1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<pedro_m@yahoo.com>
7  *
8  *	$Id: ip6_fib.c,v 1.25 2001/10/31 21:55:55 davem Exp $
9  *
10  *	This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15 
16 /*
17  * 	Changes:
18  * 	Yuji SEKIYA @USAGI:	Support default route on router node;
19  * 				remove ip6_null_entry from the top of
20  * 				routing table.
21  */
22 #include <linux/config.h>
23 #include <linux/errno.h>
24 #include <linux/types.h>
25 #include <linux/net.h>
26 #include <linux/route.h>
27 #include <linux/netdevice.h>
28 #include <linux/in6.h>
29 #include <linux/init.h>
30 
31 #ifdef 	CONFIG_PROC_FS
32 #include <linux/proc_fs.h>
33 #endif
34 
35 #include <net/ipv6.h>
36 #include <net/ndisc.h>
37 #include <net/addrconf.h>
38 
39 #include <net/ip6_fib.h>
40 #include <net/ip6_route.h>
41 
42 #define RT6_DEBUG 2
43 #undef CONFIG_IPV6_SUBTREES
44 
45 #if RT6_DEBUG >= 3
46 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
47 #else
48 #define RT6_TRACE(x...) do { ; } while (0)
49 #endif
50 
51 struct rt6_statistics	rt6_stats;
52 
53 static kmem_cache_t * fib6_node_kmem;
54 
55 enum fib_walk_state_t
56 {
57 #ifdef CONFIG_IPV6_SUBTREES
58 	FWS_S,
59 #endif
60 	FWS_L,
61 	FWS_R,
62 	FWS_C,
63 	FWS_U
64 };
65 
66 struct fib6_cleaner_t
67 {
68 	struct fib6_walker_t w;
69 	int (*func)(struct rt6_info *, void *arg);
70 	void *arg;
71 };
72 
73 rwlock_t fib6_walker_lock = RW_LOCK_UNLOCKED;
74 
75 
76 #ifdef CONFIG_IPV6_SUBTREES
77 #define FWS_INIT FWS_S
78 #define SUBTREE(fn) ((fn)->subtree)
79 #else
80 #define FWS_INIT FWS_L
81 #define SUBTREE(fn) NULL
82 #endif
83 
84 static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt);
85 static struct fib6_node * fib6_repair_tree(struct fib6_node *fn);
86 
87 /*
88  *	A routing update causes an increase of the serial number on the
89  *	afected subtree. This allows for cached routes to be asynchronously
90  *	tested when modifications are made to the destination cache as a
91  *	result of redirects, path MTU changes, etc.
92  */
93 
94 static __u32	rt_sernum	= 0;
95 
96 static struct timer_list ip6_fib_timer = { function: fib6_run_gc };
97 
98 struct fib6_walker_t fib6_walker_list = {
99 	&fib6_walker_list, &fib6_walker_list,
100 };
101 
102 #define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
103 
fib6_new_sernum(void)104 static __inline__ u32 fib6_new_sernum(void)
105 {
106 	u32 n = ++rt_sernum;
107 	if ((__s32)n <= 0)
108 		rt_sernum = n = 1;
109 	return n;
110 }
111 
112 /*
113  *	Auxiliary address test functions for the radix tree.
114  *
115  *	These assume a 32bit processor (although it will work on
116  *	64bit processors)
117  */
118 
119 /*
120  *	compare "prefix length" bits of an address
121  */
122 
addr_match(void * token1,void * token2,int prefixlen)123 static __inline__ int addr_match(void *token1, void *token2, int prefixlen)
124 {
125 	__u32 *a1 = token1;
126 	__u32 *a2 = token2;
127 	int pdw;
128 	int pbi;
129 
130 	pdw = prefixlen >> 5;	  /* num of whole __u32 in prefix */
131 	pbi = prefixlen &  0x1f;  /* num of bits in incomplete u32 in prefix */
132 
133 	if (pdw)
134 		if (memcmp(a1, a2, pdw << 2))
135 			return 0;
136 
137 	if (pbi) {
138 		__u32 mask;
139 
140 		mask = htonl((0xffffffff) << (32 - pbi));
141 
142 		if ((a1[pdw] ^ a2[pdw]) & mask)
143 			return 0;
144 	}
145 
146 	return 1;
147 }
148 
149 /*
150  *	test bit
151  */
152 
addr_bit_set(void * token,int fn_bit)153 static __inline__ int addr_bit_set(void *token, int fn_bit)
154 {
155 	__u32 *addr = token;
156 
157 	return htonl(1 << ((~fn_bit)&0x1F)) & addr[fn_bit>>5];
158 }
159 
160 /*
161  *	find the first different bit between two addresses
162  *	length of address must be a multiple of 32bits
163  */
164 
addr_diff(void * token1,void * token2,int addrlen)165 static __inline__ int addr_diff(void *token1, void *token2, int addrlen)
166 {
167 	__u32 *a1 = token1;
168 	__u32 *a2 = token2;
169 	int i;
170 
171 	addrlen >>= 2;
172 
173 	for (i = 0; i < addrlen; i++) {
174 		__u32 xb;
175 
176 		xb = a1[i] ^ a2[i];
177 
178 		if (xb) {
179 			int j = 31;
180 
181 			xb = ntohl(xb);
182 
183 			while ((xb & (1 << j)) == 0)
184 				j--;
185 
186 			return (i * 32 + 31 - j);
187 		}
188 	}
189 
190 	/*
191 	 *	we should *never* get to this point since that
192 	 *	would mean the addrs are equal
193 	 *
194 	 *	However, we do get to it 8) And exacly, when
195 	 *	addresses are equal 8)
196 	 *
197 	 *	ip route add 1111::/128 via ...
198 	 *	ip route add 1111::/64 via ...
199 	 *	and we are here.
200 	 *
201 	 *	Ideally, this function should stop comparison
202 	 *	at prefix length. It does not, but it is still OK,
203 	 *	if returned value is greater than prefix length.
204 	 *					--ANK (980803)
205 	 */
206 
207 	return addrlen<<5;
208 }
209 
node_alloc(void)210 static __inline__ struct fib6_node * node_alloc(void)
211 {
212 	struct fib6_node *fn;
213 
214 	if ((fn = kmem_cache_alloc(fib6_node_kmem, SLAB_ATOMIC)) != NULL)
215 		memset(fn, 0, sizeof(struct fib6_node));
216 
217 	return fn;
218 }
219 
node_free(struct fib6_node * fn)220 static __inline__ void node_free(struct fib6_node * fn)
221 {
222 	kmem_cache_free(fib6_node_kmem, fn);
223 }
224 
rt6_release(struct rt6_info * rt)225 static __inline__ void rt6_release(struct rt6_info *rt)
226 {
227 	if (atomic_dec_and_test(&rt->rt6i_ref))
228 		dst_free(&rt->u.dst);
229 }
230 
231 
232 /*
233  *	Routing Table
234  *
235  *	return the apropriate node for a routing tree "add" operation
236  *	by either creating and inserting or by returning an existing
237  *	node.
238  */
239 
fib6_add_1(struct fib6_node * root,void * addr,int addrlen,int plen,int offset)240 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
241 				     int addrlen, int plen,
242 				     int offset)
243 {
244 	struct fib6_node *fn, *in, *ln;
245 	struct fib6_node *pn = NULL;
246 	struct rt6key *key;
247 	int	bit;
248        	int	dir = 0;
249 	__u32	sernum = fib6_new_sernum();
250 
251 	RT6_TRACE("fib6_add_1\n");
252 
253 	/* insert node in tree */
254 
255 	fn = root;
256 
257 	do {
258 		key = (struct rt6key *)((u8 *)fn->leaf + offset);
259 
260 		/*
261 		 *	Prefix match
262 		 */
263 		if (plen < fn->fn_bit ||
264 		    !addr_match(&key->addr, addr, fn->fn_bit))
265 			goto insert_above;
266 
267 		/*
268 		 *	Exact match ?
269 		 */
270 
271 		if (plen == fn->fn_bit) {
272 			/* clean up an intermediate node */
273 			if ((fn->fn_flags & RTN_RTINFO) == 0) {
274 				rt6_release(fn->leaf);
275 				fn->leaf = NULL;
276 			}
277 
278 			fn->fn_sernum = sernum;
279 
280 			return fn;
281 		}
282 
283 		/*
284 		 *	We have more bits to go
285 		 */
286 
287 		/* Try to walk down on tree. */
288 		fn->fn_sernum = sernum;
289 		dir = addr_bit_set(addr, fn->fn_bit);
290 		pn = fn;
291 		fn = dir ? fn->right: fn->left;
292 	} while (fn);
293 
294 	/*
295 	 *	We walked to the bottom of tree.
296 	 *	Create new leaf node without children.
297 	 */
298 
299 	ln = node_alloc();
300 
301 	if (ln == NULL)
302 		return NULL;
303 	ln->fn_bit = plen;
304 
305 	ln->parent = pn;
306 	ln->fn_sernum = sernum;
307 
308 	if (dir)
309 		pn->right = ln;
310 	else
311 		pn->left  = ln;
312 
313 	return ln;
314 
315 
316 insert_above:
317 	/*
318 	 * split since we don't have a common prefix anymore or
319 	 * we have a less significant route.
320 	 * we've to insert an intermediate node on the list
321 	 * this new node will point to the one we need to create
322 	 * and the current
323 	 */
324 
325 	pn = fn->parent;
326 
327 	/* find 1st bit in difference between the 2 addrs.
328 
329 	   See comment in addr_diff: bit may be an invalid value,
330 	   but if it is >= plen, the value is ignored in any case.
331 	 */
332 
333 	bit = addr_diff(addr, &key->addr, addrlen);
334 
335 	/*
336 	 *		(intermediate)[in]
337 	 *	          /	   \
338 	 *	(new leaf node)[ln] (old node)[fn]
339 	 */
340 	if (plen > bit) {
341 		in = node_alloc();
342 		ln = node_alloc();
343 
344 		if (in == NULL || ln == NULL) {
345 			if (in)
346 				node_free(in);
347 			if (ln)
348 				node_free(ln);
349 			return NULL;
350 		}
351 
352 		/*
353 		 * new intermediate node.
354 		 * RTN_RTINFO will
355 		 * be off since that an address that chooses one of
356 		 * the branches would not match less specific routes
357 		 * in the other branch
358 		 */
359 
360 		in->fn_bit = bit;
361 
362 		in->parent = pn;
363 		in->leaf = fn->leaf;
364 		atomic_inc(&in->leaf->rt6i_ref);
365 
366 		in->fn_sernum = sernum;
367 
368 		/* update parent pointer */
369 		if (dir)
370 			pn->right = in;
371 		else
372 			pn->left  = in;
373 
374 		ln->fn_bit = plen;
375 
376 		ln->parent = in;
377 		fn->parent = in;
378 
379 		ln->fn_sernum = sernum;
380 
381 		if (addr_bit_set(addr, bit)) {
382 			in->right = ln;
383 			in->left  = fn;
384 		} else {
385 			in->left  = ln;
386 			in->right = fn;
387 		}
388 	} else { /* plen <= bit */
389 
390 		/*
391 		 *		(new leaf node)[ln]
392 		 *	          /	   \
393 		 *	     (old node)[fn] NULL
394 		 */
395 
396 		ln = node_alloc();
397 
398 		if (ln == NULL)
399 			return NULL;
400 
401 		ln->fn_bit = plen;
402 
403 		ln->parent = pn;
404 
405 		ln->fn_sernum = sernum;
406 
407 		if (dir)
408 			pn->right = ln;
409 		else
410 			pn->left  = ln;
411 
412 		if (addr_bit_set(&key->addr, plen))
413 			ln->right = fn;
414 		else
415 			ln->left  = fn;
416 
417 		fn->parent = ln;
418 	}
419 	return ln;
420 }
421 
422 /*
423  *	Insert routing information in a node.
424  */
425 
fib6_add_rt2node(struct fib6_node * fn,struct rt6_info * rt,struct nlmsghdr * nlh,struct netlink_skb_parms * req)426 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
427 		struct nlmsghdr *nlh,  struct netlink_skb_parms *req)
428 {
429 	struct rt6_info *iter = NULL;
430 	struct rt6_info **ins;
431 
432 	ins = &fn->leaf;
433 
434 	if (fn->fn_flags&RTN_TL_ROOT &&
435 	    fn->leaf == &ip6_null_entry &&
436 	    !(rt->rt6i_flags & (RTF_DEFAULT | RTF_ADDRCONF | RTF_ALLONLINK)) ){
437 		/*
438 		 * The top fib of ip6 routing table includes ip6_null_entry.
439 		 */
440 		fn->leaf = rt;
441 		rt->u.next = NULL;
442 		goto out;
443 	}
444 
445 	for (iter = fn->leaf; iter; iter=iter->u.next) {
446 		/*
447 		 *	Search for duplicates
448 		 */
449 
450 		if (iter->rt6i_metric == rt->rt6i_metric) {
451 			/*
452 			 *	Same priority level
453 			 */
454 
455 			if ((iter->rt6i_dev == rt->rt6i_dev) &&
456 			    (iter->rt6i_flowr == rt->rt6i_flowr) &&
457 			    (ipv6_addr_cmp(&iter->rt6i_gateway,
458 					   &rt->rt6i_gateway) == 0)) {
459 				if (!(iter->rt6i_flags&RTF_EXPIRES))
460 					return -EEXIST;
461 				iter->rt6i_expires = rt->rt6i_expires;
462 				if (!(rt->rt6i_flags&RTF_EXPIRES)) {
463 					iter->rt6i_flags &= ~RTF_EXPIRES;
464 					iter->rt6i_expires = 0;
465 				}
466 				return -EEXIST;
467 			}
468 		}
469 
470 		if (iter->rt6i_metric > rt->rt6i_metric)
471 			break;
472 
473 		ins = &iter->u.next;
474 	}
475 
476 	/*
477 	 *	insert node
478 	 */
479 
480 out:
481 	rt->u.next = iter;
482 	*ins = rt;
483 	rt->rt6i_node = fn;
484 	atomic_inc(&rt->rt6i_ref);
485 	inet6_rt_notify(RTM_NEWROUTE, rt, nlh, req);
486 	rt6_stats.fib_rt_entries++;
487 
488 	if ((fn->fn_flags & RTN_RTINFO) == 0) {
489 		rt6_stats.fib_route_nodes++;
490 		fn->fn_flags |= RTN_RTINFO;
491 	}
492 
493 	return 0;
494 }
495 
fib6_start_gc(struct rt6_info * rt)496 static __inline__ void fib6_start_gc(struct rt6_info *rt)
497 {
498 	if (!timer_pending(&ip6_fib_timer) &&
499 	    (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
500 		mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
501 }
502 
503 /*
504  *	Add routing information to the routing tree.
505  *	<destination addr>/<source addr>
506  *	with source addr info in sub-trees
507  */
508 
fib6_add(struct fib6_node * root,struct rt6_info * rt,struct nlmsghdr * nlh,struct netlink_skb_parms * req)509 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nlmsghdr *nlh,
510 		struct netlink_skb_parms *req)
511 {
512 	struct fib6_node *fn;
513 	int err = -ENOMEM;
514 
515 	fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
516 			rt->rt6i_dst.plen, (u8*) &rt->rt6i_dst - (u8*) rt);
517 
518 	if (fn == NULL)
519 		goto out;
520 
521 #ifdef CONFIG_IPV6_SUBTREES
522 	if (rt->rt6i_src.plen) {
523 		struct fib6_node *sn;
524 
525 		if (fn->subtree == NULL) {
526 			struct fib6_node *sfn;
527 
528 			/*
529 			 * Create subtree.
530 			 *
531 			 *		fn[main tree]
532 			 *		|
533 			 *		sfn[subtree root]
534 			 *		   \
535 			 *		    sn[new leaf node]
536 			 */
537 
538 			/* Create subtree root node */
539 			sfn = node_alloc();
540 			if (sfn == NULL)
541 				goto st_failure;
542 
543 			sfn->leaf = &ip6_null_entry;
544 			atomic_inc(&ip6_null_entry.rt6i_ref);
545 			sfn->fn_flags = RTN_ROOT;
546 			sfn->fn_sernum = fib6_new_sernum();
547 
548 			/* Now add the first leaf node to new subtree */
549 
550 			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
551 					sizeof(struct in6_addr), rt->rt6i_src.plen,
552 					(u8*) &rt->rt6i_src - (u8*) rt);
553 
554 			if (sn == NULL) {
555 				/* If it is failed, discard just allocated
556 				   root, and then (in st_failure) stale node
557 				   in main tree.
558 				 */
559 				node_free(sfn);
560 				goto st_failure;
561 			}
562 
563 			/* Now link new subtree to main tree */
564 			sfn->parent = fn;
565 			fn->subtree = sfn;
566 			if (fn->leaf == NULL) {
567 				fn->leaf = rt;
568 				atomic_inc(&rt->rt6i_ref);
569 			}
570 		} else {
571 			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
572 					sizeof(struct in6_addr), rt->rt6i_src.plen,
573 					(u8*) &rt->rt6i_src - (u8*) rt);
574 
575 			if (sn == NULL)
576 				goto st_failure;
577 		}
578 
579 		fn = sn;
580 	}
581 #endif
582 
583 	err = fib6_add_rt2node(fn, rt, nlh, req);
584 
585 	if (err == 0) {
586 		fib6_start_gc(rt);
587 		if (!(rt->rt6i_flags&RTF_CACHE))
588 			fib6_prune_clones(fn, rt);
589 	}
590 
591 out:
592 	if (err)
593 		dst_free(&rt->u.dst);
594 	return err;
595 
596 #ifdef CONFIG_IPV6_SUBTREES
597 	/* Subtree creation failed, probably main tree node
598 	   is orphan. If it is, shoot it.
599 	 */
600 st_failure:
601 	if (fn && !(fn->fn_flags&RTN_RTINFO|RTN_ROOT))
602 		fib_repair_tree(fn);
603 	dst_free(&rt->u.dst);
604 	return err;
605 #endif
606 }
607 
608 /*
609  *	Routing tree lookup
610  *
611  */
612 
613 struct lookup_args {
614 	int		offset;		/* key offset on rt6_info	*/
615 	struct in6_addr	*addr;		/* search key			*/
616 };
617 
fib6_lookup_1(struct fib6_node * root,struct lookup_args * args)618 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
619 					struct lookup_args *args)
620 {
621 	struct fib6_node *fn;
622 	int dir;
623 
624 	/*
625 	 *	Descend on a tree
626 	 */
627 
628 	fn = root;
629 
630 	for (;;) {
631 		struct fib6_node *next;
632 
633 		dir = addr_bit_set(args->addr, fn->fn_bit);
634 
635 		next = dir ? fn->right : fn->left;
636 
637 		if (next) {
638 			fn = next;
639 			continue;
640 		}
641 
642 		break;
643 	}
644 
645 	while ((fn->fn_flags & RTN_ROOT) == 0) {
646 #ifdef CONFIG_IPV6_SUBTREES
647 		if (fn->subtree) {
648 			struct fib6_node *st;
649 			struct lookup_args *narg;
650 
651 			narg = args + 1;
652 
653 			if (narg->addr) {
654 				st = fib6_lookup_1(fn->subtree, narg);
655 
656 				if (st && !(st->fn_flags & RTN_ROOT))
657 					return st;
658 			}
659 		}
660 #endif
661 
662 		if (fn->fn_flags & RTN_RTINFO) {
663 			struct rt6key *key;
664 
665 			key = (struct rt6key *) ((u8 *) fn->leaf +
666 						 args->offset);
667 
668 			if (addr_match(&key->addr, args->addr, key->plen))
669 				return fn;
670 		}
671 
672 		fn = fn->parent;
673 	}
674 
675 	return NULL;
676 }
677 
fib6_lookup(struct fib6_node * root,struct in6_addr * daddr,struct in6_addr * saddr)678 struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr,
679 			       struct in6_addr *saddr)
680 {
681 	struct lookup_args args[2];
682 	struct rt6_info *rt = NULL;
683 	struct fib6_node *fn;
684 
685 	args[0].offset = (u8*) &rt->rt6i_dst - (u8*) rt;
686 	args[0].addr = daddr;
687 
688 #ifdef CONFIG_IPV6_SUBTREES
689 	args[1].offset = (u8*) &rt->rt6i_src - (u8*) rt;
690 	args[1].addr = saddr;
691 #endif
692 
693 	fn = fib6_lookup_1(root, args);
694 
695 	if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
696 		fn = root;
697 
698 	return fn;
699 }
700 
701 /*
702  *	Get node with sepciafied destination prefix (and source prefix,
703  *	if subtrees are used)
704  */
705 
706 
fib6_locate_1(struct fib6_node * root,struct in6_addr * addr,int plen,int offset)707 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
708 					struct in6_addr *addr,
709 					int plen, int offset)
710 {
711 	struct fib6_node *fn;
712 
713 	for (fn = root; fn ; ) {
714 		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
715 
716 		/*
717 		 *	Prefix match
718 		 */
719 		if (plen < fn->fn_bit ||
720 		    !addr_match(&key->addr, addr, fn->fn_bit))
721 			return NULL;
722 
723 		if (plen == fn->fn_bit)
724 			return fn;
725 
726 		/*
727 		 *	We have more bits to go
728 		 */
729 		if (addr_bit_set(addr, fn->fn_bit))
730 			fn = fn->right;
731 		else
732 			fn = fn->left;
733 	}
734 	return NULL;
735 }
736 
fib6_locate(struct fib6_node * root,struct in6_addr * daddr,int dst_len,struct in6_addr * saddr,int src_len)737 struct fib6_node * fib6_locate(struct fib6_node *root,
738 			       struct in6_addr *daddr, int dst_len,
739 			       struct in6_addr *saddr, int src_len)
740 {
741 	struct rt6_info *rt = NULL;
742 	struct fib6_node *fn;
743 
744 	fn = fib6_locate_1(root, daddr, dst_len,
745 			   (u8*) &rt->rt6i_dst - (u8*) rt);
746 
747 #ifdef CONFIG_IPV6_SUBTREES
748 	if (src_len) {
749 		BUG_TRAP(saddr!=NULL);
750 		if (fn == NULL)
751 			fn = fn->subtree;
752 		if (fn)
753 			fn = fib6_locate_1(fn, saddr, src_len,
754 					   (u8*) &rt->rt6i_src - (u8*) rt);
755 	}
756 #endif
757 
758 	if (fn && fn->fn_flags&RTN_RTINFO)
759 		return fn;
760 
761 	return NULL;
762 }
763 
764 
765 /*
766  *	Deletion
767  *
768  */
769 
fib6_find_prefix(struct fib6_node * fn)770 static struct rt6_info * fib6_find_prefix(struct fib6_node *fn)
771 {
772 	if (fn->fn_flags&RTN_ROOT)
773 		return &ip6_null_entry;
774 
775 	while(fn) {
776 		if(fn->left)
777 			return fn->left->leaf;
778 
779 		if(fn->right)
780 			return fn->right->leaf;
781 
782 		fn = SUBTREE(fn);
783 	}
784 	return NULL;
785 }
786 
787 /*
788  *	Called to trim the tree of intermediate nodes when possible. "fn"
789  *	is the node we want to try and remove.
790  */
791 
fib6_repair_tree(struct fib6_node * fn)792 static struct fib6_node * fib6_repair_tree(struct fib6_node *fn)
793 {
794 	int children;
795 	int nstate;
796 	struct fib6_node *child, *pn;
797 	struct fib6_walker_t *w;
798 	int iter = 0;
799 
800 	for (;;) {
801 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
802 		iter++;
803 
804 		BUG_TRAP(!(fn->fn_flags&RTN_RTINFO));
805 		BUG_TRAP(!(fn->fn_flags&RTN_TL_ROOT));
806 		BUG_TRAP(fn->leaf==NULL);
807 
808 		children = 0;
809 		child = NULL;
810 		if (fn->right) child = fn->right, children |= 1;
811 		if (fn->left) child = fn->left, children |= 2;
812 
813 		if (children == 3 || SUBTREE(fn)
814 #ifdef CONFIG_IPV6_SUBTREES
815 		    /* Subtree root (i.e. fn) may have one child */
816 		    || (children && fn->fn_flags&RTN_ROOT)
817 #endif
818 		    ) {
819 			fn->leaf = fib6_find_prefix(fn);
820 #if RT6_DEBUG >= 2
821 			if (fn->leaf==NULL) {
822 				BUG_TRAP(fn->leaf);
823 				fn->leaf = &ip6_null_entry;
824 			}
825 #endif
826 			atomic_inc(&fn->leaf->rt6i_ref);
827 			return fn->parent;
828 		}
829 
830 		pn = fn->parent;
831 #ifdef CONFIG_IPV6_SUBTREES
832 		if (SUBTREE(pn) == fn) {
833 			BUG_TRAP(fn->fn_flags&RTN_ROOT);
834 			SUBTREE(pn) = NULL;
835 			nstate = FWS_L;
836 		} else {
837 			BUG_TRAP(!(fn->fn_flags&RTN_ROOT));
838 #endif
839 			if (pn->right == fn) pn->right = child;
840 			else if (pn->left == fn) pn->left = child;
841 #if RT6_DEBUG >= 2
842 			else BUG_TRAP(0);
843 #endif
844 			if (child)
845 				child->parent = pn;
846 			nstate = FWS_R;
847 #ifdef CONFIG_IPV6_SUBTREES
848 		}
849 #endif
850 
851 		read_lock(&fib6_walker_lock);
852 		FOR_WALKERS(w) {
853 			if (child == NULL) {
854 				if (w->root == fn) {
855 					w->root = w->node = NULL;
856 					RT6_TRACE("W %p adjusted by delroot 1\n", w);
857 				} else if (w->node == fn) {
858 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
859 					w->node = pn;
860 					w->state = nstate;
861 				}
862 			} else {
863 				if (w->root == fn) {
864 					w->root = child;
865 					RT6_TRACE("W %p adjusted by delroot 2\n", w);
866 				}
867 				if (w->node == fn) {
868 					w->node = child;
869 					if (children&2) {
870 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
871 						w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
872 					} else {
873 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
874 						w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
875 					}
876 				}
877 			}
878 		}
879 		read_unlock(&fib6_walker_lock);
880 
881 		node_free(fn);
882 		if (pn->fn_flags&RTN_RTINFO || SUBTREE(pn))
883 			return pn;
884 
885 		rt6_release(pn->leaf);
886 		pn->leaf = NULL;
887 		fn = pn;
888 	}
889 }
890 
fib6_del_route(struct fib6_node * fn,struct rt6_info ** rtp,struct nlmsghdr * nlh,struct netlink_skb_parms * req)891 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
892     struct nlmsghdr *nlh, struct netlink_skb_parms *req)
893 {
894 	struct fib6_walker_t *w;
895 	struct rt6_info *rt = *rtp;
896 
897 	RT6_TRACE("fib6_del_route\n");
898 
899 	/* Unlink it */
900 	*rtp = rt->u.next;
901 	rt->rt6i_node = NULL;
902 	rt6_stats.fib_rt_entries--;
903 
904 	/* Adjust walkers */
905 	read_lock(&fib6_walker_lock);
906 	FOR_WALKERS(w) {
907 		if (w->state == FWS_C && w->leaf == rt) {
908 			RT6_TRACE("walker %p adjusted by delroute\n", w);
909 			w->leaf = rt->u.next;
910 			if (w->leaf == NULL)
911 				w->state = FWS_U;
912 		}
913 	}
914 	read_unlock(&fib6_walker_lock);
915 
916 	rt->u.next = NULL;
917 
918 	if (fn->leaf == NULL && fn->fn_flags&RTN_TL_ROOT)
919 		fn->leaf = &ip6_null_entry;
920 
921 	/* If it was last route, expunge its radix tree node */
922 	if (fn->leaf == NULL) {
923 		fn->fn_flags &= ~RTN_RTINFO;
924 		rt6_stats.fib_route_nodes--;
925 		fn = fib6_repair_tree(fn);
926 	}
927 
928 	if (atomic_read(&rt->rt6i_ref) != 1) {
929 		/* This route is used as dummy address holder in some split
930 		 * nodes. It is not leaked, but it still holds other resources,
931 		 * which must be released in time. So, scan ascendant nodes
932 		 * and replace dummy references to this route with references
933 		 * to still alive ones.
934 		 */
935 		while (fn) {
936 			if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
937 				fn->leaf = fib6_find_prefix(fn);
938 				atomic_inc(&fn->leaf->rt6i_ref);
939 				rt6_release(rt);
940 			}
941 			fn = fn->parent;
942 		}
943 		/* No more references are possiible at this point. */
944 		if (atomic_read(&rt->rt6i_ref) != 1) BUG();
945 	}
946 
947 	inet6_rt_notify(RTM_DELROUTE, rt, nlh, req);
948 	rt6_release(rt);
949 }
950 
fib6_del(struct rt6_info * rt,struct nlmsghdr * nlh,struct netlink_skb_parms * req)951 int fib6_del(struct rt6_info *rt, struct nlmsghdr *nlh, struct netlink_skb_parms *req)
952 {
953 	struct fib6_node *fn = rt->rt6i_node;
954 	struct rt6_info **rtp;
955 
956 #if RT6_DEBUG >= 2
957 	if (rt->u.dst.obsolete>0) {
958 		BUG_TRAP(fn==NULL);
959 		return -ENOENT;
960 	}
961 #endif
962 	if (fn == NULL || rt == &ip6_null_entry)
963 		return -ENOENT;
964 
965 	BUG_TRAP(fn->fn_flags&RTN_RTINFO);
966 
967 	if (!(rt->rt6i_flags&RTF_CACHE))
968 		fib6_prune_clones(fn, rt);
969 
970 	/*
971 	 *	Walk the leaf entries looking for ourself
972 	 */
973 
974 	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->u.next) {
975 		if (*rtp == rt) {
976 			fib6_del_route(fn, rtp, nlh, req);
977 			return 0;
978 		}
979 	}
980 	return -ENOENT;
981 }
982 
983 /*
984  *	Tree traversal function.
985  *
986  *	Certainly, it is not interrupt safe.
987  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
988  *	It means, that we can modify tree during walking
989  *	and use this function for garbage collection, clone pruning,
990  *	cleaning tree when a device goes down etc. etc.
991  *
992  *	It guarantees that every node will be traversed,
993  *	and that it will be traversed only once.
994  *
995  *	Callback function w->func may return:
996  *	0 -> continue walking.
997  *	positive value -> walking is suspended (used by tree dumps,
998  *	and probably by gc, if it will be split to several slices)
999  *	negative value -> terminate walking.
1000  *
1001  *	The function itself returns:
1002  *	0   -> walk is complete.
1003  *	>0  -> walk is incomplete (i.e. suspended)
1004  *	<0  -> walk is terminated by an error.
1005  */
1006 
fib6_walk_continue(struct fib6_walker_t * w)1007 int fib6_walk_continue(struct fib6_walker_t *w)
1008 {
1009 	struct fib6_node *fn, *pn;
1010 
1011 	for (;;) {
1012 		fn = w->node;
1013 		if (fn == NULL)
1014 			return 0;
1015 
1016 		if (w->prune && fn != w->root &&
1017 		    fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1018 			w->state = FWS_C;
1019 			w->leaf = fn->leaf;
1020 		}
1021 		switch (w->state) {
1022 #ifdef CONFIG_IPV6_SUBTREES
1023 		case FWS_S:
1024 			if (SUBTREE(fn)) {
1025 				w->node = SUBTREE(fn);
1026 				continue;
1027 			}
1028 			w->state = FWS_L;
1029 #endif
1030 		case FWS_L:
1031 			if (fn->left) {
1032 				w->node = fn->left;
1033 				w->state = FWS_INIT;
1034 				continue;
1035 			}
1036 			w->state = FWS_R;
1037 		case FWS_R:
1038 			if (fn->right) {
1039 				w->node = fn->right;
1040 				w->state = FWS_INIT;
1041 				continue;
1042 			}
1043 			w->state = FWS_C;
1044 			w->leaf = fn->leaf;
1045 		case FWS_C:
1046 			if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1047 				int err = w->func(w);
1048 				if (err)
1049 					return err;
1050 				continue;
1051 			}
1052 			w->state = FWS_U;
1053 		case FWS_U:
1054 			if (fn == w->root)
1055 				return 0;
1056 			pn = fn->parent;
1057 			w->node = pn;
1058 #ifdef CONFIG_IPV6_SUBTREES
1059 			if (SUBTREE(pn) == fn) {
1060 				BUG_TRAP(fn->fn_flags&RTN_ROOT);
1061 				w->state = FWS_L;
1062 				continue;
1063 			}
1064 #endif
1065 			if (pn->left == fn) {
1066 				w->state = FWS_R;
1067 				continue;
1068 			}
1069 			if (pn->right == fn) {
1070 				w->state = FWS_C;
1071 				w->leaf = w->node->leaf;
1072 				continue;
1073 			}
1074 #if RT6_DEBUG >= 2
1075 			BUG_TRAP(0);
1076 #endif
1077 		}
1078 	}
1079 }
1080 
fib6_walk(struct fib6_walker_t * w)1081 int fib6_walk(struct fib6_walker_t *w)
1082 {
1083 	int res;
1084 
1085 	w->state = FWS_INIT;
1086 	w->node = w->root;
1087 
1088 	fib6_walker_link(w);
1089 	res = fib6_walk_continue(w);
1090 	if (res <= 0)
1091 		fib6_walker_unlink(w);
1092 	return res;
1093 }
1094 
fib6_clean_node(struct fib6_walker_t * w)1095 static int fib6_clean_node(struct fib6_walker_t *w)
1096 {
1097 	int res;
1098 	struct rt6_info *rt;
1099 	struct fib6_cleaner_t *c = (struct fib6_cleaner_t*)w;
1100 
1101 	for (rt = w->leaf; rt; rt = rt->u.next) {
1102 		res = c->func(rt, c->arg);
1103 		if (res < 0) {
1104 			w->leaf = rt;
1105 			res = fib6_del(rt, NULL, NULL);
1106 			if (res) {
1107 #if RT6_DEBUG >= 2
1108 				printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1109 #endif
1110 				continue;
1111 			}
1112 			return 0;
1113 		}
1114 		BUG_TRAP(res==0);
1115 	}
1116 	w->leaf = rt;
1117 	return 0;
1118 }
1119 
1120 /*
1121  *	Convenient frontend to tree walker.
1122  *
1123  *	func is called on each route.
1124  *		It may return -1 -> delete this route.
1125  *		              0  -> continue walking
1126  *
1127  *	prune==1 -> only immediate children of node (certainly,
1128  *	ignoring pure split nodes) will be scanned.
1129  */
1130 
fib6_clean_tree(struct fib6_node * root,int (* func)(struct rt6_info *,void * arg),int prune,void * arg)1131 void fib6_clean_tree(struct fib6_node *root,
1132 		     int (*func)(struct rt6_info *, void *arg),
1133 		     int prune, void *arg)
1134 {
1135 	struct fib6_cleaner_t c;
1136 
1137 	c.w.root = root;
1138 	c.w.func = fib6_clean_node;
1139 	c.w.prune = prune;
1140 	c.func = func;
1141 	c.arg = arg;
1142 
1143 	fib6_walk(&c.w);
1144 }
1145 
fib6_prune_clone(struct rt6_info * rt,void * arg)1146 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1147 {
1148 	if (rt->rt6i_flags & RTF_CACHE) {
1149 		RT6_TRACE("pruning clone %p\n", rt);
1150 		return -1;
1151 	}
1152 
1153 	return 0;
1154 }
1155 
fib6_prune_clones(struct fib6_node * fn,struct rt6_info * rt)1156 static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt)
1157 {
1158 	fib6_clean_tree(fn, fib6_prune_clone, 1, rt);
1159 }
1160 
1161 /*
1162  *	Garbage collection
1163  */
1164 
1165 static struct fib6_gc_args
1166 {
1167 	int			timeout;
1168 	int			more;
1169 } gc_args;
1170 
fib6_age(struct rt6_info * rt,void * arg)1171 static int fib6_age(struct rt6_info *rt, void *arg)
1172 {
1173 	unsigned long now = jiffies;
1174 
1175 	/* Age clones. Note, that clones are aged out
1176 	   only if they are not in use now.
1177 	 */
1178 
1179 	/*
1180 	 *	check addrconf expiration here.
1181 	 *	They are expired even if they are in use.
1182 	 */
1183 
1184 	if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1185 		if (time_after(now, rt->rt6i_expires)) {
1186 			RT6_TRACE("expiring %p\n", rt);
1187 			return -1;
1188 		}
1189 		gc_args.more++;
1190 	} else if (rt->rt6i_flags & RTF_CACHE) {
1191 		if (atomic_read(&rt->u.dst.__refcnt) == 0 &&
1192 		    time_after_eq(now, rt->u.dst.lastuse + gc_args.timeout)) {
1193 			RT6_TRACE("aging clone %p\n", rt);
1194 			return -1;
1195 		}
1196 		gc_args.more++;
1197 	}
1198 
1199 	return 0;
1200 }
1201 
1202 static spinlock_t fib6_gc_lock = SPIN_LOCK_UNLOCKED;
1203 
fib6_run_gc(unsigned long dummy)1204 void fib6_run_gc(unsigned long dummy)
1205 {
1206 	if (dummy != ~0UL) {
1207 		spin_lock_bh(&fib6_gc_lock);
1208 		gc_args.timeout = (int)dummy;
1209 	} else {
1210 		local_bh_disable();
1211 		if (!spin_trylock(&fib6_gc_lock)) {
1212 			mod_timer(&ip6_fib_timer, jiffies + HZ);
1213 			local_bh_enable();
1214 			return;
1215 		}
1216 		gc_args.timeout = ip6_rt_gc_interval;
1217 	}
1218 	gc_args.more = 0;
1219 
1220 
1221 	write_lock_bh(&rt6_lock);
1222 	fib6_clean_tree(&ip6_routing_table, fib6_age, 0, NULL);
1223 	write_unlock_bh(&rt6_lock);
1224 
1225 	if (gc_args.more)
1226 		mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
1227 	else {
1228 		del_timer(&ip6_fib_timer);
1229 		ip6_fib_timer.expires = 0;
1230 	}
1231 	spin_unlock_bh(&fib6_gc_lock);
1232 }
1233 
fib6_init(void)1234 void __init fib6_init(void)
1235 {
1236 	if (!fib6_node_kmem)
1237 		fib6_node_kmem = kmem_cache_create("fib6_nodes",
1238 						   sizeof(struct fib6_node),
1239 						   0, SLAB_HWCACHE_ALIGN,
1240 						   NULL, NULL);
1241 }
1242 
1243 #ifdef MODULE
fib6_gc_cleanup(void)1244 void fib6_gc_cleanup(void)
1245 {
1246 	del_timer(&ip6_fib_timer);
1247 }
1248 #endif
1249 
1250 
1251