXPORT_SYMBOL(sock_common_getsockopt);
2263 
2264 #ifdef CONFIG_COMPAT
compat_sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)2265 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2266 				  char __user *optval, int __user *optlen)
2267 {
2268 	struct sock *sk = sock->sk;
2269 
2270 	if (sk->sk_prot->compat_getsockopt != NULL)
2271 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2272 						      optval, optlen);
2273 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2274 }
2275 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2276 #endif
2277 
sock_common_recvmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t size,int flags)2278 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2279 			struct msghdr *msg, size_t size, int flags)
2280 {
2281 	struct sock *sk = sock->sk;
2282 	int addr_len = 0;
2283 	int err;
2284 
2285 	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2286 				   flags & ~MSG_DONTWAIT, &addr_len);
2287 	if (err >= 0)
2288 		msg->msg_namelen = addr_len;
2289 	return err;
2290 }
2291 EXPORT_SYMBOL(sock_common_recvmsg);
2292 
2293 /*
2294  *	Set socket options on an inet socket.
2295  */
sock_common_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)2296 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2297 			   char __user *optval, unsigned int optlen)
2298 {
2299 	struct sock *sk = sock->sk;
2300 
2301 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2302 }
2303 EXPORT_SYMBOL(sock_common_setsockopt);
2304 
2305 #ifdef CONFIG_COMPAT
compat_sock_common_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)2306 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2307 				  char __user *optval, unsigned int optlen)
2308 {
2309 	struct sock *sk = sock->sk;
2310 
2311 	if (sk->sk_prot->compat_setsockopt != NULL)
2312 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2313 						      optval, optlen);
2314 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2315 }
2316 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2317 #endif
2318 
sk_common_release(struct sock * sk)2319 void sk_common_release(struct sock *sk)
2320 {
2321 	if (sk->sk_prot->destroy)
2322 		sk->sk_prot->destroy(sk);
2323 
2324 	/*
2325 	 * Observation: when sock_common_release is called, processes have
2326 	 * no access to socket. But net still has.
2327 	 * Step one, detach it from networking:
2328 	 *
2329 	 * A. Remove from hash tables.
2330 	 */
2331 
2332 	sk->sk_prot->unhash(sk);
2333 
2334 	/*
2335 	 * In this point socket cannot receive new packets, but it is possible
2336 	 * that some packets are in flight because some CPU runs receiver and
2337 	 * did hash table lookup before we unhashed socket. They will achieve
2338 	 * receive queue and will be purged by socket destructor.
2339 	 *
2340 	 * Also we still have packets pending on receive queue and probably,
2341 	 * our own packets waiting in device queues. sock_destroy will drain
2342 	 * receive queue, but transmitted packets will delay socket destruction
2343 	 * until the last reference will be released.
2344 	 */
2345 
2346 	sock_orphan(sk);
2347 
2348 	xfrm_sk_free_policy(sk);
2349 
2350 	sk_refcnt_debug_release(sk);
2351 	sock_put(sk);
2352 }
2353 EXPORT_SYMBOL(sk_common_release);
2354 
2355 #ifdef CONFIG_PROC_FS
2356 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2357 struct prot_inuse {
2358 	int val[PROTO_INUSE_NR];
2359 };
2360 
2361 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2362 
2363 #ifdef CONFIG_NET_NS
sock_prot_inuse_add(struct net * net,struct proto * prot,int val)2364 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2365 {
2366 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2367 }
2368 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2369 
sock_prot_inuse_get(struct net * net,struct proto * prot)2370 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2371 {
2372 	int cpu, idx = prot->inuse_idx;
2373 	int res = 0;
2374 
2375 	for_each_possible_cpu(cpu)
2376 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2377 
2378 	return res >= 0 ? res : 0;
2379 }
2380 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2381 
sock_inuse_init_net(struct net * net)2382 static int __net_init sock_inuse_init_net(struct net *net)
2383 {
2384 	net->core.inuse = alloc_percpu(struct prot_inuse);
2385 	return net->core.inuse ? 0 : -ENOMEM;
2386 }
2387 
sock_inuse_exit_net(struct net * net)2388 static void __net_exit sock_inuse_exit_net(struct net *net)
2389 {
2390 	free_percpu(net->core.inuse);
2391 }
2392 
2393 static struct pernet_operations net_inuse_ops = {
2394 	.init = sock_inuse_init_net,
2395 	.exit = sock_inuse_exit_net,
2396 };
2397 
net_inuse_init(void)2398 static __init int net_inuse_init(void)
2399 {
2400 	if (register_pernet_subsys(&net_inuse_ops))
2401 		panic("Cannot initialize net inuse counters");
2402 
2403 	return 0;
2404 }
2405 
2406 core_initcall(net_inuse_init);
2407 #else
2408 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2409 
sock_prot_inuse_add(struct net * net,struct proto * prot,int val)2410 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2411 {
2412 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2413 }
2414 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2415 
sock_prot_inuse_get(struct net * net,struct proto * prot)2416 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2417 {
2418 	int cpu, idx = prot->inuse_idx;
2419 	int res = 0;
2420 
2421 	for_each_possible_cpu(cpu)
2422 		res += per_cpu(prot_inuse, cpu).val[idx];
2423 
2424 	return res >= 0 ? res : 0;
2425 }
2426 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2427 #endif
2428 
assign_proto_idx(struct proto * prot)2429 static void assign_proto_idx(struct proto *prot)
2430 {
2431 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2432 
2433 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2434 		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2435 		return;
2436 	}
2437 
2438 	set_bit(prot->inuse_idx, proto_inuse_idx);
2439 }
2440 
release_proto_idx(struct proto * prot)2441 static void release_proto_idx(struct proto *prot)
2442 {
2443 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2444 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2445 }
2446 #else
assign_proto_idx(struct proto * prot)2447 static inline void assign_proto_idx(struct proto *prot)
2448 {
2449 }
2450 
release_proto_idx(struct proto * prot)2451 static inline void release_proto_idx(struct proto *prot)
2452 {
2453 }
2454 #endif
2455 
proto_register(struct proto * prot,int alloc_slab)2456 int proto_register(struct proto *prot, int alloc_slab)
2457 {
2458 	if (alloc_slab) {
2459 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2460 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2461 					NULL);
2462 
2463 		if (prot->slab == NULL) {
2464 			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2465 			       prot->name);
2466 			goto out;
2467 		}
2468 
2469 		if (prot->rsk_prot != NULL) {
2470 			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2471 			if (prot->rsk_prot->slab_name == NULL)
2472 				goto out_free_sock_slab;
2473 
2474 			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2475 								 prot->rsk_prot->obj_size, 0,
2476 								 SLAB_HWCACHE_ALIGN, NULL);
2477 
2478 			if (prot->rsk_prot->slab == NULL) {
2479 				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2480 				       prot->name);
2481 				goto out_free_request_sock_slab_name;
2482 			}
2483 		}
2484 
2485 		if (prot->twsk_prot != NULL) {
2486 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2487 
2488 			if (prot->twsk_prot->twsk_slab_name == NULL)
2489 				goto out_free_request_sock_slab;
2490 
2491 			prot->twsk_prot->twsk_slab =
2492 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2493 						  prot->twsk_prot->twsk_obj_size,
2494 						  0,
2495 						  SLAB_HWCACHE_ALIGN |
2496 							prot->slab_flags,
2497 						  NULL);
2498 			if (prot->twsk_prot->twsk_slab == NULL)
2499 				goto out_free_timewait_sock_slab_name;
2500 		}
2501 	}
2502 
2503 	mutex_lock(&proto_list_mutex);
2504 	list_add(&prot->node, &proto_list);
2505 	assign_proto_idx(prot);
2506 	mutex_unlock(&proto_list_mutex);
2507 	return 0;
2508 
2509 out_free_timewait_sock_slab_name:
2510 	kfree(prot->twsk_prot->twsk_slab_name);
2511 out_free_request_sock_slab:
2512 	if (prot->rsk_prot && prot->rsk_prot->slab) {
2513 		kmem_cache_destroy(prot->rsk_prot->slab);
2514 		prot->rsk_prot->slab = NULL;
2515 	}
2516 out_free_request_sock_slab_name:
2517 	if (prot->rsk_prot)
2518 		kfree(prot->rsk_prot->slab_name);
2519 out_free_sock_slab:
2520 	kmem_cache_destroy(prot->slab);
2521 	prot->slab = NULL;
2522 out:
2523 	return -ENOBUFS;
2524 }
2525 EXPORT_SYMBOL(proto_register);
2526 
proto_unregister(struct proto * prot)2527 void proto_unregister(struct proto *prot)
2528 {
2529 	mutex_lock(&proto_list_mutex);
2530 	release_proto_idx(prot);
2531 	list_del(&prot->node);
2532 	mutex_unlock(&proto_list_mutex);
2533 
2534 	if (prot->slab != NULL) {
2535 		kmem_cache_destroy(prot->slab);
2536 		prot->slab = NULL;
2537 	}
2538 
2539 	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2540 		kmem_cache_destroy(prot->rsk_prot->slab);
2541 		kfree(prot->rsk_prot->slab_name);
2542 		prot->rsk_prot->slab = NULL;
2543 	}
2544 
2545 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2546 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2547 		kfree(prot->twsk_prot->twsk_slab_name);
2548 		prot->twsk_prot->twsk_slab = NULL;
2549 	}
2550 }
2551 EXPORT_SYMBOL(proto_unregister);
2552 
2553 #ifdef CONFIG_PROC_FS
proto_seq_start(struct seq_file * seq,loff_t * pos)2554 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2555 	__acquires(proto_list_mutex)
2556 {
2557 	mutex_lock(&proto_list_mutex);
2558 	return seq_list_start_head(&proto_list, *pos);
2559 }
2560 
proto_seq_next(struct seq_file * seq,void * v,loff_t * pos)2561 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2562 {
2563 	return seq_list_next(v, &proto_list, pos);
2564 }
2565 
proto_seq_stop(struct seq_file * seq,void * v)2566 static void proto_seq_stop(struct seq_file *seq, void *v)
2567 	__releases(proto_list_mutex)
2568 {
2569 	mutex_unlock(&proto_list_mutex);
2570 }
2571 
proto_method_implemented(const void * method)2572 static char proto_method_implemented(const void *method)
2573 {
2574 	return method == NULL ? 'n' : 'y';
2575 }
sock_prot_memory_allocated(struct proto * proto)2576 static long sock_prot_memory_allocated(struct proto *proto)
2577 {
2578 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto): -1L;
2579 }
2580 
sock_prot_memory_pressure(struct proto * proto)2581 static char *sock_prot_memory_pressure(struct proto *proto)
2582 {
2583 	return proto->memory_pressure != NULL ?
2584 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2585 }
2586 
proto_seq_printf(struct seq_file * seq,struct proto * proto)2587 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2588 {
2589 
2590 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2591 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2592 		   proto->name,
2593 		   proto->obj_size,
2594 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2595 		   sock_prot_memory_allocated(proto),
2596 		   sock_prot_memory_pressure(proto),
2597 		   proto->max_header,
2598 		   proto->slab == NULL ? "no" : "yes",
2599 		   module_name(proto->owner),
2600 		   proto_method_implemented(proto->close),
2601 		   proto_method_implemented(proto->connect),
2602 		   proto_method_implemented(proto->disconnect),
2603 		   proto_method_implemented(proto->accept),
2604 		   proto_method_implemented(proto->ioctl),
2605 		   proto_method_implemented(proto->init),
2606 		   proto_method_implemented(proto->destroy),
2607 		   proto_method_implemented(proto->shutdown),
2608 		   proto_method_implemented(proto->setsockopt),
2609 		   proto_method_implemented(proto->getsockopt),
2610 		   proto_method_implemented(proto->sendmsg),
2611 		   proto_method_implemented(proto->recvmsg),
2612 		   proto_method_implemented(proto->sendpage),
2613 		   proto_method_implemented(proto->bind),
2614 		   proto_method_implemented(proto->backlog_rcv),
2615 		   proto_method_implemented(proto->hash),
2616 		   proto_method_implemented(proto->unhash),
2617 		   proto_method_implemented(proto->get_port),
2618 		   proto_method_implemented(proto->enter_memory_pressure));
2619 }
2620 
proto_seq_show(struct seq_file * seq,void * v)2621 static int proto_seq_show(struct seq_file *seq, void *v)
2622 {
2623 	if (v == &proto_list)
2624 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2625 			   "protocol",
2626 			   "size",
2627 			   "sockets",
2628 			   "memory",
2629 			   "press",
2630 			   "maxhdr",
2631 			   "slab",
2632 			   "module",
2633 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2634 	else
2635 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2636 	return 0;
2637 }
2638 
2639 static const struct seq_operations proto_seq_ops = {
2640 	.start  = proto_seq_start,
2641 	.next   = proto_seq_next,
2642 	.stop   = proto_seq_stop,
2643 	.show   = proto_seq_show,
2644 };
2645 
proto_seq_open(struct inode * inode,struct file * file)2646 static int proto_seq_open(struct inode *inode, struct file *file)
2647 {
2648 	return seq_open_net(inode, file, &proto_seq_ops,
2649 			    sizeof(struct seq_net_private));
2650 }
2651 
2652 static const struct file_operations proto_seq_fops = {
2653 	.owner		= THIS_MODULE,
2654 	.open		= proto_seq_open,
2655 	.read		= seq_read,
2656 	.llseek		= seq_lseek,
2657 	.release	= seq_release_net,
2658 };
2659 
proto_init_net(struct net * net)2660 static __net_init int proto_init_net(struct net *net)
2661 {
2662 	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2663 		return -ENOMEM;
2664 
2665 	return 0;
2666 }
2667 
proto_exit_net(struct net * net)2668 static __net_exit void proto_exit_net(struct net *net)
2669 {
2670 	proc_net_remove(net, "protocols");
2671 }
2672 
2673 
2674 static __net_initdata struct pernet_operations proto_net_ops = {
2675 	.init = proto_init_net,
2676 	.exit = proto_exit_net,
2677 };
2678 
proto_init(void)2679 static int __init proto_init(void)
2680 {
2681 	return register_pernet_subsys(&proto_net_ops);
2682 }
2683 
2684 subsys_initcall(proto_init);
2685 
2686 #endif /* PROC_FS */
2687