1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138 
139 #include "net-sysfs.h"
140 
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143 
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146 
147 /*
148  *	The list of packet types we will receive (as opposed to discard)
149  *	and the routines to invoke.
150  *
151  *	Why 16. Because with 16 the only overlap we get on a hash of the
152  *	low nibble of the protocol value is RARP/SNAP/X.25.
153  *
154  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
155  *             sure which should go first, but I bet it won't make much
156  *             difference if we are running VLANs.  The good news is that
157  *             this protocol won't be in the list unless compiled in, so
158  *             the average user (w/out VLANs) will not be adversely affected.
159  *             --BLG
160  *
161  *		0800	IP
162  *		8100    802.1Q VLAN
163  *		0001	802.3
164  *		0002	AX.25
165  *		0004	802.2
166  *		8035	RARP
167  *		0005	SNAP
168  *		0805	X.25
169  *		0806	ARP
170  *		8137	IPX
171  *		0009	Localtalk
172  *		86DD	IPv6
173  */
174 
175 #define PTYPE_HASH_SIZE	(16)
176 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
177 
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly;	/* Taps */
181 
182 /*
183  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184  * semaphore.
185  *
186  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187  *
188  * Writers must hold the rtnl semaphore while they loop through the
189  * dev_base_head list, and hold dev_base_lock for writing when they do the
190  * actual updates.  This allows pure readers to access the list even
191  * while a writer is preparing to update it.
192  *
193  * To put it another way, dev_base_lock is held for writing only to
194  * protect against pure readers; the rtnl semaphore provides the
195  * protection against other writers.
196  *
197  * See, for example usages, register_netdevice() and
198  * unregister_netdevice(), which must be called with the rtnl
199  * semaphore held.
200  */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203 
dev_base_seq_inc(struct net * net)204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 	while (++net->dev_base_seq == 0);
207 }
208 
dev_name_hash(struct net * net,const char * name)209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214 
dev_index_hash(struct net * net,int ifindex)215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219 
rps_lock(struct softnet_data * sd)220 static inline void rps_lock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223 	spin_lock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226 
rps_unlock(struct softnet_data * sd)227 static inline void rps_unlock(struct softnet_data *sd)
228 {
229 #ifdef CONFIG_RPS
230 	spin_unlock(&sd->input_pkt_queue.lock);
231 #endif
232 }
233 
234 /* Device list insertion */
list_netdevice(struct net_device * dev)235 static int list_netdevice(struct net_device *dev)
236 {
237 	struct net *net = dev_net(dev);
238 
239 	ASSERT_RTNL();
240 
241 	write_lock_bh(&dev_base_lock);
242 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
243 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
244 	hlist_add_head_rcu(&dev->index_hlist,
245 			   dev_index_hash(net, dev->ifindex));
246 	write_unlock_bh(&dev_base_lock);
247 
248 	dev_base_seq_inc(net);
249 
250 	return 0;
251 }
252 
253 /* Device list removal
254  * caller must respect a RCU grace period before freeing/reusing dev
255  */
unlist_netdevice(struct net_device * dev)256 static void unlist_netdevice(struct net_device *dev)
257 {
258 	ASSERT_RTNL();
259 
260 	/* Unlink dev from the device chain */
261 	write_lock_bh(&dev_base_lock);
262 	list_del_rcu(&dev->dev_list);
263 	hlist_del_rcu(&dev->name_hlist);
264 	hlist_del_rcu(&dev->index_hlist);
265 	write_unlock_bh(&dev_base_lock);
266 
267 	dev_base_seq_inc(dev_net(dev));
268 }
269 
270 /*
271  *	Our notifier list
272  */
273 
274 static RAW_NOTIFIER_HEAD(netdev_chain);
275 
276 /*
277  *	Device drivers call our routines to queue packets here. We empty the
278  *	queue in the local softnet handler.
279  */
280 
281 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
282 EXPORT_PER_CPU_SYMBOL(softnet_data);
283 
284 #ifdef CONFIG_LOCKDEP
285 /*
286  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
287  * according to dev->type
288  */
289 static const unsigned short netdev_lock_type[] =
290 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
291 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
292 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
293 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
294 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
295 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
296 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
297 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
298 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
299 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
300 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
301 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
302 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
303 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
304 	 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
305 	 ARPHRD_VOID, ARPHRD_NONE};
306 
307 static const char *const netdev_lock_name[] =
308 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
321 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
322 	 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
323 	 "_xmit_VOID", "_xmit_NONE"};
324 
325 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
326 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
327 
netdev_lock_pos(unsigned short dev_type)328 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
329 {
330 	int i;
331 
332 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
333 		if (netdev_lock_type[i] == dev_type)
334 			return i;
335 	/* the last key is used by default */
336 	return ARRAY_SIZE(netdev_lock_type) - 1;
337 }
338 
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)339 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
340 						 unsigned short dev_type)
341 {
342 	int i;
343 
344 	i = netdev_lock_pos(dev_type);
345 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
346 				   netdev_lock_name[i]);
347 }
348 
netdev_set_addr_lockdep_class(struct net_device * dev)349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 	int i;
352 
353 	i = netdev_lock_pos(dev->type);
354 	lockdep_set_class_and_name(&dev->addr_list_lock,
355 				   &netdev_addr_lock_key[i],
356 				   netdev_lock_name[i]);
357 }
358 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)359 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
360 						 unsigned short dev_type)
361 {
362 }
netdev_set_addr_lockdep_class(struct net_device * dev)363 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
364 {
365 }
366 #endif
367 
368 /*******************************************************************************
369 
370 		Protocol management and registration routines
371 
372 *******************************************************************************/
373 
374 /*
375  *	Add a protocol ID to the list. Now that the input handler is
376  *	smarter we can dispense with all the messy stuff that used to be
377  *	here.
378  *
379  *	BEWARE!!! Protocol handlers, mangling input packets,
380  *	MUST BE last in hash buckets and checking protocol handlers
381  *	MUST start from promiscuous ptype_all chain in net_bh.
382  *	It is true now, do not change it.
383  *	Explanation follows: if protocol handler, mangling packet, will
384  *	be the first on list, it is not able to sense, that packet
385  *	is cloned and should be copied-on-write, so that it will
386  *	change it and subsequent readers will get broken packet.
387  *							--ANK (980803)
388  */
389 
ptype_head(const struct packet_type * pt)390 static inline struct list_head *ptype_head(const struct packet_type *pt)
391 {
392 	if (pt->type == htons(ETH_P_ALL))
393 		return &ptype_all;
394 	else
395 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
396 }
397 
398 /**
399  *	dev_add_pack - add packet handler
400  *	@pt: packet type declaration
401  *
402  *	Add a protocol handler to the networking stack. The passed &packet_type
403  *	is linked into kernel lists and may not be freed until it has been
404  *	removed from the kernel lists.
405  *
406  *	This call does not sleep therefore it can not
407  *	guarantee all CPU's that are in middle of receiving packets
408  *	will see the new packet type (until the next received packet).
409  */
410 
dev_add_pack(struct packet_type * pt)411 void dev_add_pack(struct packet_type *pt)
412 {
413 	struct list_head *head = ptype_head(pt);
414 
415 	spin_lock(&ptype_lock);
416 	list_add_rcu(&pt->list, head);
417 	spin_unlock(&ptype_lock);
418 }
419 EXPORT_SYMBOL(dev_add_pack);
420 
421 /**
422  *	__dev_remove_pack	 - remove packet handler
423  *	@pt: packet type declaration
424  *
425  *	Remove a protocol handler that was previously added to the kernel
426  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
427  *	from the kernel lists and can be freed or reused once this function
428  *	returns.
429  *
430  *      The packet type might still be in use by receivers
431  *	and must not be freed until after all the CPU's have gone
432  *	through a quiescent state.
433  */
__dev_remove_pack(struct packet_type * pt)434 void __dev_remove_pack(struct packet_type *pt)
435 {
436 	struct list_head *head = ptype_head(pt);
437 	struct packet_type *pt1;
438 
439 	spin_lock(&ptype_lock);
440 
441 	list_for_each_entry(pt1, head, list) {
442 		if (pt == pt1) {
443 			list_del_rcu(&pt->list);
444 			goto out;
445 		}
446 	}
447 
448 	pr_warn("dev_remove_pack: %p not found\n", pt);
449 out:
450 	spin_unlock(&ptype_lock);
451 }
452 EXPORT_SYMBOL(__dev_remove_pack);
453 
454 /**
455  *	dev_remove_pack	 - remove packet handler
456  *	@pt: packet type declaration
457  *
458  *	Remove a protocol handler that was previously added to the kernel
459  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
460  *	from the kernel lists and can be freed or reused once this function
461  *	returns.
462  *
463  *	This call sleeps to guarantee that no CPU is looking at the packet
464  *	type after return.
465  */
dev_remove_pack(struct packet_type * pt)466 void dev_remove_pack(struct packet_type *pt)
467 {
468 	__dev_remove_pack(pt);
469 
470 	synchronize_net();
471 }
472 EXPORT_SYMBOL(dev_remove_pack);
473 
474 /******************************************************************************
475 
476 		      Device Boot-time Settings Routines
477 
478 *******************************************************************************/
479 
480 /* Boot time configuration table */
481 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
482 
483 /**
484  *	netdev_boot_setup_add	- add new setup entry
485  *	@name: name of the device
486  *	@map: configured settings for the device
487  *
488  *	Adds new setup entry to the dev_boot_setup list.  The function
489  *	returns 0 on error and 1 on success.  This is a generic routine to
490  *	all netdevices.
491  */
netdev_boot_setup_add(char * name,struct ifmap * map)492 static int netdev_boot_setup_add(char *name, struct ifmap *map)
493 {
494 	struct netdev_boot_setup *s;
495 	int i;
496 
497 	s = dev_boot_setup;
498 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
499 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
500 			memset(s[i].name, 0, sizeof(s[i].name));
501 			strlcpy(s[i].name, name, IFNAMSIZ);
502 			memcpy(&s[i].map, map, sizeof(s[i].map));
503 			break;
504 		}
505 	}
506 
507 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
508 }
509 
510 /**
511  *	netdev_boot_setup_check	- check boot time settings
512  *	@dev: the netdevice
513  *
514  * 	Check boot time settings for the device.
515  *	The found settings are set for the device to be used
516  *	later in the device probing.
517  *	Returns 0 if no settings found, 1 if they are.
518  */
netdev_boot_setup_check(struct net_device * dev)519 int netdev_boot_setup_check(struct net_device *dev)
520 {
521 	struct netdev_boot_setup *s = dev_boot_setup;
522 	int i;
523 
524 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
525 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
526 		    !strcmp(dev->name, s[i].name)) {
527 			dev->irq 	= s[i].map.irq;
528 			dev->base_addr 	= s[i].map.base_addr;
529 			dev->mem_start 	= s[i].map.mem_start;
530 			dev->mem_end 	= s[i].map.mem_end;
531 			return 1;
532 		}
533 	}
534 	return 0;
535 }
536 EXPORT_SYMBOL(netdev_boot_setup_check);
537 
538 
539 /**
540  *	netdev_boot_base	- get address from boot time settings
541  *	@prefix: prefix for network device
542  *	@unit: id for network device
543  *
544  * 	Check boot time settings for the base address of device.
545  *	The found settings are set for the device to be used
546  *	later in the device probing.
547  *	Returns 0 if no settings found.
548  */
netdev_boot_base(const char * prefix,int unit)549 unsigned long netdev_boot_base(const char *prefix, int unit)
550 {
551 	const struct netdev_boot_setup *s = dev_boot_setup;
552 	char name[IFNAMSIZ];
553 	int i;
554 
555 	sprintf(name, "%s%d", prefix, unit);
556 
557 	/*
558 	 * If device already registered then return base of 1
559 	 * to indicate not to probe for this interface
560 	 */
561 	if (__dev_get_by_name(&init_net, name))
562 		return 1;
563 
564 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
565 		if (!strcmp(name, s[i].name))
566 			return s[i].map.base_addr;
567 	return 0;
568 }
569 
570 /*
571  * Saves at boot time configured settings for any netdevice.
572  */
netdev_boot_setup(char * str)573 int __init netdev_boot_setup(char *str)
574 {
575 	int ints[5];
576 	struct ifmap map;
577 
578 	str = get_options(str, ARRAY_SIZE(ints), ints);
579 	if (!str || !*str)
580 		return 0;
581 
582 	/* Save settings */
583 	memset(&map, 0, sizeof(map));
584 	if (ints[0] > 0)
585 		map.irq = ints[1];
586 	if (ints[0] > 1)
587 		map.base_addr = ints[2];
588 	if (ints[0] > 2)
589 		map.mem_start = ints[3];
590 	if (ints[0] > 3)
591 		map.mem_end = ints[4];
592 
593 	/* Add new entry to the list */
594 	return netdev_boot_setup_add(str, &map);
595 }
596 
597 __setup("netdev=", netdev_boot_setup);
598 
599 /*******************************************************************************
600 
601 			    Device Interface Subroutines
602 
603 *******************************************************************************/
604 
605 /**
606  *	__dev_get_by_name	- find a device by its name
607  *	@net: the applicable net namespace
608  *	@name: name to find
609  *
610  *	Find an interface by name. Must be called under RTNL semaphore
611  *	or @dev_base_lock. If the name is found a pointer to the device
612  *	is returned. If the name is not found then %NULL is returned. The
613  *	reference counters are not incremented so the caller must be
614  *	careful with locks.
615  */
616 
__dev_get_by_name(struct net * net,const char * name)617 struct net_device *__dev_get_by_name(struct net *net, const char *name)
618 {
619 	struct hlist_node *p;
620 	struct net_device *dev;
621 	struct hlist_head *head = dev_name_hash(net, name);
622 
623 	hlist_for_each_entry(dev, p, head, name_hlist)
624 		if (!strncmp(dev->name, name, IFNAMSIZ))
625 			return dev;
626 
627 	return NULL;
628 }
629 EXPORT_SYMBOL(__dev_get_by_name);
630 
631 /**
632  *	dev_get_by_name_rcu	- find a device by its name
633  *	@net: the applicable net namespace
634  *	@name: name to find
635  *
636  *	Find an interface by name.
637  *	If the name is found a pointer to the device is returned.
638  * 	If the name is not found then %NULL is returned.
639  *	The reference counters are not incremented so the caller must be
640  *	careful with locks. The caller must hold RCU lock.
641  */
642 
dev_get_by_name_rcu(struct net * net,const char * name)643 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
644 {
645 	struct hlist_node *p;
646 	struct net_device *dev;
647 	struct hlist_head *head = dev_name_hash(net, name);
648 
649 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
650 		if (!strncmp(dev->name, name, IFNAMSIZ))
651 			return dev;
652 
653 	return NULL;
654 }
655 EXPORT_SYMBOL(dev_get_by_name_rcu);
656 
657 /**
658  *	dev_get_by_name		- find a device by its name
659  *	@net: the applicable net namespace
660  *	@name: name to find
661  *
662  *	Find an interface by name. This can be called from any
663  *	context and does its own locking. The returned handle has
664  *	the usage count incremented and the caller must use dev_put() to
665  *	release it when it is no longer needed. %NULL is returned if no
666  *	matching device is found.
667  */
668 
dev_get_by_name(struct net * net,const char * name)669 struct net_device *dev_get_by_name(struct net *net, const char *name)
670 {
671 	struct net_device *dev;
672 
673 	rcu_read_lock();
674 	dev = dev_get_by_name_rcu(net, name);
675 	if (dev)
676 		dev_hold(dev);
677 	rcu_read_unlock();
678 	return dev;
679 }
680 EXPORT_SYMBOL(dev_get_by_name);
681 
682 /**
683  *	__dev_get_by_index - find a device by its ifindex
684  *	@net: the applicable net namespace
685  *	@ifindex: index of device
686  *
687  *	Search for an interface by index. Returns %NULL if the device
688  *	is not found or a pointer to the device. The device has not
689  *	had its reference counter increased so the caller must be careful
690  *	about locking. The caller must hold either the RTNL semaphore
691  *	or @dev_base_lock.
692  */
693 
__dev_get_by_index(struct net * net,int ifindex)694 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
695 {
696 	struct hlist_node *p;
697 	struct net_device *dev;
698 	struct hlist_head *head = dev_index_hash(net, ifindex);
699 
700 	hlist_for_each_entry(dev, p, head, index_hlist)
701 		if (dev->ifindex == ifindex)
702 			return dev;
703 
704 	return NULL;
705 }
706 EXPORT_SYMBOL(__dev_get_by_index);
707 
708 /**
709  *	dev_get_by_index_rcu - find a device by its ifindex
710  *	@net: the applicable net namespace
711  *	@ifindex: index of device
712  *
713  *	Search for an interface by index. Returns %NULL if the device
714  *	is not found or a pointer to the device. The device has not
715  *	had its reference counter increased so the caller must be careful
716  *	about locking. The caller must hold RCU lock.
717  */
718 
dev_get_by_index_rcu(struct net * net,int ifindex)719 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
720 {
721 	struct hlist_node *p;
722 	struct net_device *dev;
723 	struct hlist_head *head = dev_index_hash(net, ifindex);
724 
725 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
726 		if (dev->ifindex == ifindex)
727 			return dev;
728 
729 	return NULL;
730 }
731 EXPORT_SYMBOL(dev_get_by_index_rcu);
732 
733 
734 /**
735  *	dev_get_by_index - find a device by its ifindex
736  *	@net: the applicable net namespace
737  *	@ifindex: index of device
738  *
739  *	Search for an interface by index. Returns NULL if the device
740  *	is not found or a pointer to the device. The device returned has
741  *	had a reference added and the pointer is safe until the user calls
742  *	dev_put to indicate they have finished with it.
743  */
744 
dev_get_by_index(struct net * net,int ifindex)745 struct net_device *dev_get_by_index(struct net *net, int ifindex)
746 {
747 	struct net_device *dev;
748 
749 	rcu_read_lock();
750 	dev = dev_get_by_index_rcu(net, ifindex);
751 	if (dev)
752 		dev_hold(dev);
753 	rcu_read_unlock();
754 	return dev;
755 }
756 EXPORT_SYMBOL(dev_get_by_index);
757 
758 /**
759  *	dev_getbyhwaddr_rcu - find a device by its hardware address
760  *	@net: the applicable net namespace
761  *	@type: media type of device
762  *	@ha: hardware address
763  *
764  *	Search for an interface by MAC address. Returns NULL if the device
765  *	is not found or a pointer to the device.
766  *	The caller must hold RCU or RTNL.
767  *	The returned device has not had its ref count increased
768  *	and the caller must therefore be careful about locking
769  *
770  */
771 
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)772 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
773 				       const char *ha)
774 {
775 	struct net_device *dev;
776 
777 	for_each_netdev_rcu(net, dev)
778 		if (dev->type == type &&
779 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
780 			return dev;
781 
782 	return NULL;
783 }
784 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
785 
__dev_getfirstbyhwtype(struct net * net,unsigned short type)786 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
787 {
788 	struct net_device *dev;
789 
790 	ASSERT_RTNL();
791 	for_each_netdev(net, dev)
792 		if (dev->type == type)
793 			return dev;
794 
795 	return NULL;
796 }
797 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
798 
dev_getfirstbyhwtype(struct net * net,unsigned short type)799 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
800 {
801 	struct net_device *dev, *ret = NULL;
802 
803 	rcu_read_lock();
804 	for_each_netdev_rcu(net, dev)
805 		if (dev->type == type) {
806 			dev_hold(dev);
807 			ret = dev;
808 			break;
809 		}
810 	rcu_read_unlock();
811 	return ret;
812 }
813 EXPORT_SYMBOL(dev_getfirstbyhwtype);
814 
815 /**
816  *	dev_get_by_flags_rcu - find any device with given flags
817  *	@net: the applicable net namespace
818  *	@if_flags: IFF_* values
819  *	@mask: bitmask of bits in if_flags to check
820  *
821  *	Search for any interface with the given flags. Returns NULL if a device
822  *	is not found or a pointer to the device. Must be called inside
823  *	rcu_read_lock(), and result refcount is unchanged.
824  */
825 
dev_get_by_flags_rcu(struct net * net,unsigned short if_flags,unsigned short mask)826 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
827 				    unsigned short mask)
828 {
829 	struct net_device *dev, *ret;
830 
831 	ret = NULL;
832 	for_each_netdev_rcu(net, dev) {
833 		if (((dev->flags ^ if_flags) & mask) == 0) {
834 			ret = dev;
835 			break;
836 		}
837 	}
838 	return ret;
839 }
840 EXPORT_SYMBOL(dev_get_by_flags_rcu);
841 
842 /**
843  *	dev_valid_name - check if name is okay for network device
844  *	@name: name string
845  *
846  *	Network device names need to be valid file names to
847  *	to allow sysfs to work.  We also disallow any kind of
848  *	whitespace.
849  */
dev_valid_name(const char * name)850 bool dev_valid_name(const char *name)
851 {
852 	if (*name == '\0')
853 		return false;
854 	if (strlen(name) >= IFNAMSIZ)
855 		return false;
856 	if (!strcmp(name, ".") || !strcmp(name, ".."))
857 		return false;
858 
859 	while (*name) {
860 		if (*name == '/' || isspace(*name))
861 			return false;
862 		name++;
863 	}
864 	return true;
865 }
866 EXPORT_SYMBOL(dev_valid_name);
867 
868 /**
869  *	__dev_alloc_name - allocate a name for a device
870  *	@net: network namespace to allocate the device name in
871  *	@name: name format string
872  *	@buf:  scratch buffer and result name string
873  *
874  *	Passed a format string - eg "lt%d" it will try and find a suitable
875  *	id. It scans list of devices to build up a free map, then chooses
876  *	the first empty slot. The caller must hold the dev_base or rtnl lock
877  *	while allocating the name and adding the device in order to avoid
878  *	duplicates.
879  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
880  *	Returns the number of the unit assigned or a negative errno code.
881  */
882 
__dev_alloc_name(struct net * net,const char * name,char * buf)883 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
884 {
885 	int i = 0;
886 	const char *p;
887 	const int max_netdevices = 8*PAGE_SIZE;
888 	unsigned long *inuse;
889 	struct net_device *d;
890 
891 	p = strnchr(name, IFNAMSIZ-1, '%');
892 	if (p) {
893 		/*
894 		 * Verify the string as this thing may have come from
895 		 * the user.  There must be either one "%d" and no other "%"
896 		 * characters.
897 		 */
898 		if (p[1] != 'd' || strchr(p + 2, '%'))
899 			return -EINVAL;
900 
901 		/* Use one page as a bit array of possible slots */
902 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
903 		if (!inuse)
904 			return -ENOMEM;
905 
906 		for_each_netdev(net, d) {
907 			if (!sscanf(d->name, name, &i))
908 				continue;
909 			if (i < 0 || i >= max_netdevices)
910 				continue;
911 
912 			/*  avoid cases where sscanf is not exact inverse of printf */
913 			snprintf(buf, IFNAMSIZ, name, i);
914 			if (!strncmp(buf, d->name, IFNAMSIZ))
915 				set_bit(i, inuse);
916 		}
917 
918 		i = find_first_zero_bit(inuse, max_netdevices);
919 		free_page((unsigned long) inuse);
920 	}
921 
922 	if (buf != name)
923 		snprintf(buf, IFNAMSIZ, name, i);
924 	if (!__dev_get_by_name(net, buf))
925 		return i;
926 
927 	/* It is possible to run out of possible slots
928 	 * when the name is long and there isn't enough space left
929 	 * for the digits, or if all bits are used.
930 	 */
931 	return -ENFILE;
932 }
933 
934 /**
935  *	dev_alloc_name - allocate a name for a device
936  *	@dev: device
937  *	@name: name format string
938  *
939  *	Passed a format string - eg "lt%d" it will try and find a suitable
940  *	id. It scans list of devices to build up a free map, then chooses
941  *	the first empty slot. The caller must hold the dev_base or rtnl lock
942  *	while allocating the name and adding the device in order to avoid
943  *	duplicates.
944  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
945  *	Returns the number of the unit assigned or a negative errno code.
946  */
947 
dev_alloc_name(struct net_device * dev,const char * name)948 int dev_alloc_name(struct net_device *dev, const char *name)
949 {
950 	char buf[IFNAMSIZ];
951 	struct net *net;
952 	int ret;
953 
954 	BUG_ON(!dev_net(dev));
955 	net = dev_net(dev);
956 	ret = __dev_alloc_name(net, name, buf);
957 	if (ret >= 0)
958 		strlcpy(dev->name, buf, IFNAMSIZ);
959 	return ret;
960 }
961 EXPORT_SYMBOL(dev_alloc_name);
962 
dev_get_valid_name(struct net_device * dev,const char * name)963 static int dev_get_valid_name(struct net_device *dev, const char *name)
964 {
965 	struct net *net;
966 
967 	BUG_ON(!dev_net(dev));
968 	net = dev_net(dev);
969 
970 	if (!dev_valid_name(name))
971 		return -EINVAL;
972 
973 	if (strchr(name, '%'))
974 		return dev_alloc_name(dev, name);
975 	else if (__dev_get_by_name(net, name))
976 		return -EEXIST;
977 	else if (dev->name != name)
978 		strlcpy(dev->name, name, IFNAMSIZ);
979 
980 	return 0;
981 }
982 
983 /**
984  *	dev_change_name - change name of a device
985  *	@dev: device
986  *	@newname: name (or format string) must be at least IFNAMSIZ
987  *
988  *	Change name of a device, can pass format strings "eth%d".
989  *	for wildcarding.
990  */
dev_change_name(struct net_device * dev,const char * newname)991 int dev_change_name(struct net_device *dev, const char *newname)
992 {
993 	char oldname[IFNAMSIZ];
994 	int err = 0;
995 	int ret;
996 	struct net *net;
997 
998 	ASSERT_RTNL();
999 	BUG_ON(!dev_net(dev));
1000 
1001 	net = dev_net(dev);
1002 	if (dev->flags & IFF_UP)
1003 		return -EBUSY;
1004 
1005 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1006 		return 0;
1007 
1008 	memcpy(oldname, dev->name, IFNAMSIZ);
1009 
1010 	err = dev_get_valid_name(dev, newname);
1011 	if (err < 0)
1012 		return err;
1013 
1014 rollback:
1015 	ret = device_rename(&dev->dev, dev->name);
1016 	if (ret) {
1017 		memcpy(dev->name, oldname, IFNAMSIZ);
1018 		return ret;
1019 	}
1020 
1021 	write_lock_bh(&dev_base_lock);
1022 	hlist_del_rcu(&dev->name_hlist);
1023 	write_unlock_bh(&dev_base_lock);
1024 
1025 	synchronize_rcu();
1026 
1027 	write_lock_bh(&dev_base_lock);
1028 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1029 	write_unlock_bh(&dev_base_lock);
1030 
1031 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1032 	ret = notifier_to_errno(ret);
1033 
1034 	if (ret) {
1035 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1036 		if (err >= 0) {
1037 			err = ret;
1038 			memcpy(dev->name, oldname, IFNAMSIZ);
1039 			goto rollback;
1040 		} else {
1041 			pr_err("%s: name change rollback failed: %d\n",
1042 			       dev->name, ret);
1043 		}
1044 	}
1045 
1046 	return err;
1047 }
1048 
1049 /**
1050  *	dev_set_alias - change ifalias of a device
1051  *	@dev: device
1052  *	@alias: name up to IFALIASZ
1053  *	@len: limit of bytes to copy from info
1054  *
1055  *	Set ifalias for a device,
1056  */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1057 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1058 {
1059 	char *new_ifalias;
1060 
1061 	ASSERT_RTNL();
1062 
1063 	if (len >= IFALIASZ)
1064 		return -EINVAL;
1065 
1066 	if (!len) {
1067 		if (dev->ifalias) {
1068 			kfree(dev->ifalias);
1069 			dev->ifalias = NULL;
1070 		}
1071 		return 0;
1072 	}
1073 
1074 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1075 	if (!new_ifalias)
1076 		return -ENOMEM;
1077 	dev->ifalias = new_ifalias;
1078 
1079 	strlcpy(dev->ifalias, alias, len+1);
1080 	return len;
1081 }
1082 
1083 
1084 /**
1085  *	netdev_features_change - device changes features
1086  *	@dev: device to cause notification
1087  *
1088  *	Called to indicate a device has changed features.
1089  */
netdev_features_change(struct net_device * dev)1090 void netdev_features_change(struct net_device *dev)
1091 {
1092 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1093 }
1094 EXPORT_SYMBOL(netdev_features_change);
1095 
1096 /**
1097  *	netdev_state_change - device changes state
1098  *	@dev: device to cause notification
1099  *
1100  *	Called to indicate a device has changed state. This function calls
1101  *	the notifier chains for netdev_chain and sends a NEWLINK message
1102  *	to the routing socket.
1103  */
netdev_state_change(struct net_device * dev)1104 void netdev_state_change(struct net_device *dev)
1105 {
1106 	if (dev->flags & IFF_UP) {
1107 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1108 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1109 	}
1110 }
1111 EXPORT_SYMBOL(netdev_state_change);
1112 
netdev_bonding_change(struct net_device * dev,unsigned long event)1113 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1114 {
1115 	return call_netdevice_notifiers(event, dev);
1116 }
1117 EXPORT_SYMBOL(netdev_bonding_change);
1118 
1119 /**
1120  *	dev_load 	- load a network module
1121  *	@net: the applicable net namespace
1122  *	@name: name of interface
1123  *
1124  *	If a network interface is not present and the process has suitable
1125  *	privileges this function loads the module. If module loading is not
1126  *	available in this kernel then it becomes a nop.
1127  */
1128 
dev_load(struct net * net,const char * name)1129 void dev_load(struct net *net, const char *name)
1130 {
1131 	struct net_device *dev;
1132 	int no_module;
1133 
1134 	rcu_read_lock();
1135 	dev = dev_get_by_name_rcu(net, name);
1136 	rcu_read_unlock();
1137 
1138 	no_module = !dev;
1139 	if (no_module && capable(CAP_NET_ADMIN))
1140 		no_module = request_module("netdev-%s", name);
1141 	if (no_module && capable(CAP_SYS_MODULE)) {
1142 		if (!request_module("%s", name))
1143 			pr_err("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated).  Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1144 			       name);
1145 	}
1146 }
1147 EXPORT_SYMBOL(dev_load);
1148 
__dev_open(struct net_device * dev)1149 static int __dev_open(struct net_device *dev)
1150 {
1151 	const struct net_device_ops *ops = dev->netdev_ops;
1152 	int ret;
1153 
1154 	ASSERT_RTNL();
1155 
1156 	if (!netif_device_present(dev))
1157 		return -ENODEV;
1158 
1159 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1160 	ret = notifier_to_errno(ret);
1161 	if (ret)
1162 		return ret;
1163 
1164 	set_bit(__LINK_STATE_START, &dev->state);
1165 
1166 	if (ops->ndo_validate_addr)
1167 		ret = ops->ndo_validate_addr(dev);
1168 
1169 	if (!ret && ops->ndo_open)
1170 		ret = ops->ndo_open(dev);
1171 
1172 	if (ret)
1173 		clear_bit(__LINK_STATE_START, &dev->state);
1174 	else {
1175 		dev->flags |= IFF_UP;
1176 		net_dmaengine_get();
1177 		dev_set_rx_mode(dev);
1178 		dev_activate(dev);
1179 		add_device_randomness(dev->dev_addr, dev->addr_len);
1180 	}
1181 
1182 	return ret;
1183 }
1184 
1185 /**
1186  *	dev_open	- prepare an interface for use.
1187  *	@dev:	device to open
1188  *
1189  *	Takes a device from down to up state. The device's private open
1190  *	function is invoked and then the multicast lists are loaded. Finally
1191  *	the device is moved into the up state and a %NETDEV_UP message is
1192  *	sent to the netdev notifier chain.
1193  *
1194  *	Calling this function on an active interface is a nop. On a failure
1195  *	a negative errno code is returned.
1196  */
dev_open(struct net_device * dev)1197 int dev_open(struct net_device *dev)
1198 {
1199 	int ret;
1200 
1201 	if (dev->flags & IFF_UP)
1202 		return 0;
1203 
1204 	ret = __dev_open(dev);
1205 	if (ret < 0)
1206 		return ret;
1207 
1208 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1209 	call_netdevice_notifiers(NETDEV_UP, dev);
1210 
1211 	return ret;
1212 }
1213 EXPORT_SYMBOL(dev_open);
1214 
__dev_close_many(struct list_head * head)1215 static int __dev_close_many(struct list_head *head)
1216 {
1217 	struct net_device *dev;
1218 
1219 	ASSERT_RTNL();
1220 	might_sleep();
1221 
1222 	list_for_each_entry(dev, head, unreg_list) {
1223 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1224 
1225 		clear_bit(__LINK_STATE_START, &dev->state);
1226 
1227 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1228 		 * can be even on different cpu. So just clear netif_running().
1229 		 *
1230 		 * dev->stop() will invoke napi_disable() on all of it's
1231 		 * napi_struct instances on this device.
1232 		 */
1233 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1234 	}
1235 
1236 	dev_deactivate_many(head);
1237 
1238 	list_for_each_entry(dev, head, unreg_list) {
1239 		const struct net_device_ops *ops = dev->netdev_ops;
1240 
1241 		/*
1242 		 *	Call the device specific close. This cannot fail.
1243 		 *	Only if device is UP
1244 		 *
1245 		 *	We allow it to be called even after a DETACH hot-plug
1246 		 *	event.
1247 		 */
1248 		if (ops->ndo_stop)
1249 			ops->ndo_stop(dev);
1250 
1251 		dev->flags &= ~IFF_UP;
1252 		net_dmaengine_put();
1253 	}
1254 
1255 	return 0;
1256 }
1257 
__dev_close(struct net_device * dev)1258 static int __dev_close(struct net_device *dev)
1259 {
1260 	int retval;
1261 	LIST_HEAD(single);
1262 
1263 	list_add(&dev->unreg_list, &single);
1264 	retval = __dev_close_many(&single);
1265 	list_del(&single);
1266 	return retval;
1267 }
1268 
dev_close_many(struct list_head * head)1269 static int dev_close_many(struct list_head *head)
1270 {
1271 	struct net_device *dev, *tmp;
1272 	LIST_HEAD(tmp_list);
1273 
1274 	list_for_each_entry_safe(dev, tmp, head, unreg_list)
1275 		if (!(dev->flags & IFF_UP))
1276 			list_move(&dev->unreg_list, &tmp_list);
1277 
1278 	__dev_close_many(head);
1279 
1280 	list_for_each_entry(dev, head, unreg_list) {
1281 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1282 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1283 	}
1284 
1285 	/* rollback_registered_many needs the complete original list */
1286 	list_splice(&tmp_list, head);
1287 	return 0;
1288 }
1289 
1290 /**
1291  *	dev_close - shutdown an interface.
1292  *	@dev: device to shutdown
1293  *
1294  *	This function moves an active device into down state. A
1295  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1296  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1297  *	chain.
1298  */
dev_close(struct net_device * dev)1299 int dev_close(struct net_device *dev)
1300 {
1301 	if (dev->flags & IFF_UP) {
1302 		LIST_HEAD(single);
1303 
1304 		list_add(&dev->unreg_list, &single);
1305 		dev_close_many(&single);
1306 		list_del(&single);
1307 	}
1308 	return 0;
1309 }
1310 EXPORT_SYMBOL(dev_close);
1311 
1312 
1313 /**
1314  *	dev_disable_lro - disable Large Receive Offload on a device
1315  *	@dev: device
1316  *
1317  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1318  *	called under RTNL.  This is needed if received packets may be
1319  *	forwarded to another interface.
1320  */
dev_disable_lro(struct net_device * dev)1321 void dev_disable_lro(struct net_device *dev)
1322 {
1323 	/*
1324 	 * If we're trying to disable lro on a vlan device
1325 	 * use the underlying physical device instead
1326 	 */
1327 	if (is_vlan_dev(dev))
1328 		dev = vlan_dev_real_dev(dev);
1329 
1330 	dev->wanted_features &= ~NETIF_F_LRO;
1331 	netdev_update_features(dev);
1332 
1333 	if (unlikely(dev->features & NETIF_F_LRO))
1334 		netdev_WARN(dev, "failed to disable LRO!\n");
1335 }
1336 EXPORT_SYMBOL(dev_disable_lro);
1337 
1338 
1339 static int dev_boot_phase = 1;
1340 
1341 /**
1342  *	register_netdevice_notifier - register a network notifier block
1343  *	@nb: notifier
1344  *
1345  *	Register a notifier to be called when network device events occur.
1346  *	The notifier passed is linked into the kernel structures and must
1347  *	not be reused until it has been unregistered. A negative errno code
1348  *	is returned on a failure.
1349  *
1350  * 	When registered all registration and up events are replayed
1351  *	to the new notifier to allow device to have a race free
1352  *	view of the network device list.
1353  */
1354 
register_netdevice_notifier(struct notifier_block * nb)1355 int register_netdevice_notifier(struct notifier_block *nb)
1356 {
1357 	struct net_device *dev;
1358 	struct net_device *last;
1359 	struct net *net;
1360 	int err;
1361 
1362 	rtnl_lock();
1363 	err = raw_notifier_chain_register(&netdev_chain, nb);
1364 	if (err)
1365 		goto unlock;
1366 	if (dev_boot_phase)
1367 		goto unlock;
1368 	for_each_net(net) {
1369 		for_each_netdev(net, dev) {
1370 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1371 			err = notifier_to_errno(err);
1372 			if (err)
1373 				goto rollback;
1374 
1375 			if (!(dev->flags & IFF_UP))
1376 				continue;
1377 
1378 			nb->notifier_call(nb, NETDEV_UP, dev);
1379 		}
1380 	}
1381 
1382 unlock:
1383 	rtnl_unlock();
1384 	return err;
1385 
1386 rollback:
1387 	last = dev;
1388 	for_each_net(net) {
1389 		for_each_netdev(net, dev) {
1390 			if (dev == last)
1391 				goto outroll;
1392 
1393 			if (dev->flags & IFF_UP) {
1394 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1395 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1396 			}
1397 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1398 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1399 		}
1400 	}
1401 
1402 outroll:
1403 	raw_notifier_chain_unregister(&netdev_chain, nb);
1404 	goto unlock;
1405 }
1406 EXPORT_SYMBOL(register_netdevice_notifier);
1407 
1408 /**
1409  *	unregister_netdevice_notifier - unregister a network notifier block
1410  *	@nb: notifier
1411  *
1412  *	Unregister a notifier previously registered by
1413  *	register_netdevice_notifier(). The notifier is unlinked into the
1414  *	kernel structures and may then be reused. A negative errno code
1415  *	is returned on a failure.
1416  *
1417  * 	After unregistering unregister and down device events are synthesized
1418  *	for all devices on the device list to the removed notifier to remove
1419  *	the need for special case cleanup code.
1420  */
1421 
unregister_netdevice_notifier(struct notifier_block * nb)1422 int unregister_netdevice_notifier(struct notifier_block *nb)
1423 {
1424 	struct net_device *dev;
1425 	struct net *net;
1426 	int err;
1427 
1428 	rtnl_lock();
1429 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1430 	if (err)
1431 		goto unlock;
1432 
1433 	for_each_net(net) {
1434 		for_each_netdev(net, dev) {
1435 			if (dev->flags & IFF_UP) {
1436 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1437 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1438 			}
1439 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1440 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1441 		}
1442 	}
1443 unlock:
1444 	rtnl_unlock();
1445 	return err;
1446 }
1447 EXPORT_SYMBOL(unregister_netdevice_notifier);
1448 
1449 /**
1450  *	call_netdevice_notifiers - call all network notifier blocks
1451  *      @val: value passed unmodified to notifier function
1452  *      @dev: net_device pointer passed unmodified to notifier function
1453  *
1454  *	Call all network notifier blocks.  Parameters and return value
1455  *	are as for raw_notifier_call_chain().
1456  */
1457 
call_netdevice_notifiers(unsigned long val,struct net_device * dev)1458 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1459 {
1460 	ASSERT_RTNL();
1461 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1462 }
1463 EXPORT_SYMBOL(call_netdevice_notifiers);
1464 
1465 static struct static_key netstamp_needed __read_mostly;
1466 #ifdef HAVE_JUMP_LABEL
1467 /* We are not allowed to call static_key_slow_dec() from irq context
1468  * If net_disable_timestamp() is called from irq context, defer the
1469  * static_key_slow_dec() calls.
1470  */
1471 static atomic_t netstamp_needed_deferred;
1472 #endif
1473 
net_enable_timestamp(void)1474 void net_enable_timestamp(void)
1475 {
1476 #ifdef HAVE_JUMP_LABEL
1477 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1478 
1479 	if (deferred) {
1480 		while (--deferred)
1481 			static_key_slow_dec(&netstamp_needed);
1482 		return;
1483 	}
1484 #endif
1485 	static_key_slow_inc(&netstamp_needed);
1486 }
1487 EXPORT_SYMBOL(net_enable_timestamp);
1488 
net_disable_timestamp(void)1489 void net_disable_timestamp(void)
1490 {
1491 #ifdef HAVE_JUMP_LABEL
1492 	if (in_interrupt()) {
1493 		atomic_inc(&netstamp_needed_deferred);
1494 		return;
1495 	}
1496 #endif
1497 	static_key_slow_dec(&netstamp_needed);
1498 }
1499 EXPORT_SYMBOL(net_disable_timestamp);
1500 
net_timestamp_set(struct sk_buff * skb)1501 static inline void net_timestamp_set(struct sk_buff *skb)
1502 {
1503 	skb->tstamp.tv64 = 0;
1504 	if (static_key_false(&netstamp_needed))
1505 		__net_timestamp(skb);
1506 }
1507 
1508 #define net_timestamp_check(COND, SKB)			\
1509 	if (static_key_false(&netstamp_needed)) {		\
1510 		if ((COND) && !(SKB)->tstamp.tv64)	\
1511 			__net_timestamp(SKB);		\
1512 	}						\
1513 
net_hwtstamp_validate(struct ifreq * ifr)1514 static int net_hwtstamp_validate(struct ifreq *ifr)
1515 {
1516 	struct hwtstamp_config cfg;
1517 	enum hwtstamp_tx_types tx_type;
1518 	enum hwtstamp_rx_filters rx_filter;
1519 	int tx_type_valid = 0;
1520 	int rx_filter_valid = 0;
1521 
1522 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1523 		return -EFAULT;
1524 
1525 	if (cfg.flags) /* reserved for future extensions */
1526 		return -EINVAL;
1527 
1528 	tx_type = cfg.tx_type;
1529 	rx_filter = cfg.rx_filter;
1530 
1531 	switch (tx_type) {
1532 	case HWTSTAMP_TX_OFF:
1533 	case HWTSTAMP_TX_ON:
1534 	case HWTSTAMP_TX_ONESTEP_SYNC:
1535 		tx_type_valid = 1;
1536 		break;
1537 	}
1538 
1539 	switch (rx_filter) {
1540 	case HWTSTAMP_FILTER_NONE:
1541 	case HWTSTAMP_FILTER_ALL:
1542 	case HWTSTAMP_FILTER_SOME:
1543 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1544 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1545 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1546 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1547 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1548 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1549 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1550 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1551 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1552 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1553 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1554 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1555 		rx_filter_valid = 1;
1556 		break;
1557 	}
1558 
1559 	if (!tx_type_valid || !rx_filter_valid)
1560 		return -ERANGE;
1561 
1562 	return 0;
1563 }
1564 
is_skb_forwardable(struct net_device * dev,struct sk_buff * skb)1565 static inline bool is_skb_forwardable(struct net_device *dev,
1566 				      struct sk_buff *skb)
1567 {
1568 	unsigned int len;
1569 
1570 	if (!(dev->flags & IFF_UP))
1571 		return false;
1572 
1573 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1574 	if (skb->len <= len)
1575 		return true;
1576 
1577 	/* if TSO is enabled, we don't care about the length as the packet
1578 	 * could be forwarded without being segmented before
1579 	 */
1580 	if (skb_is_gso(skb))
1581 		return true;
1582 
1583 	return false;
1584 }
1585 
1586 /**
1587  * dev_forward_skb - loopback an skb to another netif
1588  *
1589  * @dev: destination network device
1590  * @skb: buffer to forward
1591  *
1592  * return values:
1593  *	NET_RX_SUCCESS	(no congestion)
1594  *	NET_RX_DROP     (packet was dropped, but freed)
1595  *
1596  * dev_forward_skb can be used for injecting an skb from the
1597  * start_xmit function of one device into the receive queue
1598  * of another device.
1599  *
1600  * The receiving device may be in another namespace, so
1601  * we have to clear all information in the skb that could
1602  * impact namespace isolation.
1603  */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1604 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1605 {
1606 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1607 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1608 			atomic_long_inc(&dev->rx_dropped);
1609 			kfree_skb(skb);
1610 			return NET_RX_DROP;
1611 		}
1612 	}
1613 
1614 	skb_orphan(skb);
1615 	nf_reset(skb);
1616 
1617 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1618 		atomic_long_inc(&dev->rx_dropped);
1619 		kfree_skb(skb);
1620 		return NET_RX_DROP;
1621 	}
1622 	skb->skb_iif = 0;
1623 	skb->dev = dev;
1624 	skb_dst_drop(skb);
1625 	skb->tstamp.tv64 = 0;
1626 	skb->pkt_type = PACKET_HOST;
1627 	skb->protocol = eth_type_trans(skb, dev);
1628 	skb->mark = 0;
1629 	secpath_reset(skb);
1630 	nf_reset(skb);
1631 	nf_reset_trace(skb);
1632 	return netif_rx(skb);
1633 }
1634 EXPORT_SYMBOL_GPL(dev_forward_skb);
1635 
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)1636 static inline int deliver_skb(struct sk_buff *skb,
1637 			      struct packet_type *pt_prev,
1638 			      struct net_device *orig_dev)
1639 {
1640 	atomic_inc(&skb->users);
1641 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1642 }
1643 
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)1644 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1645 {
1646 	if (!ptype->af_packet_priv || !skb->sk)
1647 		return false;
1648 
1649 	if (ptype->id_match)
1650 		return ptype->id_match(ptype, skb->sk);
1651 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1652 		return true;
1653 
1654 	return false;
1655 }
1656 
1657 /*
1658  *	Support routine. Sends outgoing frames to any network
1659  *	taps currently in use.
1660  */
1661 
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)1662 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1663 {
1664 	struct packet_type *ptype;
1665 	struct sk_buff *skb2 = NULL;
1666 	struct packet_type *pt_prev = NULL;
1667 
1668 	rcu_read_lock();
1669 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1670 		/* Never send packets back to the socket
1671 		 * they originated from - MvS (miquels@drinkel.ow.org)
1672 		 */
1673 		if ((ptype->dev == dev || !ptype->dev) &&
1674 		    (!skb_loop_sk(ptype, skb))) {
1675 			if (pt_prev) {
1676 				deliver_skb(skb2, pt_prev, skb->dev);
1677 				pt_prev = ptype;
1678 				continue;
1679 			}
1680 
1681 			skb2 = skb_clone(skb, GFP_ATOMIC);
1682 			if (!skb2)
1683 				break;
1684 
1685 			net_timestamp_set(skb2);
1686 
1687 			/* skb->nh should be correctly
1688 			   set by sender, so that the second statement is
1689 			   just protection against buggy protocols.
1690 			 */
1691 			skb_reset_mac_header(skb2);
1692 
1693 			if (skb_network_header(skb2) < skb2->data ||
1694 			    skb2->network_header > skb2->tail) {
1695 				if (net_ratelimit())
1696 					pr_crit("protocol %04x is buggy, dev %s\n",
1697 						ntohs(skb2->protocol),
1698 						dev->name);
1699 				skb_reset_network_header(skb2);
1700 			}
1701 
1702 			skb2->transport_header = skb2->network_header;
1703 			skb2->pkt_type = PACKET_OUTGOING;
1704 			pt_prev = ptype;
1705 		}
1706 	}
1707 	if (pt_prev)
1708 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1709 	rcu_read_unlock();
1710 }
1711 
1712 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1713  * @dev: Network device
1714  * @txq: number of queues available
1715  *
1716  * If real_num_tx_queues is changed the tc mappings may no longer be
1717  * valid. To resolve this verify the tc mapping remains valid and if
1718  * not NULL the mapping. With no priorities mapping to this
1719  * offset/count pair it will no longer be used. In the worst case TC0
1720  * is invalid nothing can be done so disable priority mappings. If is
1721  * expected that drivers will fix this mapping if they can before
1722  * calling netif_set_real_num_tx_queues.
1723  */
netif_setup_tc(struct net_device * dev,unsigned int txq)1724 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1725 {
1726 	int i;
1727 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1728 
1729 	/* If TC0 is invalidated disable TC mapping */
1730 	if (tc->offset + tc->count > txq) {
1731 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1732 		dev->num_tc = 0;
1733 		return;
1734 	}
1735 
1736 	/* Invalidated prio to tc mappings set to TC0 */
1737 	for (i = 1; i < TC_BITMASK + 1; i++) {
1738 		int q = netdev_get_prio_tc_map(dev, i);
1739 
1740 		tc = &dev->tc_to_txq[q];
1741 		if (tc->offset + tc->count > txq) {
1742 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1743 				i, q);
1744 			netdev_set_prio_tc_map(dev, i, 0);
1745 		}
1746 	}
1747 }
1748 
1749 /*
1750  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1751  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1752  */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)1753 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1754 {
1755 	int rc;
1756 
1757 	if (txq < 1 || txq > dev->num_tx_queues)
1758 		return -EINVAL;
1759 
1760 	if (dev->reg_state == NETREG_REGISTERED ||
1761 	    dev->reg_state == NETREG_UNREGISTERING) {
1762 		ASSERT_RTNL();
1763 
1764 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1765 						  txq);
1766 		if (rc)
1767 			return rc;
1768 
1769 		if (dev->num_tc)
1770 			netif_setup_tc(dev, txq);
1771 
1772 		if (txq < dev->real_num_tx_queues)
1773 			qdisc_reset_all_tx_gt(dev, txq);
1774 	}
1775 
1776 	dev->real_num_tx_queues = txq;
1777 	return 0;
1778 }
1779 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1780 
1781 #ifdef CONFIG_RPS
1782 /**
1783  *	netif_set_real_num_rx_queues - set actual number of RX queues used
1784  *	@dev: Network device
1785  *	@rxq: Actual number of RX queues
1786  *
1787  *	This must be called either with the rtnl_lock held or before
1788  *	registration of the net device.  Returns 0 on success, or a
1789  *	negative error code.  If called before registration, it always
1790  *	succeeds.
1791  */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)1792 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1793 {
1794 	int rc;
1795 
1796 	if (rxq < 1 || rxq > dev->num_rx_queues)
1797 		return -EINVAL;
1798 
1799 	if (dev->reg_state == NETREG_REGISTERED) {
1800 		ASSERT_RTNL();
1801 
1802 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1803 						  rxq);
1804 		if (rc)
1805 			return rc;
1806 	}
1807 
1808 	dev->real_num_rx_queues = rxq;
1809 	return 0;
1810 }
1811 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1812 #endif
1813 
__netif_reschedule(struct Qdisc * q)1814 static inline void __netif_reschedule(struct Qdisc *q)
1815 {
1816 	struct softnet_data *sd;
1817 	unsigned long flags;
1818 
1819 	local_irq_save(flags);
1820 	sd = &__get_cpu_var(softnet_data);
1821 	q->next_sched = NULL;
1822 	*sd->output_queue_tailp = q;
1823 	sd->output_queue_tailp = &q->next_sched;
1824 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1825 	local_irq_restore(flags);
1826 }
1827 
__netif_schedule(struct Qdisc * q)1828 void __netif_schedule(struct Qdisc *q)
1829 {
1830 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1831 		__netif_reschedule(q);
1832 }
1833 EXPORT_SYMBOL(__netif_schedule);
1834 
dev_kfree_skb_irq(struct sk_buff * skb)1835 void dev_kfree_skb_irq(struct sk_buff *skb)
1836 {
1837 	if (atomic_dec_and_test(&skb->users)) {
1838 		struct softnet_data *sd;
1839 		unsigned long flags;
1840 
1841 		local_irq_save(flags);
1842 		sd = &__get_cpu_var(softnet_data);
1843 		skb->next = sd->completion_queue;
1844 		sd->completion_queue = skb;
1845 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1846 		local_irq_restore(flags);
1847 	}
1848 }
1849 EXPORT_SYMBOL(dev_kfree_skb_irq);
1850 
dev_kfree_skb_any(struct sk_buff * skb)1851 void dev_kfree_skb_any(struct sk_buff *skb)
1852 {
1853 	if (in_irq() || irqs_disabled())
1854 		dev_kfree_skb_irq(skb);
1855 	else
1856 		dev_kfree_skb(skb);
1857 }
1858 EXPORT_SYMBOL(dev_kfree_skb_any);
1859 
1860 
1861 /**
1862  * netif_device_detach - mark device as removed
1863  * @dev: network device
1864  *
1865  * Mark device as removed from system and therefore no longer available.
1866  */
netif_device_detach(struct net_device * dev)1867 void netif_device_detach(struct net_device *dev)
1868 {
1869 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1870 	    netif_running(dev)) {
1871 		netif_tx_stop_all_queues(dev);
1872 	}
1873 }
1874 EXPORT_SYMBOL(netif_device_detach);
1875 
1876 /**
1877  * netif_device_attach - mark device as attached
1878  * @dev: network device
1879  *
1880  * Mark device as attached from system and restart if needed.
1881  */
netif_device_attach(struct net_device * dev)1882 void netif_device_attach(struct net_device *dev)
1883 {
1884 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1885 	    netif_running(dev)) {
1886 		netif_tx_wake_all_queues(dev);
1887 		__netdev_watchdog_up(dev);
1888 	}
1889 }
1890 EXPORT_SYMBOL(netif_device_attach);
1891 
skb_warn_bad_offload(const struct sk_buff * skb)1892 static void skb_warn_bad_offload(const struct sk_buff *skb)
1893 {
1894 	static const netdev_features_t null_features = 0;
1895 	struct net_device *dev = skb->dev;
1896 	const char *driver = "";
1897 
1898 	if (!net_ratelimit())
1899 		return;
1900 
1901 	if (dev && dev->dev.parent)
1902 		driver = dev_driver_string(dev->dev.parent);
1903 
1904 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1905 	     "gso_type=%d ip_summed=%d\n",
1906 	     driver, dev ? &dev->features : &null_features,
1907 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
1908 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1909 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
1910 }
1911 
1912 /*
1913  * Invalidate hardware checksum when packet is to be mangled, and
1914  * complete checksum manually on outgoing path.
1915  */
skb_checksum_help(struct sk_buff * skb)1916 int skb_checksum_help(struct sk_buff *skb)
1917 {
1918 	__wsum csum;
1919 	int ret = 0, offset;
1920 
1921 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1922 		goto out_set_summed;
1923 
1924 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1925 		skb_warn_bad_offload(skb);
1926 		return -EINVAL;
1927 	}
1928 
1929 	offset = skb_checksum_start_offset(skb);
1930 	BUG_ON(offset >= skb_headlen(skb));
1931 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1932 
1933 	offset += skb->csum_offset;
1934 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1935 
1936 	if (skb_cloned(skb) &&
1937 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1938 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1939 		if (ret)
1940 			goto out;
1941 	}
1942 
1943 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1944 out_set_summed:
1945 	skb->ip_summed = CHECKSUM_NONE;
1946 out:
1947 	return ret;
1948 }
1949 EXPORT_SYMBOL(skb_checksum_help);
1950 
1951 /**
1952  *	skb_gso_segment - Perform segmentation on skb.
1953  *	@skb: buffer to segment
1954  *	@features: features for the output path (see dev->features)
1955  *
1956  *	This function segments the given skb and returns a list of segments.
1957  *
1958  *	It may return NULL if the skb requires no segmentation.  This is
1959  *	only possible when GSO is used for verifying header integrity.
1960  */
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)1961 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1962 	netdev_features_t features)
1963 {
1964 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1965 	struct packet_type *ptype;
1966 	__be16 type = skb->protocol;
1967 	int vlan_depth = ETH_HLEN;
1968 	int err;
1969 
1970 	while (type == htons(ETH_P_8021Q)) {
1971 		struct vlan_hdr *vh;
1972 
1973 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1974 			return ERR_PTR(-EINVAL);
1975 
1976 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1977 		type = vh->h_vlan_encapsulated_proto;
1978 		vlan_depth += VLAN_HLEN;
1979 	}
1980 
1981 	skb_reset_mac_header(skb);
1982 	skb->mac_len = skb->network_header - skb->mac_header;
1983 	__skb_pull(skb, skb->mac_len);
1984 
1985 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1986 		skb_warn_bad_offload(skb);
1987 
1988 		if (skb_header_cloned(skb) &&
1989 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1990 			return ERR_PTR(err);
1991 	}
1992 
1993 	rcu_read_lock();
1994 	list_for_each_entry_rcu(ptype,
1995 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1996 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1997 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1998 				err = ptype->gso_send_check(skb);
1999 				segs = ERR_PTR(err);
2000 				if (err || skb_gso_ok(skb, features))
2001 					break;
2002 				__skb_push(skb, (skb->data -
2003 						 skb_network_header(skb)));
2004 			}
2005 			segs = ptype->gso_segment(skb, features);
2006 			break;
2007 		}
2008 	}
2009 	rcu_read_unlock();
2010 
2011 	__skb_push(skb, skb->data - skb_mac_header(skb));
2012 
2013 	return segs;
2014 }
2015 EXPORT_SYMBOL(skb_gso_segment);
2016 
2017 /* Take action when hardware reception checksum errors are detected. */
2018 #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev)2019 void netdev_rx_csum_fault(struct net_device *dev)
2020 {
2021 	if (net_ratelimit()) {
2022 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2023 		dump_stack();
2024 	}
2025 }
2026 EXPORT_SYMBOL(netdev_rx_csum_fault);
2027 #endif
2028 
2029 /* Actually, we should eliminate this check as soon as we know, that:
2030  * 1. IOMMU is present and allows to map all the memory.
2031  * 2. No high memory really exists on this machine.
2032  */
2033 
illegal_highdma(struct net_device * dev,struct sk_buff * skb)2034 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2035 {
2036 #ifdef CONFIG_HIGHMEM
2037 	int i;
2038 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2039 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2040 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2041 			if (PageHighMem(skb_frag_page(frag)))
2042 				return 1;
2043 		}
2044 	}
2045 
2046 	if (PCI_DMA_BUS_IS_PHYS) {
2047 		struct device *pdev = dev->dev.parent;
2048 
2049 		if (!pdev)
2050 			return 0;
2051 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2052 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2053 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2054 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2055 				return 1;
2056 		}
2057 	}
2058 #endif
2059 	return 0;
2060 }
2061 
2062 struct dev_gso_cb {
2063 	void (*destructor)(struct sk_buff *skb);
2064 };
2065 
2066 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2067 
dev_gso_skb_destructor(struct sk_buff * skb)2068 static void dev_gso_skb_destructor(struct sk_buff *skb)
2069 {
2070 	struct dev_gso_cb *cb;
2071 
2072 	do {
2073 		struct sk_buff *nskb = skb->next;
2074 
2075 		skb->next = nskb->next;
2076 		nskb->next = NULL;
2077 		kfree_skb(nskb);
2078 	} while (skb->next);
2079 
2080 	cb = DEV_GSO_CB(skb);
2081 	if (cb->destructor)
2082 		cb->destructor(skb);
2083 }
2084 
2085 /**
2086  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2087  *	@skb: buffer to segment
2088  *	@features: device features as applicable to this skb
2089  *
2090  *	This function segments the given skb and stores the list of segments
2091  *	in skb->next.
2092  */
dev_gso_segment(struct sk_buff * skb,netdev_features_t features)2093 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2094 {
2095 	struct sk_buff *segs;
2096 
2097 	segs = skb_gso_segment(skb, features);
2098 
2099 	/* Verifying header integrity only. */
2100 	if (!segs)
2101 		return 0;
2102 
2103 	if (IS_ERR(segs))
2104 		return PTR_ERR(segs);
2105 
2106 	skb->next = segs;
2107 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2108 	skb->destructor = dev_gso_skb_destructor;
2109 
2110 	return 0;
2111 }
2112 
can_checksum_protocol(netdev_features_t features,__be16 protocol)2113 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2114 {
2115 	return ((features & NETIF_F_GEN_CSUM) ||
2116 		((features & NETIF_F_V4_CSUM) &&
2117 		 protocol == htons(ETH_P_IP)) ||
2118 		((features & NETIF_F_V6_CSUM) &&
2119 		 protocol == htons(ETH_P_IPV6)) ||
2120 		((features & NETIF_F_FCOE_CRC) &&
2121 		 protocol == htons(ETH_P_FCOE)));
2122 }
2123 
harmonize_features(struct sk_buff * skb,__be16 protocol,netdev_features_t features)2124 static netdev_features_t harmonize_features(struct sk_buff *skb,
2125 	__be16 protocol, netdev_features_t features)
2126 {
2127 	if (skb->ip_summed != CHECKSUM_NONE &&
2128 	    !can_checksum_protocol(features, protocol)) {
2129 		features &= ~NETIF_F_ALL_CSUM;
2130 		features &= ~NETIF_F_SG;
2131 	} else if (illegal_highdma(skb->dev, skb)) {
2132 		features &= ~NETIF_F_SG;
2133 	}
2134 
2135 	return features;
2136 }
2137 
netif_skb_features(struct sk_buff * skb)2138 netdev_features_t netif_skb_features(struct sk_buff *skb)
2139 {
2140 	__be16 protocol = skb->protocol;
2141 	netdev_features_t features = skb->dev->features;
2142 
2143 	if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2144 		features &= ~NETIF_F_GSO_MASK;
2145 
2146 	if (protocol == htons(ETH_P_8021Q)) {
2147 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2148 		protocol = veh->h_vlan_encapsulated_proto;
2149 	} else if (!vlan_tx_tag_present(skb)) {
2150 		return harmonize_features(skb, protocol, features);
2151 	}
2152 
2153 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2154 
2155 	if (protocol != htons(ETH_P_8021Q)) {
2156 		return harmonize_features(skb, protocol, features);
2157 	} else {
2158 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2159 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2160 		return harmonize_features(skb, protocol, features);
2161 	}
2162 }
2163 EXPORT_SYMBOL(netif_skb_features);
2164 
2165 /*
2166  * Returns true if either:
2167  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2168  *	2. skb is fragmented and the device does not support SG, or if
2169  *	   at least one of fragments is in highmem and device does not
2170  *	   support DMA from it.
2171  */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)2172 static inline int skb_needs_linearize(struct sk_buff *skb,
2173 				      netdev_features_t features)
2174 {
2175 	return skb_is_nonlinear(skb) &&
2176 			((skb_has_frag_list(skb) &&
2177 				!(features & NETIF_F_FRAGLIST)) ||
2178 			(skb_shinfo(skb)->nr_frags &&
2179 				!(features & NETIF_F_SG)));
2180 }
2181 
dev_hard_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq)2182 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2183 			struct netdev_queue *txq)
2184 {
2185 	const struct net_device_ops *ops = dev->netdev_ops;
2186 	int rc = NETDEV_TX_OK;
2187 	unsigned int skb_len;
2188 
2189 	if (likely(!skb->next)) {
2190 		netdev_features_t features;
2191 
2192 		/*
2193 		 * If device doesn't need skb->dst, release it right now while
2194 		 * its hot in this cpu cache
2195 		 */
2196 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2197 			skb_dst_drop(skb);
2198 
2199 		if (!list_empty(&ptype_all))
2200 			dev_queue_xmit_nit(skb, dev);
2201 
2202 		features = netif_skb_features(skb);
2203 
2204 		if (vlan_tx_tag_present(skb) &&
2205 		    !(features & NETIF_F_HW_VLAN_TX)) {
2206 			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2207 			if (unlikely(!skb))
2208 				goto out;
2209 
2210 			skb->vlan_tci = 0;
2211 		}
2212 
2213 		if (netif_needs_gso(skb, features)) {
2214 			if (unlikely(dev_gso_segment(skb, features)))
2215 				goto out_kfree_skb;
2216 			if (skb->next)
2217 				goto gso;
2218 		} else {
2219 			if (skb_needs_linearize(skb, features) &&
2220 			    __skb_linearize(skb))
2221 				goto out_kfree_skb;
2222 
2223 			/* If packet is not checksummed and device does not
2224 			 * support checksumming for this protocol, complete
2225 			 * checksumming here.
2226 			 */
2227 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2228 				skb_set_transport_header(skb,
2229 					skb_checksum_start_offset(skb));
2230 				if (!(features & NETIF_F_ALL_CSUM) &&
2231 				     skb_checksum_help(skb))
2232 					goto out_kfree_skb;
2233 			}
2234 		}
2235 
2236 		skb_len = skb->len;
2237 		rc = ops->ndo_start_xmit(skb, dev);
2238 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2239 		if (rc == NETDEV_TX_OK)
2240 			txq_trans_update(txq);
2241 		return rc;
2242 	}
2243 
2244 gso:
2245 	do {
2246 		struct sk_buff *nskb = skb->next;
2247 
2248 		skb->next = nskb->next;
2249 		nskb->next = NULL;
2250 
2251 		/*
2252 		 * If device doesn't need nskb->dst, release it right now while
2253 		 * its hot in this cpu cache
2254 		 */
2255 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2256 			skb_dst_drop(nskb);
2257 
2258 		skb_len = nskb->len;
2259 		rc = ops->ndo_start_xmit(nskb, dev);
2260 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2261 		if (unlikely(rc != NETDEV_TX_OK)) {
2262 			if (rc & ~NETDEV_TX_MASK)
2263 				goto out_kfree_gso_skb;
2264 			nskb->next = skb->next;
2265 			skb->next = nskb;
2266 			return rc;
2267 		}
2268 		txq_trans_update(txq);
2269 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2270 			return NETDEV_TX_BUSY;
2271 	} while (skb->next);
2272 
2273 out_kfree_gso_skb:
2274 	if (likely(skb->next == NULL))
2275 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2276 out_kfree_skb:
2277 	kfree_skb(skb);
2278 out:
2279 	return rc;
2280 }
2281 
2282 static u32 hashrnd __read_mostly;
2283 
2284 /*
2285  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2286  * to be used as a distribution range.
2287  */
__skb_tx_hash(const struct net_device * dev,const struct sk_buff * skb,unsigned int num_tx_queues)2288 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2289 		  unsigned int num_tx_queues)
2290 {
2291 	u32 hash;
2292 	u16 qoffset = 0;
2293 	u16 qcount = num_tx_queues;
2294 
2295 	if (skb_rx_queue_recorded(skb)) {
2296 		hash = skb_get_rx_queue(skb);
2297 		while (unlikely(hash >= num_tx_queues))
2298 			hash -= num_tx_queues;
2299 		return hash;
2300 	}
2301 
2302 	if (dev->num_tc) {
2303 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2304 		qoffset = dev->tc_to_txq[tc].offset;
2305 		qcount = dev->tc_to_txq[tc].count;
2306 	}
2307 
2308 	if (skb->sk && skb->sk->sk_hash)
2309 		hash = skb->sk->sk_hash;
2310 	else
2311 		hash = (__force u16) skb->protocol;
2312 	hash = jhash_1word(hash, hashrnd);
2313 
2314 	return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2315 }
2316 EXPORT_SYMBOL(__skb_tx_hash);
2317 
dev_cap_txqueue(struct net_device * dev,u16 queue_index)2318 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2319 {
2320 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2321 		if (net_ratelimit()) {
2322 			pr_warn("%s selects TX queue %d, but real number of TX queues is %d\n",
2323 				dev->name, queue_index,
2324 				dev->real_num_tx_queues);
2325 		}
2326 		return 0;
2327 	}
2328 	return queue_index;
2329 }
2330 
get_xps_queue(struct net_device * dev,struct sk_buff * skb)2331 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2332 {
2333 #ifdef CONFIG_XPS
2334 	struct xps_dev_maps *dev_maps;
2335 	struct xps_map *map;
2336 	int queue_index = -1;
2337 
2338 	rcu_read_lock();
2339 	dev_maps = rcu_dereference(dev->xps_maps);
2340 	if (dev_maps) {
2341 		map = rcu_dereference(
2342 		    dev_maps->cpu_map[raw_smp_processor_id()]);
2343 		if (map) {
2344 			if (map->len == 1)
2345 				queue_index = map->queues[0];
2346 			else {
2347 				u32 hash;
2348 				if (skb->sk && skb->sk->sk_hash)
2349 					hash = skb->sk->sk_hash;
2350 				else
2351 					hash = (__force u16) skb->protocol ^
2352 					    skb->rxhash;
2353 				hash = jhash_1word(hash, hashrnd);
2354 				queue_index = map->queues[
2355 				    ((u64)hash * map->len) >> 32];
2356 			}
2357 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2358 				queue_index = -1;
2359 		}
2360 	}
2361 	rcu_read_unlock();
2362 
2363 	return queue_index;
2364 #else
2365 	return -1;
2366 #endif
2367 }
2368 
dev_pick_tx(struct net_device * dev,struct sk_buff * skb)2369 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2370 					struct sk_buff *skb)
2371 {
2372 	int queue_index;
2373 	const struct net_device_ops *ops = dev->netdev_ops;
2374 
2375 	if (dev->real_num_tx_queues == 1)
2376 		queue_index = 0;
2377 	else if (ops->ndo_select_queue) {
2378 		queue_index = ops->ndo_select_queue(dev, skb);
2379 		queue_index = dev_cap_txqueue(dev, queue_index);
2380 	} else {
2381 		struct sock *sk = skb->sk;
2382 		queue_index = sk_tx_queue_get(sk);
2383 
2384 		if (queue_index < 0 || skb->ooo_okay ||
2385 		    queue_index >= dev->real_num_tx_queues) {
2386 			int old_index = queue_index;
2387 
2388 			queue_index = get_xps_queue(dev, skb);
2389 			if (queue_index < 0)
2390 				queue_index = skb_tx_hash(dev, skb);
2391 
2392 			if (queue_index != old_index && sk) {
2393 				struct dst_entry *dst =
2394 				    rcu_dereference_check(sk->sk_dst_cache, 1);
2395 
2396 				if (dst && skb_dst(skb) == dst)
2397 					sk_tx_queue_set(sk, queue_index);
2398 			}
2399 		}
2400 	}
2401 
2402 	skb_set_queue_mapping(skb, queue_index);
2403 	return netdev_get_tx_queue(dev, queue_index);
2404 }
2405 
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)2406 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2407 				 struct net_device *dev,
2408 				 struct netdev_queue *txq)
2409 {
2410 	spinlock_t *root_lock = qdisc_lock(q);
2411 	bool contended;
2412 	int rc;
2413 
2414 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2415 	qdisc_calculate_pkt_len(skb, q);
2416 	/*
2417 	 * Heuristic to force contended enqueues to serialize on a
2418 	 * separate lock before trying to get qdisc main lock.
2419 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2420 	 * and dequeue packets faster.
2421 	 */
2422 	contended = qdisc_is_running(q);
2423 	if (unlikely(contended))
2424 		spin_lock(&q->busylock);
2425 
2426 	spin_lock(root_lock);
2427 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2428 		kfree_skb(skb);
2429 		rc = NET_XMIT_DROP;
2430 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2431 		   qdisc_run_begin(q)) {
2432 		/*
2433 		 * This is a work-conserving queue; there are no old skbs
2434 		 * waiting to be sent out; and the qdisc is not running -
2435 		 * xmit the skb directly.
2436 		 */
2437 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2438 			skb_dst_force(skb);
2439 
2440 		qdisc_bstats_update(q, skb);
2441 
2442 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2443 			if (unlikely(contended)) {
2444 				spin_unlock(&q->busylock);
2445 				contended = false;
2446 			}
2447 			__qdisc_run(q);
2448 		} else
2449 			qdisc_run_end(q);
2450 
2451 		rc = NET_XMIT_SUCCESS;
2452 	} else {
2453 		skb_dst_force(skb);
2454 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2455 		if (qdisc_run_begin(q)) {
2456 			if (unlikely(contended)) {
2457 				spin_unlock(&q->busylock);
2458 				contended = false;
2459 			}
2460 			__qdisc_run(q);
2461 		}
2462 	}
2463 	spin_unlock(root_lock);
2464 	if (unlikely(contended))
2465 		spin_unlock(&q->busylock);
2466 	return rc;
2467 }
2468 
2469 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
skb_update_prio(struct sk_buff * skb)2470 static void skb_update_prio(struct sk_buff *skb)
2471 {
2472 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2473 
2474 	if ((!skb->priority) && (skb->sk) && map)
2475 		skb->priority = map->priomap[skb->sk->sk_cgrp_prioidx];
2476 }
2477 #else
2478 #define skb_update_prio(skb)
2479 #endif
2480 
2481 static DEFINE_PER_CPU(int, xmit_recursion);
2482 #define RECURSION_LIMIT 10
2483 
2484 /**
2485  *	dev_queue_xmit - transmit a buffer
2486  *	@skb: buffer to transmit
2487  *
2488  *	Queue a buffer for transmission to a network device. The caller must
2489  *	have set the device and priority and built the buffer before calling
2490  *	this function. The function can be called from an interrupt.
2491  *
2492  *	A negative errno code is returned on a failure. A success does not
2493  *	guarantee the frame will be transmitted as it may be dropped due
2494  *	to congestion or traffic shaping.
2495  *
2496  * -----------------------------------------------------------------------------------
2497  *      I notice this method can also return errors from the queue disciplines,
2498  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2499  *      be positive.
2500  *
2501  *      Regardless of the return value, the skb is consumed, so it is currently
2502  *      difficult to retry a send to this method.  (You can bump the ref count
2503  *      before sending to hold a reference for retry if you are careful.)
2504  *
2505  *      When calling this method, interrupts MUST be enabled.  This is because
2506  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2507  *          --BLG
2508  */
dev_queue_xmit(struct sk_buff * skb)2509 int dev_queue_xmit(struct sk_buff *skb)
2510 {
2511 	struct net_device *dev = skb->dev;
2512 	struct netdev_queue *txq;
2513 	struct Qdisc *q;
2514 	int rc = -ENOMEM;
2515 
2516 	/* Disable soft irqs for various locks below. Also
2517 	 * stops preemption for RCU.
2518 	 */
2519 	rcu_read_lock_bh();
2520 
2521 	skb_update_prio(skb);
2522 
2523 	txq = dev_pick_tx(dev, skb);
2524 	q = rcu_dereference_bh(txq->qdisc);
2525 
2526 #ifdef CONFIG_NET_CLS_ACT
2527 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2528 #endif
2529 	trace_net_dev_queue(skb);
2530 	if (q->enqueue) {
2531 		rc = __dev_xmit_skb(skb, q, dev, txq);
2532 		goto out;
2533 	}
2534 
2535 	/* The device has no queue. Common case for software devices:
2536 	   loopback, all the sorts of tunnels...
2537 
2538 	   Really, it is unlikely that netif_tx_lock protection is necessary
2539 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2540 	   counters.)
2541 	   However, it is possible, that they rely on protection
2542 	   made by us here.
2543 
2544 	   Check this and shot the lock. It is not prone from deadlocks.
2545 	   Either shot noqueue qdisc, it is even simpler 8)
2546 	 */
2547 	if (dev->flags & IFF_UP) {
2548 		int cpu = smp_processor_id(); /* ok because BHs are off */
2549 
2550 		if (txq->xmit_lock_owner != cpu) {
2551 
2552 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2553 				goto recursion_alert;
2554 
2555 			HARD_TX_LOCK(dev, txq, cpu);
2556 
2557 			if (!netif_xmit_stopped(txq)) {
2558 				__this_cpu_inc(xmit_recursion);
2559 				rc = dev_hard_start_xmit(skb, dev, txq);
2560 				__this_cpu_dec(xmit_recursion);
2561 				if (dev_xmit_complete(rc)) {
2562 					HARD_TX_UNLOCK(dev, txq);
2563 					goto out;
2564 				}
2565 			}
2566 			HARD_TX_UNLOCK(dev, txq);
2567 			if (net_ratelimit())
2568 				pr_crit("Virtual device %s asks to queue packet!\n",
2569 					dev->name);
2570 		} else {
2571 			/* Recursion is detected! It is possible,
2572 			 * unfortunately
2573 			 */
2574 recursion_alert:
2575 			if (net_ratelimit())
2576 				pr_crit("Dead loop on virtual device %s, fix it urgently!\n",
2577 					dev->name);
2578 		}
2579 	}
2580 
2581 	rc = -ENETDOWN;
2582 	rcu_read_unlock_bh();
2583 
2584 	kfree_skb(skb);
2585 	return rc;
2586 out:
2587 	rcu_read_unlock_bh();
2588 	return rc;
2589 }
2590 EXPORT_SYMBOL(dev_queue_xmit);
2591 
2592 
2593 /*=======================================================================
2594 			Receiver routines
2595   =======================================================================*/
2596 
2597 int netdev_max_backlog __read_mostly = 1000;
2598 int netdev_tstamp_prequeue __read_mostly = 1;
2599 int netdev_budget __read_mostly = 300;
2600 int weight_p __read_mostly = 64;            /* old backlog weight */
2601 
2602 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)2603 static inline void ____napi_schedule(struct softnet_data *sd,
2604 				     struct napi_struct *napi)
2605 {
2606 	list_add_tail(&napi->poll_list, &sd->poll_list);
2607 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2608 }
2609 
2610 /*
2611  * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2612  * and src/dst port numbers.  Sets rxhash in skb to non-zero hash value
2613  * on success, zero indicates no valid hash.  Also, sets l4_rxhash in skb
2614  * if hash is a canonical 4-tuple hash over transport ports.
2615  */
__skb_get_rxhash(struct sk_buff * skb)2616 void __skb_get_rxhash(struct sk_buff *skb)
2617 {
2618 	struct flow_keys keys;
2619 	u32 hash;
2620 
2621 	if (!skb_flow_dissect(skb, &keys))
2622 		return;
2623 
2624 	if (keys.ports)
2625 		skb->l4_rxhash = 1;
2626 
2627 	/* get a consistent hash (same value on both flow directions) */
2628 	if (((__force u32)keys.dst < (__force u32)keys.src) ||
2629 	    (((__force u32)keys.dst == (__force u32)keys.src) &&
2630 	     ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) {
2631 		swap(keys.dst, keys.src);
2632 		swap(keys.port16[0], keys.port16[1]);
2633 	}
2634 
2635 	hash = jhash_3words((__force u32)keys.dst,
2636 			    (__force u32)keys.src,
2637 			    (__force u32)keys.ports, hashrnd);
2638 	if (!hash)
2639 		hash = 1;
2640 
2641 	skb->rxhash = hash;
2642 }
2643 EXPORT_SYMBOL(__skb_get_rxhash);
2644 
2645 #ifdef CONFIG_RPS
2646 
2647 /* One global table that all flow-based protocols share. */
2648 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2649 EXPORT_SYMBOL(rps_sock_flow_table);
2650 
2651 struct static_key rps_needed __read_mostly;
2652 
2653 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)2654 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2655 	    struct rps_dev_flow *rflow, u16 next_cpu)
2656 {
2657 	if (next_cpu != RPS_NO_CPU) {
2658 #ifdef CONFIG_RFS_ACCEL
2659 		struct netdev_rx_queue *rxqueue;
2660 		struct rps_dev_flow_table *flow_table;
2661 		struct rps_dev_flow *old_rflow;
2662 		u32 flow_id;
2663 		u16 rxq_index;
2664 		int rc;
2665 
2666 		/* Should we steer this flow to a different hardware queue? */
2667 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2668 		    !(dev->features & NETIF_F_NTUPLE))
2669 			goto out;
2670 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2671 		if (rxq_index == skb_get_rx_queue(skb))
2672 			goto out;
2673 
2674 		rxqueue = dev->_rx + rxq_index;
2675 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2676 		if (!flow_table)
2677 			goto out;
2678 		flow_id = skb->rxhash & flow_table->mask;
2679 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2680 							rxq_index, flow_id);
2681 		if (rc < 0)
2682 			goto out;
2683 		old_rflow = rflow;
2684 		rflow = &flow_table->flows[flow_id];
2685 		rflow->filter = rc;
2686 		if (old_rflow->filter == rflow->filter)
2687 			old_rflow->filter = RPS_NO_FILTER;
2688 	out:
2689 #endif
2690 		rflow->last_qtail =
2691 			per_cpu(softnet_data, next_cpu).input_queue_head;
2692 	}
2693 
2694 	rflow->cpu = next_cpu;
2695 	return rflow;
2696 }
2697 
2698 /*
2699  * get_rps_cpu is called from netif_receive_skb and returns the target
2700  * CPU from the RPS map of the receiving queue for a given skb.
2701  * rcu_read_lock must be held on entry.
2702  */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)2703 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2704 		       struct rps_dev_flow **rflowp)
2705 {
2706 	struct netdev_rx_queue *rxqueue;
2707 	struct rps_map *map;
2708 	struct rps_dev_flow_table *flow_table;
2709 	struct rps_sock_flow_table *sock_flow_table;
2710 	int cpu = -1;
2711 	u16 tcpu;
2712 
2713 	if (skb_rx_queue_recorded(skb)) {
2714 		u16 index = skb_get_rx_queue(skb);
2715 		if (unlikely(index >= dev->real_num_rx_queues)) {
2716 			WARN_ONCE(dev->real_num_rx_queues > 1,
2717 				  "%s received packet on queue %u, but number "
2718 				  "of RX queues is %u\n",
2719 				  dev->name, index, dev->real_num_rx_queues);
2720 			goto done;
2721 		}
2722 		rxqueue = dev->_rx + index;
2723 	} else
2724 		rxqueue = dev->_rx;
2725 
2726 	map = rcu_dereference(rxqueue->rps_map);
2727 	if (map) {
2728 		if (map->len == 1 &&
2729 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
2730 			tcpu = map->cpus[0];
2731 			if (cpu_online(tcpu))
2732 				cpu = tcpu;
2733 			goto done;
2734 		}
2735 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2736 		goto done;
2737 	}
2738 
2739 	skb_reset_network_header(skb);
2740 	if (!skb_get_rxhash(skb))
2741 		goto done;
2742 
2743 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2744 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2745 	if (flow_table && sock_flow_table) {
2746 		u16 next_cpu;
2747 		struct rps_dev_flow *rflow;
2748 
2749 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2750 		tcpu = rflow->cpu;
2751 
2752 		next_cpu = sock_flow_table->ents[skb->rxhash &
2753 		    sock_flow_table->mask];
2754 
2755 		/*
2756 		 * If the desired CPU (where last recvmsg was done) is
2757 		 * different from current CPU (one in the rx-queue flow
2758 		 * table entry), switch if one of the following holds:
2759 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2760 		 *   - Current CPU is offline.
2761 		 *   - The current CPU's queue tail has advanced beyond the
2762 		 *     last packet that was enqueued using this table entry.
2763 		 *     This guarantees that all previous packets for the flow
2764 		 *     have been dequeued, thus preserving in order delivery.
2765 		 */
2766 		if (unlikely(tcpu != next_cpu) &&
2767 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2768 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2769 		      rflow->last_qtail)) >= 0)) {
2770 			tcpu = next_cpu;
2771 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2772 		}
2773 
2774 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2775 			*rflowp = rflow;
2776 			cpu = tcpu;
2777 			goto done;
2778 		}
2779 	}
2780 
2781 	if (map) {
2782 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2783 
2784 		if (cpu_online(tcpu)) {
2785 			cpu = tcpu;
2786 			goto done;
2787 		}
2788 	}
2789 
2790 done:
2791 	return cpu;
2792 }
2793 
2794 #ifdef CONFIG_RFS_ACCEL
2795 
2796 /**
2797  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2798  * @dev: Device on which the filter was set
2799  * @rxq_index: RX queue index
2800  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2801  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2802  *
2803  * Drivers that implement ndo_rx_flow_steer() should periodically call
2804  * this function for each installed filter and remove the filters for
2805  * which it returns %true.
2806  */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)2807 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2808 			 u32 flow_id, u16 filter_id)
2809 {
2810 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2811 	struct rps_dev_flow_table *flow_table;
2812 	struct rps_dev_flow *rflow;
2813 	bool expire = true;
2814 	int cpu;
2815 
2816 	rcu_read_lock();
2817 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2818 	if (flow_table && flow_id <= flow_table->mask) {
2819 		rflow = &flow_table->flows[flow_id];
2820 		cpu = ACCESS_ONCE(rflow->cpu);
2821 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2822 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2823 			   rflow->last_qtail) <
2824 		     (int)(10 * flow_table->mask)))
2825 			expire = false;
2826 	}
2827 	rcu_read_unlock();
2828 	return expire;
2829 }
2830 EXPORT_SYMBOL(rps_may_expire_flow);
2831 
2832 #endif /* CONFIG_RFS_ACCEL */
2833 
2834 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)2835 static void rps_trigger_softirq(void *data)
2836 {
2837 	struct softnet_data *sd = data;
2838 
2839 	____napi_schedule(sd, &sd->backlog);
2840 	sd->received_rps++;
2841 }
2842 
2843 #endif /* CONFIG_RPS */
2844 
2845 /*
2846  * Check if this softnet_data structure is another cpu one
2847  * If yes, queue it to our IPI list and return 1
2848  * If no, return 0
2849  */
rps_ipi_queued(struct softnet_data * sd)2850 static int rps_ipi_queued(struct softnet_data *sd)
2851 {
2852 #ifdef CONFIG_RPS
2853 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2854 
2855 	if (sd != mysd) {
2856 		sd->rps_ipi_next = mysd->rps_ipi_list;
2857 		mysd->rps_ipi_list = sd;
2858 
2859 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2860 		return 1;
2861 	}
2862 #endif /* CONFIG_RPS */
2863 	return 0;
2864 }
2865 
2866 /*
2867  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2868  * queue (may be a remote CPU queue).
2869  */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)2870 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2871 			      unsigned int *qtail)
2872 {
2873 	struct softnet_data *sd;
2874 	unsigned long flags;
2875 
2876 	sd = &per_cpu(softnet_data, cpu);
2877 
2878 	local_irq_save(flags);
2879 
2880 	rps_lock(sd);
2881 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2882 		if (skb_queue_len(&sd->input_pkt_queue)) {
2883 enqueue:
2884 			__skb_queue_tail(&sd->input_pkt_queue, skb);
2885 			input_queue_tail_incr_save(sd, qtail);
2886 			rps_unlock(sd);
2887 			local_irq_restore(flags);
2888 			return NET_RX_SUCCESS;
2889 		}
2890 
2891 		/* Schedule NAPI for backlog device
2892 		 * We can use non atomic operation since we own the queue lock
2893 		 */
2894 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2895 			if (!rps_ipi_queued(sd))
2896 				____napi_schedule(sd, &sd->backlog);
2897 		}
2898 		goto enqueue;
2899 	}
2900 
2901 	sd->dropped++;
2902 	rps_unlock(sd);
2903 
2904 	local_irq_restore(flags);
2905 
2906 	atomic_long_inc(&skb->dev->rx_dropped);
2907 	kfree_skb(skb);
2908 	return NET_RX_DROP;
2909 }
2910 
2911 /**
2912  *	netif_rx	-	post buffer to the network code
2913  *	@skb: buffer to post
2914  *
2915  *	This function receives a packet from a device driver and queues it for
2916  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2917  *	may be dropped during processing for congestion control or by the
2918  *	protocol layers.
2919  *
2920  *	return values:
2921  *	NET_RX_SUCCESS	(no congestion)
2922  *	NET_RX_DROP     (packet was dropped)
2923  *
2924  */
2925 
netif_rx(struct sk_buff * skb)2926 int netif_rx(struct sk_buff *skb)
2927 {
2928 	int ret;
2929 
2930 	/* if netpoll wants it, pretend we never saw it */
2931 	if (netpoll_rx(skb))
2932 		return NET_RX_DROP;
2933 
2934 	net_timestamp_check(netdev_tstamp_prequeue, skb);
2935 
2936 	trace_netif_rx(skb);
2937 #ifdef CONFIG_RPS
2938 	if (static_key_false(&rps_needed)) {
2939 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2940 		int cpu;
2941 
2942 		preempt_disable();
2943 		rcu_read_lock();
2944 
2945 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2946 		if (cpu < 0)
2947 			cpu = smp_processor_id();
2948 
2949 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2950 
2951 		rcu_read_unlock();
2952 		preempt_enable();
2953 	} else
2954 #endif
2955 	{
2956 		unsigned int qtail;
2957 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2958 		put_cpu();
2959 	}
2960 	return ret;
2961 }
2962 EXPORT_SYMBOL(netif_rx);
2963 
netif_rx_ni(struct sk_buff * skb)2964 int netif_rx_ni(struct sk_buff *skb)
2965 {
2966 	int err;
2967 
2968 	preempt_disable();
2969 	err = netif_rx(skb);
2970 	if (local_softirq_pending())
2971 		do_softirq();
2972 	preempt_enable();
2973 
2974 	return err;
2975 }
2976 EXPORT_SYMBOL(netif_rx_ni);
2977 
net_tx_action(struct softirq_action * h)2978 static void net_tx_action(struct softirq_action *h)
2979 {
2980 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2981 
2982 	if (sd->completion_queue) {
2983 		struct sk_buff *clist;
2984 
2985 		local_irq_disable();
2986 		clist = sd->completion_queue;
2987 		sd->completion_queue = NULL;
2988 		local_irq_enable();
2989 
2990 		while (clist) {
2991 			struct sk_buff *skb = clist;
2992 			clist = clist->next;
2993 
2994 			WARN_ON(atomic_read(&skb->users));
2995 			trace_kfree_skb(skb, net_tx_action);
2996 			__kfree_skb(skb);
2997 		}
2998 	}
2999 
3000 	if (sd->output_queue) {
3001 		struct Qdisc *head;
3002 
3003 		local_irq_disable();
3004 		head = sd->output_queue;
3005 		sd->output_queue = NULL;
3006 		sd->output_queue_tailp = &sd->output_queue;
3007 		local_irq_enable();
3008 
3009 		while (head) {
3010 			struct Qdisc *q = head;
3011 			spinlock_t *root_lock;
3012 
3013 			head = head->next_sched;
3014 
3015 			root_lock = qdisc_lock(q);
3016 			if (spin_trylock(root_lock)) {
3017 				smp_mb__before_clear_bit();
3018 				clear_bit(__QDISC_STATE_SCHED,
3019 					  &q->state);
3020 				qdisc_run(q);
3021 				spin_unlock(root_lock);
3022 			} else {
3023 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3024 					      &q->state)) {
3025 					__netif_reschedule(q);
3026 				} else {
3027 					smp_mb__before_clear_bit();
3028 					clear_bit(__QDISC_STATE_SCHED,
3029 						  &q->state);
3030 				}
3031 			}
3032 		}
3033 	}
3034 }
3035 
3036 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3037     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3038 /* This hook is defined here for ATM LANE */
3039 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3040 			     unsigned char *addr) __read_mostly;
3041 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3042 #endif
3043 
3044 #ifdef CONFIG_NET_CLS_ACT
3045 /* TODO: Maybe we should just force sch_ingress to be compiled in
3046  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3047  * a compare and 2 stores extra right now if we dont have it on
3048  * but have CONFIG_NET_CLS_ACT
3049  * NOTE: This doesn't stop any functionality; if you dont have
3050  * the ingress scheduler, you just can't add policies on ingress.
3051  *
3052  */
ing_filter(struct sk_buff * skb,struct netdev_queue * rxq)3053 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3054 {
3055 	struct net_device *dev = skb->dev;
3056 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3057 	int result = TC_ACT_OK;
3058 	struct Qdisc *q;
3059 
3060 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3061 		if (net_ratelimit())
3062 			pr_warn("Redir loop detected Dropping packet (%d->%d)\n",
3063 				skb->skb_iif, dev->ifindex);
3064 		return TC_ACT_SHOT;
3065 	}
3066 
3067 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3068 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3069 
3070 	q = rxq->qdisc;
3071 	if (q != &noop_qdisc) {
3072 		spin_lock(qdisc_lock(q));
3073 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3074 			result = qdisc_enqueue_root(skb, q);
3075 		spin_unlock(qdisc_lock(q));
3076 	}
3077 
3078 	return result;
3079 }
3080 
handle_ing(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)3081 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3082 					 struct packet_type **pt_prev,
3083 					 int *ret, struct net_device *orig_dev)
3084 {
3085 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3086 
3087 	if (!rxq || rxq->qdisc == &noop_qdisc)
3088 		goto out;
3089 
3090 	if (*pt_prev) {
3091 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3092 		*pt_prev = NULL;
3093 	}
3094 
3095 	switch (ing_filter(skb, rxq)) {
3096 	case TC_ACT_SHOT:
3097 	case TC_ACT_STOLEN:
3098 		kfree_skb(skb);
3099 		return NULL;
3100 	}
3101 
3102 out:
3103 	skb->tc_verd = 0;
3104 	return skb;
3105 }
3106 #endif
3107 
3108 /**
3109  *	netdev_rx_handler_register - register receive handler
3110  *	@dev: device to register a handler for
3111  *	@rx_handler: receive handler to register
3112  *	@rx_handler_data: data pointer that is used by rx handler
3113  *
3114  *	Register a receive hander for a device. This handler will then be
3115  *	called from __netif_receive_skb. A negative errno code is returned
3116  *	on a failure.
3117  *
3118  *	The caller must hold the rtnl_mutex.
3119  *
3120  *	For a general description of rx_handler, see enum rx_handler_result.
3121  */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)3122 int netdev_rx_handler_register(struct net_device *dev,
3123 			       rx_handler_func_t *rx_handler,
3124 			       void *rx_handler_data)
3125 {
3126 	ASSERT_RTNL();
3127 
3128 	if (dev->rx_handler)
3129 		return -EBUSY;
3130 
3131 	/* Note: rx_handler_data must be set before rx_handler */
3132 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3133 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3134 
3135 	return 0;
3136 }
3137 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3138 
3139 /**
3140  *	netdev_rx_handler_unregister - unregister receive handler
3141  *	@dev: device to unregister a handler from
3142  *
3143  *	Unregister a receive hander from a device.
3144  *
3145  *	The caller must hold the rtnl_mutex.
3146  */
netdev_rx_handler_unregister(struct net_device * dev)3147 void netdev_rx_handler_unregister(struct net_device *dev)
3148 {
3149 
3150 	ASSERT_RTNL();
3151 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3152 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3153 	 * section has a guarantee to see a non NULL rx_handler_data
3154 	 * as well.
3155 	 */
3156 	synchronize_net();
3157 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3158 }
3159 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3160 
__netif_receive_skb(struct sk_buff * skb)3161 static int __netif_receive_skb(struct sk_buff *skb)
3162 {
3163 	struct packet_type *ptype, *pt_prev;
3164 	rx_handler_func_t *rx_handler;
3165 	struct net_device *orig_dev;
3166 	struct net_device *null_or_dev;
3167 	bool deliver_exact = false;
3168 	int ret = NET_RX_DROP;
3169 	__be16 type;
3170 
3171 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3172 
3173 	trace_netif_receive_skb(skb);
3174 
3175 	/* if we've gotten here through NAPI, check netpoll */
3176 	if (netpoll_receive_skb(skb))
3177 		return NET_RX_DROP;
3178 
3179 	if (!skb->skb_iif)
3180 		skb->skb_iif = skb->dev->ifindex;
3181 	orig_dev = skb->dev;
3182 
3183 	skb_reset_network_header(skb);
3184 	skb_reset_transport_header(skb);
3185 	skb_reset_mac_len(skb);
3186 
3187 	pt_prev = NULL;
3188 
3189 	rcu_read_lock();
3190 
3191 another_round:
3192 
3193 	__this_cpu_inc(softnet_data.processed);
3194 
3195 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3196 		skb = vlan_untag(skb);
3197 		if (unlikely(!skb))
3198 			goto out;
3199 	}
3200 
3201 #ifdef CONFIG_NET_CLS_ACT
3202 	if (skb->tc_verd & TC_NCLS) {
3203 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3204 		goto ncls;
3205 	}
3206 #endif
3207 
3208 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3209 		if (!ptype->dev || ptype->dev == skb->dev) {
3210 			if (pt_prev)
3211 				ret = deliver_skb(skb, pt_prev, orig_dev);
3212 			pt_prev = ptype;
3213 		}
3214 	}
3215 
3216 #ifdef CONFIG_NET_CLS_ACT
3217 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3218 	if (!skb)
3219 		goto out;
3220 ncls:
3221 #endif
3222 
3223 	if (vlan_tx_tag_present(skb)) {
3224 		if (pt_prev) {
3225 			ret = deliver_skb(skb, pt_prev, orig_dev);
3226 			pt_prev = NULL;
3227 		}
3228 		if (vlan_do_receive(&skb))
3229 			goto another_round;
3230 		else if (unlikely(!skb))
3231 			goto out;
3232 	}
3233 
3234 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3235 	if (rx_handler) {
3236 		if (pt_prev) {
3237 			ret = deliver_skb(skb, pt_prev, orig_dev);
3238 			pt_prev = NULL;
3239 		}
3240 		switch (rx_handler(&skb)) {
3241 		case RX_HANDLER_CONSUMED:
3242 			ret = NET_RX_SUCCESS;
3243 			goto out;
3244 		case RX_HANDLER_ANOTHER:
3245 			goto another_round;
3246 		case RX_HANDLER_EXACT:
3247 			deliver_exact = true;
3248 		case RX_HANDLER_PASS:
3249 			break;
3250 		default:
3251 			BUG();
3252 		}
3253 	}
3254 
3255 	if (vlan_tx_nonzero_tag_present(skb))
3256 		skb->pkt_type = PACKET_OTHERHOST;
3257 
3258 	/* deliver only exact match when indicated */
3259 	null_or_dev = deliver_exact ? skb->dev : NULL;
3260 
3261 	type = skb->protocol;
3262 	list_for_each_entry_rcu(ptype,
3263 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3264 		if (ptype->type == type &&
3265 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3266 		     ptype->dev == orig_dev)) {
3267 			if (pt_prev)
3268 				ret = deliver_skb(skb, pt_prev, orig_dev);
3269 			pt_prev = ptype;
3270 		}
3271 	}
3272 
3273 	if (pt_prev) {
3274 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3275 	} else {
3276 		atomic_long_inc(&skb->dev->rx_dropped);
3277 		kfree_skb(skb);
3278 		/* Jamal, now you will not able to escape explaining
3279 		 * me how you were going to use this. :-)
3280 		 */
3281 		ret = NET_RX_DROP;
3282 	}
3283 
3284 out:
3285 	rcu_read_unlock();
3286 	return ret;
3287 }
3288 
3289 /**
3290  *	netif_receive_skb - process receive buffer from network
3291  *	@skb: buffer to process
3292  *
3293  *	netif_receive_skb() is the main receive data processing function.
3294  *	It always succeeds. The buffer may be dropped during processing
3295  *	for congestion control or by the protocol layers.
3296  *
3297  *	This function may only be called from softirq context and interrupts
3298  *	should be enabled.
3299  *
3300  *	Return values (usually ignored):
3301  *	NET_RX_SUCCESS: no congestion
3302  *	NET_RX_DROP: packet was dropped
3303  */
netif_receive_skb(struct sk_buff * skb)3304 int netif_receive_skb(struct sk_buff *skb)
3305 {
3306 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3307 
3308 	if (skb_defer_rx_timestamp(skb))
3309 		return NET_RX_SUCCESS;
3310 
3311 #ifdef CONFIG_RPS
3312 	if (static_key_false(&rps_needed)) {
3313 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3314 		int cpu, ret;
3315 
3316 		rcu_read_lock();
3317 
3318 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3319 
3320 		if (cpu >= 0) {
3321 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3322 			rcu_read_unlock();
3323 			return ret;
3324 		}
3325 		rcu_read_unlock();
3326 	}
3327 #endif
3328 	return __netif_receive_skb(skb);
3329 }
3330 EXPORT_SYMBOL(netif_receive_skb);
3331 
3332 /* Network device is going away, flush any packets still pending
3333  * Called with irqs disabled.
3334  */
flush_backlog(void * arg)3335 static void flush_backlog(void *arg)
3336 {
3337 	struct net_device *dev = arg;
3338 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3339 	struct sk_buff *skb, *tmp;
3340 
3341 	rps_lock(sd);
3342 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3343 		if (skb->dev == dev) {
3344 			__skb_unlink(skb, &sd->input_pkt_queue);
3345 			kfree_skb(skb);
3346 			input_queue_head_incr(sd);
3347 		}
3348 	}
3349 	rps_unlock(sd);
3350 
3351 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3352 		if (skb->dev == dev) {
3353 			__skb_unlink(skb, &sd->process_queue);
3354 			kfree_skb(skb);
3355 			input_queue_head_incr(sd);
3356 		}
3357 	}
3358 }
3359 
napi_gro_complete(struct sk_buff * skb)3360 static int napi_gro_complete(struct sk_buff *skb)
3361 {
3362 	struct packet_type *ptype;
3363 	__be16 type = skb->protocol;
3364 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3365 	int err = -ENOENT;
3366 
3367 	if (NAPI_GRO_CB(skb)->count == 1) {
3368 		skb_shinfo(skb)->gso_size = 0;
3369 		goto out;
3370 	}
3371 
3372 	rcu_read_lock();
3373 	list_for_each_entry_rcu(ptype, head, list) {
3374 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3375 			continue;
3376 
3377 		err = ptype->gro_complete(skb);
3378 		break;
3379 	}
3380 	rcu_read_unlock();
3381 
3382 	if (err) {
3383 		WARN_ON(&ptype->list == head);
3384 		kfree_skb(skb);
3385 		return NET_RX_SUCCESS;
3386 	}
3387 
3388 out:
3389 	return netif_receive_skb(skb);
3390 }
3391 
napi_gro_flush(struct napi_struct * napi)3392 inline void napi_gro_flush(struct napi_struct *napi)
3393 {
3394 	struct sk_buff *skb, *next;
3395 
3396 	for (skb = napi->gro_list; skb; skb = next) {
3397 		next = skb->next;
3398 		skb->next = NULL;
3399 		napi_gro_complete(skb);
3400 	}
3401 
3402 	napi->gro_count = 0;
3403 	napi->gro_list = NULL;
3404 }
3405 EXPORT_SYMBOL(napi_gro_flush);
3406 
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)3407 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3408 {
3409 	struct sk_buff **pp = NULL;
3410 	struct packet_type *ptype;
3411 	__be16 type = skb->protocol;
3412 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3413 	int same_flow;
3414 	int mac_len;
3415 	enum gro_result ret;
3416 
3417 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3418 		goto normal;
3419 
3420 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3421 		goto normal;
3422 
3423 	rcu_read_lock();
3424 	list_for_each_entry_rcu(ptype, head, list) {
3425 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3426 			continue;
3427 
3428 		skb_set_network_header(skb, skb_gro_offset(skb));
3429 		mac_len = skb->network_header - skb->mac_header;
3430 		skb->mac_len = mac_len;
3431 		NAPI_GRO_CB(skb)->same_flow = 0;
3432 		NAPI_GRO_CB(skb)->flush = 0;
3433 		NAPI_GRO_CB(skb)->free = 0;
3434 
3435 		pp = ptype->gro_receive(&napi->gro_list, skb);
3436 		break;
3437 	}
3438 	rcu_read_unlock();
3439 
3440 	if (&ptype->list == head)
3441 		goto normal;
3442 
3443 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3444 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3445 
3446 	if (pp) {
3447 		struct sk_buff *nskb = *pp;
3448 
3449 		*pp = nskb->next;
3450 		nskb->next = NULL;
3451 		napi_gro_complete(nskb);
3452 		napi->gro_count--;
3453 	}
3454 
3455 	if (same_flow)
3456 		goto ok;
3457 
3458 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3459 		goto normal;
3460 
3461 	napi->gro_count++;
3462 	NAPI_GRO_CB(skb)->count = 1;
3463 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3464 	skb->next = napi->gro_list;
3465 	napi->gro_list = skb;
3466 	ret = GRO_HELD;
3467 
3468 pull:
3469 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3470 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3471 
3472 		BUG_ON(skb->end - skb->tail < grow);
3473 
3474 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3475 
3476 		skb->tail += grow;
3477 		skb->data_len -= grow;
3478 
3479 		skb_shinfo(skb)->frags[0].page_offset += grow;
3480 		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3481 
3482 		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3483 			skb_frag_unref(skb, 0);
3484 			memmove(skb_shinfo(skb)->frags,
3485 				skb_shinfo(skb)->frags + 1,
3486 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3487 		}
3488 	}
3489 
3490 ok:
3491 	return ret;
3492 
3493 normal:
3494 	ret = GRO_NORMAL;
3495 	goto pull;
3496 }
3497 EXPORT_SYMBOL(dev_gro_receive);
3498 
3499 static inline gro_result_t
__napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)3500 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3501 {
3502 	struct sk_buff *p;
3503 	unsigned int maclen = skb->dev->hard_header_len;
3504 
3505 	for (p = napi->gro_list; p; p = p->next) {
3506 		unsigned long diffs;
3507 
3508 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3509 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3510 		if (maclen == ETH_HLEN)
3511 			diffs |= compare_ether_header(skb_mac_header(p),
3512 						      skb_gro_mac_header(skb));
3513 		else if (!diffs)
3514 			diffs = memcmp(skb_mac_header(p),
3515 				       skb_gro_mac_header(skb),
3516 				       maclen);
3517 		NAPI_GRO_CB(p)->same_flow = !diffs;
3518 		NAPI_GRO_CB(p)->flush = 0;
3519 	}
3520 
3521 	return dev_gro_receive(napi, skb);
3522 }
3523 
napi_skb_finish(gro_result_t ret,struct sk_buff * skb)3524 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3525 {
3526 	switch (ret) {
3527 	case GRO_NORMAL:
3528 		if (netif_receive_skb(skb))
3529 			ret = GRO_DROP;
3530 		break;
3531 
3532 	case GRO_DROP:
3533 	case GRO_MERGED_FREE:
3534 		kfree_skb(skb);
3535 		break;
3536 
3537 	case GRO_HELD:
3538 	case GRO_MERGED:
3539 		break;
3540 	}
3541 
3542 	return ret;
3543 }
3544 EXPORT_SYMBOL(napi_skb_finish);
3545 
skb_gro_reset_offset(struct sk_buff * skb)3546 void skb_gro_reset_offset(struct sk_buff *skb)
3547 {
3548 	NAPI_GRO_CB(skb)->data_offset = 0;
3549 	NAPI_GRO_CB(skb)->frag0 = NULL;
3550 	NAPI_GRO_CB(skb)->frag0_len = 0;
3551 
3552 	if (skb->mac_header == skb->tail &&
3553 	    !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3554 		NAPI_GRO_CB(skb)->frag0 =
3555 			skb_frag_address(&skb_shinfo(skb)->frags[0]);
3556 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3557 	}
3558 }
3559 EXPORT_SYMBOL(skb_gro_reset_offset);
3560 
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)3561 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3562 {
3563 	skb_gro_reset_offset(skb);
3564 
3565 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3566 }
3567 EXPORT_SYMBOL(napi_gro_receive);
3568 
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)3569 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3570 {
3571 	__skb_pull(skb, skb_headlen(skb));
3572 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
3573 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3574 	skb->vlan_tci = 0;
3575 	skb->dev = napi->dev;
3576 	skb->skb_iif = 0;
3577 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
3578 
3579 	napi->skb = skb;
3580 }
3581 
napi_get_frags(struct napi_struct * napi)3582 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3583 {
3584 	struct sk_buff *skb = napi->skb;
3585 
3586 	if (!skb) {
3587 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3588 		if (skb)
3589 			napi->skb = skb;
3590 	}
3591 	return skb;
3592 }
3593 EXPORT_SYMBOL(napi_get_frags);
3594 
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)3595 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3596 			       gro_result_t ret)
3597 {
3598 	switch (ret) {
3599 	case GRO_NORMAL:
3600 	case GRO_HELD:
3601 		skb->protocol = eth_type_trans(skb, skb->dev);
3602 
3603 		if (ret == GRO_HELD)
3604 			skb_gro_pull(skb, -ETH_HLEN);
3605 		else if (netif_receive_skb(skb))
3606 			ret = GRO_DROP;
3607 		break;
3608 
3609 	case GRO_DROP:
3610 	case GRO_MERGED_FREE:
3611 		napi_reuse_skb(napi, skb);
3612 		break;
3613 
3614 	case GRO_MERGED:
3615 		break;
3616 	}
3617 
3618 	return ret;
3619 }
3620 EXPORT_SYMBOL(napi_frags_finish);
3621 
napi_frags_skb(struct napi_struct * napi)3622 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3623 {
3624 	struct sk_buff *skb = napi->skb;
3625 	struct ethhdr *eth;
3626 	unsigned int hlen;
3627 	unsigned int off;
3628 
3629 	napi->skb = NULL;
3630 
3631 	skb_reset_mac_header(skb);
3632 	skb_gro_reset_offset(skb);
3633 
3634 	off = skb_gro_offset(skb);
3635 	hlen = off + sizeof(*eth);
3636 	eth = skb_gro_header_fast(skb, off);
3637 	if (skb_gro_header_hard(skb, hlen)) {
3638 		eth = skb_gro_header_slow(skb, hlen, off);
3639 		if (unlikely(!eth)) {
3640 			napi_reuse_skb(napi, skb);
3641 			skb = NULL;
3642 			goto out;
3643 		}
3644 	}
3645 
3646 	skb_gro_pull(skb, sizeof(*eth));
3647 
3648 	/*
3649 	 * This works because the only protocols we care about don't require
3650 	 * special handling.  We'll fix it up properly at the end.
3651 	 */
3652 	skb->protocol = eth->h_proto;
3653 
3654 out:
3655 	return skb;
3656 }
3657 EXPORT_SYMBOL(napi_frags_skb);
3658 
napi_gro_frags(struct napi_struct * napi)3659 gro_result_t napi_gro_frags(struct napi_struct *napi)
3660 {
3661 	struct sk_buff *skb = napi_frags_skb(napi);
3662 
3663 	if (!skb)
3664 		return GRO_DROP;
3665 
3666 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3667 }
3668 EXPORT_SYMBOL(napi_gro_frags);
3669 
3670 /*
3671  * net_rps_action sends any pending IPI's for rps.
3672  * Note: called with local irq disabled, but exits with local irq enabled.
3673  */
net_rps_action_and_irq_enable(struct softnet_data * sd)3674 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3675 {
3676 #ifdef CONFIG_RPS
3677 	struct softnet_data *remsd = sd->rps_ipi_list;
3678 
3679 	if (remsd) {
3680 		sd->rps_ipi_list = NULL;
3681 
3682 		local_irq_enable();
3683 
3684 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3685 		while (remsd) {
3686 			struct softnet_data *next = remsd->rps_ipi_next;
3687 
3688 			if (cpu_online(remsd->cpu))
3689 				__smp_call_function_single(remsd->cpu,
3690 							   &remsd->csd, 0);
3691 			remsd = next;
3692 		}
3693 	} else
3694 #endif
3695 		local_irq_enable();
3696 }
3697 
process_backlog(struct napi_struct * napi,int quota)3698 static int process_backlog(struct napi_struct *napi, int quota)
3699 {
3700 	int work = 0;
3701 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3702 
3703 #ifdef CONFIG_RPS
3704 	/* Check if we have pending ipi, its better to send them now,
3705 	 * not waiting net_rx_action() end.
3706 	 */
3707 	if (sd->rps_ipi_list) {
3708 		local_irq_disable();
3709 		net_rps_action_and_irq_enable(sd);
3710 	}
3711 #endif
3712 	napi->weight = weight_p;
3713 	local_irq_disable();
3714 	while (work < quota) {
3715 		struct sk_buff *skb;
3716 		unsigned int qlen;
3717 
3718 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3719 			local_irq_enable();
3720 			__netif_receive_skb(skb);
3721 			local_irq_disable();
3722 			input_queue_head_incr(sd);
3723 			if (++work >= quota) {
3724 				local_irq_enable();
3725 				return work;
3726 			}
3727 		}
3728 
3729 		rps_lock(sd);
3730 		qlen = skb_queue_len(&sd->input_pkt_queue);
3731 		if (qlen)
3732 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3733 						   &sd->process_queue);
3734 
3735 		if (qlen < quota - work) {
3736 			/*
3737 			 * Inline a custom version of __napi_complete().
3738 			 * only current cpu owns and manipulates this napi,
3739 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3740 			 * we can use a plain write instead of clear_bit(),
3741 			 * and we dont need an smp_mb() memory barrier.
3742 			 */
3743 			list_del(&napi->poll_list);
3744 			napi->state = 0;
3745 
3746 			quota = work + qlen;
3747 		}
3748 		rps_unlock(sd);
3749 	}
3750 	local_irq_enable();
3751 
3752 	return work;
3753 }
3754 
3755 /**
3756  * __napi_schedule - schedule for receive
3757  * @n: entry to schedule
3758  *
3759  * The entry's receive function will be scheduled to run
3760  */
__napi_schedule(struct napi_struct * n)3761 void __napi_schedule(struct napi_struct *n)
3762 {
3763 	unsigned long flags;
3764 
3765 	local_irq_save(flags);
3766 	____napi_schedule(&__get_cpu_var(softnet_data), n);
3767 	local_irq_restore(flags);
3768 }
3769 EXPORT_SYMBOL(__napi_schedule);
3770 
__napi_complete(struct napi_struct * n)3771 void __napi_complete(struct napi_struct *n)
3772 {
3773 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3774 	BUG_ON(n->gro_list);
3775 
3776 	list_del(&n->poll_list);
3777 	smp_mb__before_clear_bit();
3778 	clear_bit(NAPI_STATE_SCHED, &n->state);
3779 }
3780 EXPORT_SYMBOL(__napi_complete);
3781 
napi_complete(struct napi_struct * n)3782 void napi_complete(struct napi_struct *n)
3783 {
3784 	unsigned long flags;
3785 
3786 	/*
3787 	 * don't let napi dequeue from the cpu poll list
3788 	 * just in case its running on a different cpu
3789 	 */
3790 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3791 		return;
3792 
3793 	napi_gro_flush(n);
3794 	local_irq_save(flags);
3795 	__napi_complete(n);
3796 	local_irq_restore(flags);
3797 }
3798 EXPORT_SYMBOL(napi_complete);
3799 
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)3800 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3801 		    int (*poll)(struct napi_struct *, int), int weight)
3802 {
3803 	INIT_LIST_HEAD(&napi->poll_list);
3804 	napi->gro_count = 0;
3805 	napi->gro_list = NULL;
3806 	napi->skb = NULL;
3807 	napi->poll = poll;
3808 	napi->weight = weight;
3809 	list_add(&napi->dev_list, &dev->napi_list);
3810 	napi->dev = dev;
3811 #ifdef CONFIG_NETPOLL
3812 	spin_lock_init(&napi->poll_lock);
3813 	napi->poll_owner = -1;
3814 #endif
3815 	set_bit(NAPI_STATE_SCHED, &napi->state);
3816 }
3817 EXPORT_SYMBOL(netif_napi_add);
3818 
netif_napi_del(struct napi_struct * napi)3819 void netif_napi_del(struct napi_struct *napi)
3820 {
3821 	struct sk_buff *skb, *next;
3822 
3823 	list_del_init(&napi->dev_list);
3824 	napi_free_frags(napi);
3825 
3826 	for (skb = napi->gro_list; skb; skb = next) {
3827 		next = skb->next;
3828 		skb->next = NULL;
3829 		kfree_skb(skb);
3830 	}
3831 
3832 	napi->gro_list = NULL;
3833 	napi->gro_count = 0;
3834 }
3835 EXPORT_SYMBOL(netif_napi_del);
3836 
net_rx_action(struct softirq_action * h)3837 static void net_rx_action(struct softirq_action *h)
3838 {
3839 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3840 	unsigned long time_limit = jiffies + 2;
3841 	int budget = netdev_budget;
3842 	void *have;
3843 
3844 	local_irq_disable();
3845 
3846 	while (!list_empty(&sd->poll_list)) {
3847 		struct napi_struct *n;
3848 		int work, weight;
3849 
3850 		/* If softirq window is exhuasted then punt.
3851 		 * Allow this to run for 2 jiffies since which will allow
3852 		 * an average latency of 1.5/HZ.
3853 		 */
3854 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3855 			goto softnet_break;
3856 
3857 		local_irq_enable();
3858 
3859 		/* Even though interrupts have been re-enabled, this
3860 		 * access is safe because interrupts can only add new
3861 		 * entries to the tail of this list, and only ->poll()
3862 		 * calls can remove this head entry from the list.
3863 		 */
3864 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3865 
3866 		have = netpoll_poll_lock(n);
3867 
3868 		weight = n->weight;
3869 
3870 		/* This NAPI_STATE_SCHED test is for avoiding a race
3871 		 * with netpoll's poll_napi().  Only the entity which
3872 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3873 		 * actually make the ->poll() call.  Therefore we avoid
3874 		 * accidentally calling ->poll() when NAPI is not scheduled.
3875 		 */
3876 		work = 0;
3877 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3878 			work = n->poll(n, weight);
3879 			trace_napi_poll(n);
3880 		}
3881 
3882 		WARN_ON_ONCE(work > weight);
3883 
3884 		budget -= work;
3885 
3886 		local_irq_disable();
3887 
3888 		/* Drivers must not modify the NAPI state if they
3889 		 * consume the entire weight.  In such cases this code
3890 		 * still "owns" the NAPI instance and therefore can
3891 		 * move the instance around on the list at-will.
3892 		 */
3893 		if (unlikely(work == weight)) {
3894 			if (unlikely(napi_disable_pending(n))) {
3895 				local_irq_enable();
3896 				napi_complete(n);
3897 				local_irq_disable();
3898 			} else
3899 				list_move_tail(&n->poll_list, &sd->poll_list);
3900 		}
3901 
3902 		netpoll_poll_unlock(have);
3903 	}
3904 out:
3905 	net_rps_action_and_irq_enable(sd);
3906 
3907 #ifdef CONFIG_NET_DMA
3908 	/*
3909 	 * There may not be any more sk_buffs coming right now, so push
3910 	 * any pending DMA copies to hardware
3911 	 */
3912 	dma_issue_pending_all();
3913 #endif
3914 
3915 	return;
3916 
3917 softnet_break:
3918 	sd->time_squeeze++;
3919 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3920 	goto out;
3921 }
3922 
3923 static gifconf_func_t *gifconf_list[NPROTO];
3924 
3925 /**
3926  *	register_gifconf	-	register a SIOCGIF handler
3927  *	@family: Address family
3928  *	@gifconf: Function handler
3929  *
3930  *	Register protocol dependent address dumping routines. The handler
3931  *	that is passed must not be freed or reused until it has been replaced
3932  *	by another handler.
3933  */
register_gifconf(unsigned int family,gifconf_func_t * gifconf)3934 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3935 {
3936 	if (family >= NPROTO)
3937 		return -EINVAL;
3938 	gifconf_list[family] = gifconf;
3939 	return 0;
3940 }
3941 EXPORT_SYMBOL(register_gifconf);
3942 
3943 
3944 /*
3945  *	Map an interface index to its name (SIOCGIFNAME)
3946  */
3947 
3948 /*
3949  *	We need this ioctl for efficient implementation of the
3950  *	if_indextoname() function required by the IPv6 API.  Without
3951  *	it, we would have to search all the interfaces to find a
3952  *	match.  --pb
3953  */
3954 
dev_ifname(struct net * net,struct ifreq __user * arg)3955 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3956 {
3957 	struct net_device *dev;
3958 	struct ifreq ifr;
3959 
3960 	/*
3961 	 *	Fetch the caller's info block.
3962 	 */
3963 
3964 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3965 		return -EFAULT;
3966 
3967 	rcu_read_lock();
3968 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3969 	if (!dev) {
3970 		rcu_read_unlock();
3971 		return -ENODEV;
3972 	}
3973 
3974 	strcpy(ifr.ifr_name, dev->name);
3975 	rcu_read_unlock();
3976 
3977 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3978 		return -EFAULT;
3979 	return 0;
3980 }
3981 
3982 /*
3983  *	Perform a SIOCGIFCONF call. This structure will change
3984  *	size eventually, and there is nothing I can do about it.
3985  *	Thus we will need a 'compatibility mode'.
3986  */
3987 
dev_ifconf(struct net * net,char __user * arg)3988 static int dev_ifconf(struct net *net, char __user *arg)
3989 {
3990 	struct ifconf ifc;
3991 	struct net_device *dev;
3992 	char __user *pos;
3993 	int len;
3994 	int total;
3995 	int i;
3996 
3997 	/*
3998 	 *	Fetch the caller's info block.
3999 	 */
4000 
4001 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4002 		return -EFAULT;
4003 
4004 	pos = ifc.ifc_buf;
4005 	len = ifc.ifc_len;
4006 
4007 	/*
4008 	 *	Loop over the interfaces, and write an info block for each.
4009 	 */
4010 
4011 	total = 0;
4012 	for_each_netdev(net, dev) {
4013 		for (i = 0; i < NPROTO; i++) {
4014 			if (gifconf_list[i]) {
4015 				int done;
4016 				if (!pos)
4017 					done = gifconf_list[i](dev, NULL, 0);
4018 				else
4019 					done = gifconf_list[i](dev, pos + total,
4020 							       len - total);
4021 				if (done < 0)
4022 					return -EFAULT;
4023 				total += done;
4024 			}
4025 		}
4026 	}
4027 
4028 	/*
4029 	 *	All done.  Write the updated control block back to the caller.
4030 	 */
4031 	ifc.ifc_len = total;
4032 
4033 	/*
4034 	 * 	Both BSD and Solaris return 0 here, so we do too.
4035 	 */
4036 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4037 }
4038 
4039 #ifdef CONFIG_PROC_FS
4040 
4041 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4042 
4043 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4044 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4045 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4046 
dev_from_same_bucket(struct seq_file * seq,loff_t * pos)4047 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4048 {
4049 	struct net *net = seq_file_net(seq);
4050 	struct net_device *dev;
4051 	struct hlist_node *p;
4052 	struct hlist_head *h;
4053 	unsigned int count = 0, offset = get_offset(*pos);
4054 
4055 	h = &net->dev_name_head[get_bucket(*pos)];
4056 	hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4057 		if (++count == offset)
4058 			return dev;
4059 	}
4060 
4061 	return NULL;
4062 }
4063 
dev_from_bucket(struct seq_file * seq,loff_t * pos)4064 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4065 {
4066 	struct net_device *dev;
4067 	unsigned int bucket;
4068 
4069 	do {
4070 		dev = dev_from_same_bucket(seq, pos);
4071 		if (dev)
4072 			return dev;
4073 
4074 		bucket = get_bucket(*pos) + 1;
4075 		*pos = set_bucket_offset(bucket, 1);
4076 	} while (bucket < NETDEV_HASHENTRIES);
4077 
4078 	return NULL;
4079 }
4080 
4081 /*
4082  *	This is invoked by the /proc filesystem handler to display a device
4083  *	in detail.
4084  */
dev_seq_start(struct seq_file * seq,loff_t * pos)4085 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4086 	__acquires(RCU)
4087 {
4088 	rcu_read_lock();
4089 	if (!*pos)
4090 		return SEQ_START_TOKEN;
4091 
4092 	if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4093 		return NULL;
4094 
4095 	return dev_from_bucket(seq, pos);
4096 }
4097 
dev_seq_next(struct seq_file * seq,void * v,loff_t * pos)4098 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4099 {
4100 	++*pos;
4101 	return dev_from_bucket(seq, pos);
4102 }
4103 
dev_seq_stop(struct seq_file * seq,void * v)4104 void dev_seq_stop(struct seq_file *seq, void *v)
4105 	__releases(RCU)
4106 {
4107 	rcu_read_unlock();
4108 }
4109 
dev_seq_printf_stats(struct seq_file * seq,struct net_device * dev)4110 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4111 {
4112 	struct rtnl_link_stats64 temp;
4113 	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4114 
4115 	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4116 		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4117 		   dev->name, stats->rx_bytes, stats->rx_packets,
4118 		   stats->rx_errors,
4119 		   stats->rx_dropped + stats->rx_missed_errors,
4120 		   stats->rx_fifo_errors,
4121 		   stats->rx_length_errors + stats->rx_over_errors +
4122 		    stats->rx_crc_errors + stats->rx_frame_errors,
4123 		   stats->rx_compressed, stats->multicast,
4124 		   stats->tx_bytes, stats->tx_packets,
4125 		   stats->tx_errors, stats->tx_dropped,
4126 		   stats->tx_fifo_errors, stats->collisions,
4127 		   stats->tx_carrier_errors +
4128 		    stats->tx_aborted_errors +
4129 		    stats->tx_window_errors +
4130 		    stats->tx_heartbeat_errors,
4131 		   stats->tx_compressed);
4132 }
4133 
4134 /*
4135  *	Called from the PROCfs module. This now uses the new arbitrary sized
4136  *	/proc/net interface to create /proc/net/dev
4137  */
dev_seq_show(struct seq_file * seq,void * v)4138 static int dev_seq_show(struct seq_file *seq, void *v)
4139 {
4140 	if (v == SEQ_START_TOKEN)
4141 		seq_puts(seq, "Inter-|   Receive                            "
4142 			      "                    |  Transmit\n"
4143 			      " face |bytes    packets errs drop fifo frame "
4144 			      "compressed multicast|bytes    packets errs "
4145 			      "drop fifo colls carrier compressed\n");
4146 	else
4147 		dev_seq_printf_stats(seq, v);
4148 	return 0;
4149 }
4150 
softnet_get_online(loff_t * pos)4151 static struct softnet_data *softnet_get_online(loff_t *pos)
4152 {
4153 	struct softnet_data *sd = NULL;
4154 
4155 	while (*pos < nr_cpu_ids)
4156 		if (cpu_online(*pos)) {
4157 			sd = &per_cpu(softnet_data, *pos);
4158 			break;
4159 		} else
4160 			++*pos;
4161 	return sd;
4162 }
4163 
softnet_seq_start(struct seq_file * seq,loff_t * pos)4164 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4165 {
4166 	return softnet_get_online(pos);
4167 }
4168 
softnet_seq_next(struct seq_file * seq,void * v,loff_t * pos)4169 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4170 {
4171 	++*pos;
4172 	return softnet_get_online(pos);
4173 }
4174 
softnet_seq_stop(struct seq_file * seq,void * v)4175 static void softnet_seq_stop(struct seq_file *seq, void *v)
4176 {
4177 }
4178 
softnet_seq_show(struct seq_file * seq,void * v)4179 static int softnet_seq_show(struct seq_file *seq, void *v)
4180 {
4181 	struct softnet_data *sd = v;
4182 
4183 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4184 		   sd->processed, sd->dropped, sd->time_squeeze, 0,
4185 		   0, 0, 0, 0, /* was fastroute */
4186 		   sd->cpu_collision, sd->received_rps);
4187 	return 0;
4188 }
4189 
4190 static const struct seq_operations dev_seq_ops = {
4191 	.start = dev_seq_start,
4192 	.next  = dev_seq_next,
4193 	.stop  = dev_seq_stop,
4194 	.show  = dev_seq_show,
4195 };
4196 
dev_seq_open(struct inode * inode,struct file * file)4197 static int dev_seq_open(struct inode *inode, struct file *file)
4198 {
4199 	return seq_open_net(inode, file, &dev_seq_ops,
4200 			    sizeof(struct seq_net_private));
4201 }
4202 
4203 static const struct file_operations dev_seq_fops = {
4204 	.owner	 = THIS_MODULE,
4205 	.open    = dev_seq_open,
4206 	.read    = seq_read,
4207 	.llseek  = seq_lseek,
4208 	.release = seq_release_net,
4209 };
4210 
4211 static const struct seq_operations softnet_seq_ops = {
4212 	.start = softnet_seq_start,
4213 	.next  = softnet_seq_next,
4214 	.stop  = softnet_seq_stop,
4215 	.show  = softnet_seq_show,
4216 };
4217 
softnet_seq_open(struct inode * inode,struct file * file)4218 static int softnet_seq_open(struct inode *inode, struct file *file)
4219 {
4220 	return seq_open(file, &softnet_seq_ops);
4221 }
4222 
4223 static const struct file_operations softnet_seq_fops = {
4224 	.owner	 = THIS_MODULE,
4225 	.open    = softnet_seq_open,
4226 	.read    = seq_read,
4227 	.llseek  = seq_lseek,
4228 	.release = seq_release,
4229 };
4230 
ptype_get_idx(loff_t pos)4231 static void *ptype_get_idx(loff_t pos)
4232 {
4233 	struct packet_type *pt = NULL;
4234 	loff_t i = 0;
4235 	int t;
4236 
4237 	list_for_each_entry_rcu(pt, &ptype_all, list) {
4238 		if (i == pos)
4239 			return pt;
4240 		++i;
4241 	}
4242 
4243 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4244 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4245 			if (i == pos)
4246 				return pt;
4247 			++i;
4248 		}
4249 	}
4250 	return NULL;
4251 }
4252 
ptype_seq_start(struct seq_file * seq,loff_t * pos)4253 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4254 	__acquires(RCU)
4255 {
4256 	rcu_read_lock();
4257 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4258 }
4259 
ptype_seq_next(struct seq_file * seq,void * v,loff_t * pos)4260 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4261 {
4262 	struct packet_type *pt;
4263 	struct list_head *nxt;
4264 	int hash;
4265 
4266 	++*pos;
4267 	if (v == SEQ_START_TOKEN)
4268 		return ptype_get_idx(0);
4269 
4270 	pt = v;
4271 	nxt = pt->list.next;
4272 	if (pt->type == htons(ETH_P_ALL)) {
4273 		if (nxt != &ptype_all)
4274 			goto found;
4275 		hash = 0;
4276 		nxt = ptype_base[0].next;
4277 	} else
4278 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4279 
4280 	while (nxt == &ptype_base[hash]) {
4281 		if (++hash >= PTYPE_HASH_SIZE)
4282 			return NULL;
4283 		nxt = ptype_base[hash].next;
4284 	}
4285 found:
4286 	return list_entry(nxt, struct packet_type, list);
4287 }
4288 
ptype_seq_stop(struct seq_file * seq,void * v)4289 static void ptype_seq_stop(struct seq_file *seq, void *v)
4290 	__releases(RCU)
4291 {
4292 	rcu_read_unlock();
4293 }
4294 
ptype_seq_show(struct seq_file * seq,void * v)4295 static int ptype_seq_show(struct seq_file *seq, void *v)
4296 {
4297 	struct packet_type *pt = v;
4298 
4299 	if (v == SEQ_START_TOKEN)
4300 		seq_puts(seq, "Type Device      Function\n");
4301 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4302 		if (pt->type == htons(ETH_P_ALL))
4303 			seq_puts(seq, "ALL ");
4304 		else
4305 			seq_printf(seq, "%04x", ntohs(pt->type));
4306 
4307 		seq_printf(seq, " %-8s %pF\n",
4308 			   pt->dev ? pt->dev->name : "", pt->func);
4309 	}
4310 
4311 	return 0;
4312 }
4313 
4314 static const struct seq_operations ptype_seq_ops = {
4315 	.start = ptype_seq_start,
4316 	.next  = ptype_seq_next,
4317 	.stop  = ptype_seq_stop,
4318 	.show  = ptype_seq_show,
4319 };
4320 
ptype_seq_open(struct inode * inode,struct file * file)4321 static int ptype_seq_open(struct inode *inode, struct file *file)
4322 {
4323 	return seq_open_net(inode, file, &ptype_seq_ops,
4324 			sizeof(struct seq_net_private));
4325 }
4326 
4327 static const struct file_operations ptype_seq_fops = {
4328 	.owner	 = THIS_MODULE,
4329 	.open    = ptype_seq_open,
4330 	.read    = seq_read,
4331 	.llseek  = seq_lseek,
4332 	.release = seq_release_net,
4333 };
4334 
4335 
dev_proc_net_init(struct net * net)4336 static int __net_init dev_proc_net_init(struct net *net)
4337 {
4338 	int rc = -ENOMEM;
4339 
4340 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4341 		goto out;
4342 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4343 		goto out_dev;
4344 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4345 		goto out_softnet;
4346 
4347 	if (wext_proc_init(net))
4348 		goto out_ptype;
4349 	rc = 0;
4350 out:
4351 	return rc;
4352 out_ptype:
4353 	proc_net_remove(net, "ptype");
4354 out_softnet:
4355 	proc_net_remove(net, "softnet_stat");
4356 out_dev:
4357 	proc_net_remove(net, "dev");
4358 	goto out;
4359 }
4360 
dev_proc_net_exit(struct net * net)4361 static void __net_exit dev_proc_net_exit(struct net *net)
4362 {
4363 	wext_proc_exit(net);
4364 
4365 	proc_net_remove(net, "ptype");
4366 	proc_net_remove(net, "softnet_stat");
4367 	proc_net_remove(net, "dev");
4368 }
4369 
4370 static struct pernet_operations __net_initdata dev_proc_ops = {
4371 	.init = dev_proc_net_init,
4372 	.exit = dev_proc_net_exit,
4373 };
4374 
dev_proc_init(void)4375 static int __init dev_proc_init(void)
4376 {
4377 	return register_pernet_subsys(&dev_proc_ops);
4378 }
4379 #else
4380 #define dev_proc_init() 0
4381 #endif	/* CONFIG_PROC_FS */
4382 
4383 
4384 /**
4385  *	netdev_set_master	-	set up master pointer
4386  *	@slave: slave device
4387  *	@master: new master device
4388  *
4389  *	Changes the master device of the slave. Pass %NULL to break the
4390  *	bonding. The caller must hold the RTNL semaphore. On a failure
4391  *	a negative errno code is returned. On success the reference counts
4392  *	are adjusted and the function returns zero.
4393  */
netdev_set_master(struct net_device * slave,struct net_device * master)4394 int netdev_set_master(struct net_device *slave, struct net_device *master)
4395 {
4396 	struct net_device *old = slave->master;
4397 
4398 	ASSERT_RTNL();
4399 
4400 	if (master) {
4401 		if (old)
4402 			return -EBUSY;
4403 		dev_hold(master);
4404 	}
4405 
4406 	slave->master = master;
4407 
4408 	if (old)
4409 		dev_put(old);
4410 	return 0;
4411 }
4412 EXPORT_SYMBOL(netdev_set_master);
4413 
4414 /**
4415  *	netdev_set_bond_master	-	set up bonding master/slave pair
4416  *	@slave: slave device
4417  *	@master: new master device
4418  *
4419  *	Changes the master device of the slave. Pass %NULL to break the
4420  *	bonding. The caller must hold the RTNL semaphore. On a failure
4421  *	a negative errno code is returned. On success %RTM_NEWLINK is sent
4422  *	to the routing socket and the function returns zero.
4423  */
netdev_set_bond_master(struct net_device * slave,struct net_device * master)4424 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4425 {
4426 	int err;
4427 
4428 	ASSERT_RTNL();
4429 
4430 	err = netdev_set_master(slave, master);
4431 	if (err)
4432 		return err;
4433 	if (master)
4434 		slave->flags |= IFF_SLAVE;
4435 	else
4436 		slave->flags &= ~IFF_SLAVE;
4437 
4438 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4439 	return 0;
4440 }
4441 EXPORT_SYMBOL(netdev_set_bond_master);
4442 
dev_change_rx_flags(struct net_device * dev,int flags)4443 static void dev_change_rx_flags(struct net_device *dev, int flags)
4444 {
4445 	const struct net_device_ops *ops = dev->netdev_ops;
4446 
4447 	if (ops->ndo_change_rx_flags)
4448 		ops->ndo_change_rx_flags(dev, flags);
4449 }
4450 
__dev_set_promiscuity(struct net_device * dev,int inc)4451 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4452 {
4453 	unsigned int old_flags = dev->flags;
4454 	uid_t uid;
4455 	gid_t gid;
4456 
4457 	ASSERT_RTNL();
4458 
4459 	dev->flags |= IFF_PROMISC;
4460 	dev->promiscuity += inc;
4461 	if (dev->promiscuity == 0) {
4462 		/*
4463 		 * Avoid overflow.
4464 		 * If inc causes overflow, untouch promisc and return error.
4465 		 */
4466 		if (inc < 0)
4467 			dev->flags &= ~IFF_PROMISC;
4468 		else {
4469 			dev->promiscuity -= inc;
4470 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4471 				dev->name);
4472 			return -EOVERFLOW;
4473 		}
4474 	}
4475 	if (dev->flags != old_flags) {
4476 		pr_info("device %s %s promiscuous mode\n",
4477 			dev->name,
4478 			dev->flags & IFF_PROMISC ? "entered" : "left");
4479 		if (audit_enabled) {
4480 			current_uid_gid(&uid, &gid);
4481 			audit_log(current->audit_context, GFP_ATOMIC,
4482 				AUDIT_ANOM_PROMISCUOUS,
4483 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4484 				dev->name, (dev->flags & IFF_PROMISC),
4485 				(old_flags & IFF_PROMISC),
4486 				audit_get_loginuid(current),
4487 				uid, gid,
4488 				audit_get_sessionid(current));
4489 		}
4490 
4491 		dev_change_rx_flags(dev, IFF_PROMISC);
4492 	}
4493 	return 0;
4494 }
4495 
4496 /**
4497  *	dev_set_promiscuity	- update promiscuity count on a device
4498  *	@dev: device
4499  *	@inc: modifier
4500  *
4501  *	Add or remove promiscuity from a device. While the count in the device
4502  *	remains above zero the interface remains promiscuous. Once it hits zero
4503  *	the device reverts back to normal filtering operation. A negative inc
4504  *	value is used to drop promiscuity on the device.
4505  *	Return 0 if successful or a negative errno code on error.
4506  */
dev_set_promiscuity(struct net_device * dev,int inc)4507 int dev_set_promiscuity(struct net_device *dev, int inc)
4508 {
4509 	unsigned int old_flags = dev->flags;
4510 	int err;
4511 
4512 	err = __dev_set_promiscuity(dev, inc);
4513 	if (err < 0)
4514 		return err;
4515 	if (dev->flags != old_flags)
4516 		dev_set_rx_mode(dev);
4517 	return err;
4518 }
4519 EXPORT_SYMBOL(dev_set_promiscuity);
4520 
4521 /**
4522  *	dev_set_allmulti	- update allmulti count on a device
4523  *	@dev: device
4524  *	@inc: modifier
4525  *
4526  *	Add or remove reception of all multicast frames to a device. While the
4527  *	count in the device remains above zero the interface remains listening
4528  *	to all interfaces. Once it hits zero the device reverts back to normal
4529  *	filtering operation. A negative @inc value is used to drop the counter
4530  *	when releasing a resource needing all multicasts.
4531  *	Return 0 if successful or a negative errno code on error.
4532  */
4533 
dev_set_allmulti(struct net_device * dev,int inc)4534 int dev_set_allmulti(struct net_device *dev, int inc)
4535 {
4536 	unsigned int old_flags = dev->flags;
4537 
4538 	ASSERT_RTNL();
4539 
4540 	dev->flags |= IFF_ALLMULTI;
4541 	dev->allmulti += inc;
4542 	if (dev->allmulti == 0) {
4543 		/*
4544 		 * Avoid overflow.
4545 		 * If inc causes overflow, untouch allmulti and return error.
4546 		 */
4547 		if (inc < 0)
4548 			dev->flags &= ~IFF_ALLMULTI;
4549 		else {
4550 			dev->allmulti -= inc;
4551 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4552 				dev->name);
4553 			return -EOVERFLOW;
4554 		}
4555 	}
4556 	if (dev->flags ^ old_flags) {
4557 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4558 		dev_set_rx_mode(dev);
4559 	}
4560 	return 0;
4561 }
4562 EXPORT_SYMBOL(dev_set_allmulti);
4563 
4564 /*
4565  *	Upload unicast and multicast address lists to device and
4566  *	configure RX filtering. When the device doesn't support unicast
4567  *	filtering it is put in promiscuous mode while unicast addresses
4568  *	are present.
4569  */
__dev_set_rx_mode(struct net_device * dev)4570 void __dev_set_rx_mode(struct net_device *dev)
4571 {
4572 	const struct net_device_ops *ops = dev->netdev_ops;
4573 
4574 	/* dev_open will call this function so the list will stay sane. */
4575 	if (!(dev->flags&IFF_UP))
4576 		return;
4577 
4578 	if (!netif_device_present(dev))
4579 		return;
4580 
4581 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4582 		/* Unicast addresses changes may only happen under the rtnl,
4583 		 * therefore calling __dev_set_promiscuity here is safe.
4584 		 */
4585 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4586 			__dev_set_promiscuity(dev, 1);
4587 			dev->uc_promisc = true;
4588 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4589 			__dev_set_promiscuity(dev, -1);
4590 			dev->uc_promisc = false;
4591 		}
4592 	}
4593 
4594 	if (ops->ndo_set_rx_mode)
4595 		ops->ndo_set_rx_mode(dev);
4596 }
4597 
dev_set_rx_mode(struct net_device * dev)4598 void dev_set_rx_mode(struct net_device *dev)
4599 {
4600 	netif_addr_lock_bh(dev);
4601 	__dev_set_rx_mode(dev);
4602 	netif_addr_unlock_bh(dev);
4603 }
4604 
4605 /**
4606  *	dev_get_flags - get flags reported to userspace
4607  *	@dev: device
4608  *
4609  *	Get the combination of flag bits exported through APIs to userspace.
4610  */
dev_get_flags(const struct net_device * dev)4611 unsigned dev_get_flags(const struct net_device *dev)
4612 {
4613 	unsigned flags;
4614 
4615 	flags = (dev->flags & ~(IFF_PROMISC |
4616 				IFF_ALLMULTI |
4617 				IFF_RUNNING |
4618 				IFF_LOWER_UP |
4619 				IFF_DORMANT)) |
4620 		(dev->gflags & (IFF_PROMISC |
4621 				IFF_ALLMULTI));
4622 
4623 	if (netif_running(dev)) {
4624 		if (netif_oper_up(dev))
4625 			flags |= IFF_RUNNING;
4626 		if (netif_carrier_ok(dev))
4627 			flags |= IFF_LOWER_UP;
4628 		if (netif_dormant(dev))
4629 			flags |= IFF_DORMANT;
4630 	}
4631 
4632 	return flags;
4633 }
4634 EXPORT_SYMBOL(dev_get_flags);
4635 
__dev_change_flags(struct net_device * dev,unsigned int flags)4636 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4637 {
4638 	unsigned int old_flags = dev->flags;
4639 	int ret;
4640 
4641 	ASSERT_RTNL();
4642 
4643 	/*
4644 	 *	Set the flags on our device.
4645 	 */
4646 
4647 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4648 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4649 			       IFF_AUTOMEDIA)) |
4650 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4651 				    IFF_ALLMULTI));
4652 
4653 	/*
4654 	 *	Load in the correct multicast list now the flags have changed.
4655 	 */
4656 
4657 	if ((old_flags ^ flags) & IFF_MULTICAST)
4658 		dev_change_rx_flags(dev, IFF_MULTICAST);
4659 
4660 	dev_set_rx_mode(dev);
4661 
4662 	/*
4663 	 *	Have we downed the interface. We handle IFF_UP ourselves
4664 	 *	according to user attempts to set it, rather than blindly
4665 	 *	setting it.
4666 	 */
4667 
4668 	ret = 0;
4669 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4670 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4671 
4672 		if (!ret)
4673 			dev_set_rx_mode(dev);
4674 	}
4675 
4676 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4677 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4678 
4679 		dev->gflags ^= IFF_PROMISC;
4680 		dev_set_promiscuity(dev, inc);
4681 	}
4682 
4683 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4684 	   is important. Some (broken) drivers set IFF_PROMISC, when
4685 	   IFF_ALLMULTI is requested not asking us and not reporting.
4686 	 */
4687 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4688 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4689 
4690 		dev->gflags ^= IFF_ALLMULTI;
4691 		dev_set_allmulti(dev, inc);
4692 	}
4693 
4694 	return ret;
4695 }
4696 
__dev_notify_flags(struct net_device * dev,unsigned int old_flags)4697 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4698 {
4699 	unsigned int changes = dev->flags ^ old_flags;
4700 
4701 	if (changes & IFF_UP) {
4702 		if (dev->flags & IFF_UP)
4703 			call_netdevice_notifiers(NETDEV_UP, dev);
4704 		else
4705 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4706 	}
4707 
4708 	if (dev->flags & IFF_UP &&
4709 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4710 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4711 }
4712 
4713 /**
4714  *	dev_change_flags - change device settings
4715  *	@dev: device
4716  *	@flags: device state flags
4717  *
4718  *	Change settings on device based state flags. The flags are
4719  *	in the userspace exported format.
4720  */
dev_change_flags(struct net_device * dev,unsigned int flags)4721 int dev_change_flags(struct net_device *dev, unsigned int flags)
4722 {
4723 	int ret;
4724 	unsigned int changes, old_flags = dev->flags;
4725 
4726 	ret = __dev_change_flags(dev, flags);
4727 	if (ret < 0)
4728 		return ret;
4729 
4730 	changes = old_flags ^ dev->flags;
4731 	if (changes)
4732 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4733 
4734 	__dev_notify_flags(dev, old_flags);
4735 	return ret;
4736 }
4737 EXPORT_SYMBOL(dev_change_flags);
4738 
4739 /**
4740  *	dev_set_mtu - Change maximum transfer unit
4741  *	@dev: device
4742  *	@new_mtu: new transfer unit
4743  *
4744  *	Change the maximum transfer size of the network device.
4745  */
dev_set_mtu(struct net_device * dev,int new_mtu)4746 int dev_set_mtu(struct net_device *dev, int new_mtu)
4747 {
4748 	const struct net_device_ops *ops = dev->netdev_ops;
4749 	int err;
4750 
4751 	if (new_mtu == dev->mtu)
4752 		return 0;
4753 
4754 	/*	MTU must be positive.	 */
4755 	if (new_mtu < 0)
4756 		return -EINVAL;
4757 
4758 	if (!netif_device_present(dev))
4759 		return -ENODEV;
4760 
4761 	err = 0;
4762 	if (ops->ndo_change_mtu)
4763 		err = ops->ndo_change_mtu(dev, new_mtu);
4764 	else
4765 		dev->mtu = new_mtu;
4766 
4767 	if (!err && dev->flags & IFF_UP)
4768 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4769 	return err;
4770 }
4771 EXPORT_SYMBOL(dev_set_mtu);
4772 
4773 /**
4774  *	dev_set_group - Change group this device belongs to
4775  *	@dev: device
4776  *	@new_group: group this device should belong to
4777  */
dev_set_group(struct net_device * dev,int new_group)4778 void dev_set_group(struct net_device *dev, int new_group)
4779 {
4780 	dev->group = new_group;
4781 }
4782 EXPORT_SYMBOL(dev_set_group);
4783 
4784 /**
4785  *	dev_set_mac_address - Change Media Access Control Address
4786  *	@dev: device
4787  *	@sa: new address
4788  *
4789  *	Change the hardware (MAC) address of the device
4790  */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa)4791 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4792 {
4793 	const struct net_device_ops *ops = dev->netdev_ops;
4794 	int err;
4795 
4796 	if (!ops->ndo_set_mac_address)
4797 		return -EOPNOTSUPP;
4798 	if (sa->sa_family != dev->type)
4799 		return -EINVAL;
4800 	if (!netif_device_present(dev))
4801 		return -ENODEV;
4802 	err = ops->ndo_set_mac_address(dev, sa);
4803 	if (!err)
4804 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4805 	add_device_randomness(dev->dev_addr, dev->addr_len);
4806 	return err;
4807 }
4808 EXPORT_SYMBOL(dev_set_mac_address);
4809 
4810 /*
4811  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4812  */
dev_ifsioc_locked(struct net * net,struct ifreq * ifr,unsigned int cmd)4813 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4814 {
4815 	int err;
4816 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4817 
4818 	if (!dev)
4819 		return -ENODEV;
4820 
4821 	switch (cmd) {
4822 	case SIOCGIFFLAGS:	/* Get interface flags */
4823 		ifr->ifr_flags = (short) dev_get_flags(dev);
4824 		return 0;
4825 
4826 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4827 				   (currently unused) */
4828 		ifr->ifr_metric = 0;
4829 		return 0;
4830 
4831 	case SIOCGIFMTU:	/* Get the MTU of a device */
4832 		ifr->ifr_mtu = dev->mtu;
4833 		return 0;
4834 
4835 	case SIOCGIFHWADDR:
4836 		if (!dev->addr_len)
4837 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4838 		else
4839 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4840 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4841 		ifr->ifr_hwaddr.sa_family = dev->type;
4842 		return 0;
4843 
4844 	case SIOCGIFSLAVE:
4845 		err = -EINVAL;
4846 		break;
4847 
4848 	case SIOCGIFMAP:
4849 		ifr->ifr_map.mem_start = dev->mem_start;
4850 		ifr->ifr_map.mem_end   = dev->mem_end;
4851 		ifr->ifr_map.base_addr = dev->base_addr;
4852 		ifr->ifr_map.irq       = dev->irq;
4853 		ifr->ifr_map.dma       = dev->dma;
4854 		ifr->ifr_map.port      = dev->if_port;
4855 		return 0;
4856 
4857 	case SIOCGIFINDEX:
4858 		ifr->ifr_ifindex = dev->ifindex;
4859 		return 0;
4860 
4861 	case SIOCGIFTXQLEN:
4862 		ifr->ifr_qlen = dev->tx_queue_len;
4863 		return 0;
4864 
4865 	default:
4866 		/* dev_ioctl() should ensure this case
4867 		 * is never reached
4868 		 */
4869 		WARN_ON(1);
4870 		err = -ENOTTY;
4871 		break;
4872 
4873 	}
4874 	return err;
4875 }
4876 
4877 /*
4878  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4879  */
dev_ifsioc(struct net * net,struct ifreq * ifr,unsigned int cmd)4880 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4881 {
4882 	int err;
4883 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4884 	const struct net_device_ops *ops;
4885 
4886 	if (!dev)
4887 		return -ENODEV;
4888 
4889 	ops = dev->netdev_ops;
4890 
4891 	switch (cmd) {
4892 	case SIOCSIFFLAGS:	/* Set interface flags */
4893 		return dev_change_flags(dev, ifr->ifr_flags);
4894 
4895 	case SIOCSIFMETRIC:	/* Set the metric on the interface
4896 				   (currently unused) */
4897 		return -EOPNOTSUPP;
4898 
4899 	case SIOCSIFMTU:	/* Set the MTU of a device */
4900 		return dev_set_mtu(dev, ifr->ifr_mtu);
4901 
4902 	case SIOCSIFHWADDR:
4903 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4904 
4905 	case SIOCSIFHWBROADCAST:
4906 		if (ifr->ifr_hwaddr.sa_family != dev->type)
4907 			return -EINVAL;
4908 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4909 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4910 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4911 		return 0;
4912 
4913 	case SIOCSIFMAP:
4914 		if (ops->ndo_set_config) {
4915 			if (!netif_device_present(dev))
4916 				return -ENODEV;
4917 			return ops->ndo_set_config(dev, &ifr->ifr_map);
4918 		}
4919 		return -EOPNOTSUPP;
4920 
4921 	case SIOCADDMULTI:
4922 		if (!ops->ndo_set_rx_mode ||
4923 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4924 			return -EINVAL;
4925 		if (!netif_device_present(dev))
4926 			return -ENODEV;
4927 		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4928 
4929 	case SIOCDELMULTI:
4930 		if (!ops->ndo_set_rx_mode ||
4931 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4932 			return -EINVAL;
4933 		if (!netif_device_present(dev))
4934 			return -ENODEV;
4935 		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4936 
4937 	case SIOCSIFTXQLEN:
4938 		if (ifr->ifr_qlen < 0)
4939 			return -EINVAL;
4940 		dev->tx_queue_len = ifr->ifr_qlen;
4941 		return 0;
4942 
4943 	case SIOCSIFNAME:
4944 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4945 		return dev_change_name(dev, ifr->ifr_newname);
4946 
4947 	case SIOCSHWTSTAMP:
4948 		err = net_hwtstamp_validate(ifr);
4949 		if (err)
4950 			return err;
4951 		/* fall through */
4952 
4953 	/*
4954 	 *	Unknown or private ioctl
4955 	 */
4956 	default:
4957 		if ((cmd >= SIOCDEVPRIVATE &&
4958 		    cmd <= SIOCDEVPRIVATE + 15) ||
4959 		    cmd == SIOCBONDENSLAVE ||
4960 		    cmd == SIOCBONDRELEASE ||
4961 		    cmd == SIOCBONDSETHWADDR ||
4962 		    cmd == SIOCBONDSLAVEINFOQUERY ||
4963 		    cmd == SIOCBONDINFOQUERY ||
4964 		    cmd == SIOCBONDCHANGEACTIVE ||
4965 		    cmd == SIOCGMIIPHY ||
4966 		    cmd == SIOCGMIIREG ||
4967 		    cmd == SIOCSMIIREG ||
4968 		    cmd == SIOCBRADDIF ||
4969 		    cmd == SIOCBRDELIF ||
4970 		    cmd == SIOCSHWTSTAMP ||
4971 		    cmd == SIOCWANDEV) {
4972 			err = -EOPNOTSUPP;
4973 			if (ops->ndo_do_ioctl) {
4974 				if (netif_device_present(dev))
4975 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
4976 				else
4977 					err = -ENODEV;
4978 			}
4979 		} else
4980 			err = -EINVAL;
4981 
4982 	}
4983 	return err;
4984 }
4985 
4986 /*
4987  *	This function handles all "interface"-type I/O control requests. The actual
4988  *	'doing' part of this is dev_ifsioc above.
4989  */
4990 
4991 /**
4992  *	dev_ioctl	-	network device ioctl
4993  *	@net: the applicable net namespace
4994  *	@cmd: command to issue
4995  *	@arg: pointer to a struct ifreq in user space
4996  *
4997  *	Issue ioctl functions to devices. This is normally called by the
4998  *	user space syscall interfaces but can sometimes be useful for
4999  *	other purposes. The return value is the return from the syscall if
5000  *	positive or a negative errno code on error.
5001  */
5002 
dev_ioctl(struct net * net,unsigned int cmd,void __user * arg)5003 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5004 {
5005 	struct ifreq ifr;
5006 	int ret;
5007 	char *colon;
5008 
5009 	/* One special case: SIOCGIFCONF takes ifconf argument
5010 	   and requires shared lock, because it sleeps writing
5011 	   to user space.
5012 	 */
5013 
5014 	if (cmd == SIOCGIFCONF) {
5015 		rtnl_lock();
5016 		ret = dev_ifconf(net, (char __user *) arg);
5017 		rtnl_unlock();
5018 		return ret;
5019 	}
5020 	if (cmd == SIOCGIFNAME)
5021 		return dev_ifname(net, (struct ifreq __user *)arg);
5022 
5023 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5024 		return -EFAULT;
5025 
5026 	ifr.ifr_name[IFNAMSIZ-1] = 0;
5027 
5028 	colon = strchr(ifr.ifr_name, ':');
5029 	if (colon)
5030 		*colon = 0;
5031 
5032 	/*
5033 	 *	See which interface the caller is talking about.
5034 	 */
5035 
5036 	switch (cmd) {
5037 	/*
5038 	 *	These ioctl calls:
5039 	 *	- can be done by all.
5040 	 *	- atomic and do not require locking.
5041 	 *	- return a value
5042 	 */
5043 	case SIOCGIFFLAGS:
5044 	case SIOCGIFMETRIC:
5045 	case SIOCGIFMTU:
5046 	case SIOCGIFHWADDR:
5047 	case SIOCGIFSLAVE:
5048 	case SIOCGIFMAP:
5049 	case SIOCGIFINDEX:
5050 	case SIOCGIFTXQLEN:
5051 		dev_load(net, ifr.ifr_name);
5052 		rcu_read_lock();
5053 		ret = dev_ifsioc_locked(net, &ifr, cmd);
5054 		rcu_read_unlock();
5055 		if (!ret) {
5056 			if (colon)
5057 				*colon = ':';
5058 			if (copy_to_user(arg, &ifr,
5059 					 sizeof(struct ifreq)))
5060 				ret = -EFAULT;
5061 		}
5062 		return ret;
5063 
5064 	case SIOCETHTOOL:
5065 		dev_load(net, ifr.ifr_name);
5066 		rtnl_lock();
5067 		ret = dev_ethtool(net, &ifr);
5068 		rtnl_unlock();
5069 		if (!ret) {
5070 			if (colon)
5071 				*colon = ':';
5072 			if (copy_to_user(arg, &ifr,
5073 					 sizeof(struct ifreq)))
5074 				ret = -EFAULT;
5075 		}
5076 		return ret;
5077 
5078 	/*
5079 	 *	These ioctl calls:
5080 	 *	- require superuser power.
5081 	 *	- require strict serialization.
5082 	 *	- return a value
5083 	 */
5084 	case SIOCGMIIPHY:
5085 	case SIOCGMIIREG:
5086 	case SIOCSIFNAME:
5087 		if (!capable(CAP_NET_ADMIN))
5088 			return -EPERM;
5089 		dev_load(net, ifr.ifr_name);
5090 		rtnl_lock();
5091 		ret = dev_ifsioc(net, &ifr, cmd);
5092 		rtnl_unlock();
5093 		if (!ret) {
5094 			if (colon)
5095 				*colon = ':';
5096 			if (copy_to_user(arg, &ifr,
5097 					 sizeof(struct ifreq)))
5098 				ret = -EFAULT;
5099 		}
5100 		return ret;
5101 
5102 	/*
5103 	 *	These ioctl calls:
5104 	 *	- require superuser power.
5105 	 *	- require strict serialization.
5106 	 *	- do not return a value
5107 	 */
5108 	case SIOCSIFFLAGS:
5109 	case SIOCSIFMETRIC:
5110 	case SIOCSIFMTU:
5111 	case SIOCSIFMAP:
5112 	case SIOCSIFHWADDR:
5113 	case SIOCSIFSLAVE:
5114 	case SIOCADDMULTI:
5115 	case SIOCDELMULTI:
5116 	case SIOCSIFHWBROADCAST:
5117 	case SIOCSIFTXQLEN:
5118 	case SIOCSMIIREG:
5119 	case SIOCBONDENSLAVE:
5120 	case SIOCBONDRELEASE:
5121 	case SIOCBONDSETHWADDR:
5122 	case SIOCBONDCHANGEACTIVE:
5123 	case SIOCBRADDIF:
5124 	case SIOCBRDELIF:
5125 	case SIOCSHWTSTAMP:
5126 		if (!capable(CAP_NET_ADMIN))
5127 			return -EPERM;
5128 		/* fall through */
5129 	case SIOCBONDSLAVEINFOQUERY:
5130 	case SIOCBONDINFOQUERY:
5131 		dev_load(net, ifr.ifr_name);
5132 		rtnl_lock();
5133 		ret = dev_ifsioc(net, &ifr, cmd);
5134 		rtnl_unlock();
5135 		return ret;
5136 
5137 	case SIOCGIFMEM:
5138 		/* Get the per device memory space. We can add this but
5139 		 * currently do not support it */
5140 	case SIOCSIFMEM:
5141 		/* Set the per device memory buffer space.
5142 		 * Not applicable in our case */
5143 	case SIOCSIFLINK:
5144 		return -ENOTTY;
5145 
5146 	/*
5147 	 *	Unknown or private ioctl.
5148 	 */
5149 	default:
5150 		if (cmd == SIOCWANDEV ||
5151 		    (cmd >= SIOCDEVPRIVATE &&
5152 		     cmd <= SIOCDEVPRIVATE + 15)) {
5153 			dev_load(net, ifr.ifr_name);
5154 			rtnl_lock();
5155 			ret = dev_ifsioc(net, &ifr, cmd);
5156 			rtnl_unlock();
5157 			if (!ret && copy_to_user(arg, &ifr,
5158 						 sizeof(struct ifreq)))
5159 				ret = -EFAULT;
5160 			return ret;
5161 		}
5162 		/* Take care of Wireless Extensions */
5163 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5164 			return wext_handle_ioctl(net, &ifr, cmd, arg);
5165 		return -ENOTTY;
5166 	}
5167 }
5168 
5169 
5170 /**
5171  *	dev_new_index	-	allocate an ifindex
5172  *	@net: the applicable net namespace
5173  *
5174  *	Returns a suitable unique value for a new device interface
5175  *	number.  The caller must hold the rtnl semaphore or the
5176  *	dev_base_lock to be sure it remains unique.
5177  */
dev_new_index(struct net * net)5178 static int dev_new_index(struct net *net)
5179 {
5180 	static int ifindex;
5181 	for (;;) {
5182 		if (++ifindex <= 0)
5183 			ifindex = 1;
5184 		if (!__dev_get_by_index(net, ifindex))
5185 			return ifindex;
5186 	}
5187 }
5188 
5189 /* Delayed registration/unregisteration */
5190 static LIST_HEAD(net_todo_list);
5191 
net_set_todo(struct net_device * dev)5192 static void net_set_todo(struct net_device *dev)
5193 {
5194 	list_add_tail(&dev->todo_list, &net_todo_list);
5195 }
5196 
rollback_registered_many(struct list_head * head)5197 static void rollback_registered_many(struct list_head *head)
5198 {
5199 	struct net_device *dev, *tmp;
5200 
5201 	BUG_ON(dev_boot_phase);
5202 	ASSERT_RTNL();
5203 
5204 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5205 		/* Some devices call without registering
5206 		 * for initialization unwind. Remove those
5207 		 * devices and proceed with the remaining.
5208 		 */
5209 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5210 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5211 				 dev->name, dev);
5212 
5213 			WARN_ON(1);
5214 			list_del(&dev->unreg_list);
5215 			continue;
5216 		}
5217 		dev->dismantle = true;
5218 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5219 	}
5220 
5221 	/* If device is running, close it first. */
5222 	dev_close_many(head);
5223 
5224 	list_for_each_entry(dev, head, unreg_list) {
5225 		/* And unlink it from device chain. */
5226 		unlist_netdevice(dev);
5227 
5228 		dev->reg_state = NETREG_UNREGISTERING;
5229 	}
5230 
5231 	synchronize_net();
5232 
5233 	list_for_each_entry(dev, head, unreg_list) {
5234 		/* Shutdown queueing discipline. */
5235 		dev_shutdown(dev);
5236 
5237 
5238 		/* Notify protocols, that we are about to destroy
5239 		   this device. They should clean all the things.
5240 		*/
5241 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5242 
5243 		if (!dev->rtnl_link_ops ||
5244 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5245 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5246 
5247 		/*
5248 		 *	Flush the unicast and multicast chains
5249 		 */
5250 		dev_uc_flush(dev);
5251 		dev_mc_flush(dev);
5252 
5253 		if (dev->netdev_ops->ndo_uninit)
5254 			dev->netdev_ops->ndo_uninit(dev);
5255 
5256 		/* Notifier chain MUST detach us from master device. */
5257 		WARN_ON(dev->master);
5258 
5259 		/* Remove entries from kobject tree */
5260 		netdev_unregister_kobject(dev);
5261 	}
5262 
5263 	/* Process any work delayed until the end of the batch */
5264 	dev = list_first_entry(head, struct net_device, unreg_list);
5265 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5266 
5267 	synchronize_net();
5268 
5269 	list_for_each_entry(dev, head, unreg_list)
5270 		dev_put(dev);
5271 }
5272 
rollback_registered(struct net_device * dev)5273 static void rollback_registered(struct net_device *dev)
5274 {
5275 	LIST_HEAD(single);
5276 
5277 	list_add(&dev->unreg_list, &single);
5278 	rollback_registered_many(&single);
5279 	list_del(&single);
5280 }
5281 
netdev_fix_features(struct net_device * dev,netdev_features_t features)5282 static netdev_features_t netdev_fix_features(struct net_device *dev,
5283 	netdev_features_t features)
5284 {
5285 	/* Fix illegal checksum combinations */
5286 	if ((features & NETIF_F_HW_CSUM) &&
5287 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5288 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5289 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5290 	}
5291 
5292 	/* Fix illegal SG+CSUM combinations. */
5293 	if ((features & NETIF_F_SG) &&
5294 	    !(features & NETIF_F_ALL_CSUM)) {
5295 		netdev_dbg(dev,
5296 			"Dropping NETIF_F_SG since no checksum feature.\n");
5297 		features &= ~NETIF_F_SG;
5298 	}
5299 
5300 	/* TSO requires that SG is present as well. */
5301 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5302 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5303 		features &= ~NETIF_F_ALL_TSO;
5304 	}
5305 
5306 	/* TSO ECN requires that TSO is present as well. */
5307 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5308 		features &= ~NETIF_F_TSO_ECN;
5309 
5310 	/* Software GSO depends on SG. */
5311 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5312 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5313 		features &= ~NETIF_F_GSO;
5314 	}
5315 
5316 	/* UFO needs SG and checksumming */
5317 	if (features & NETIF_F_UFO) {
5318 		/* maybe split UFO into V4 and V6? */
5319 		if (!((features & NETIF_F_GEN_CSUM) ||
5320 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5321 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5322 			netdev_dbg(dev,
5323 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5324 			features &= ~NETIF_F_UFO;
5325 		}
5326 
5327 		if (!(features & NETIF_F_SG)) {
5328 			netdev_dbg(dev,
5329 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5330 			features &= ~NETIF_F_UFO;
5331 		}
5332 	}
5333 
5334 	return features;
5335 }
5336 
__netdev_update_features(struct net_device * dev)5337 int __netdev_update_features(struct net_device *dev)
5338 {
5339 	netdev_features_t features;
5340 	int err = 0;
5341 
5342 	ASSERT_RTNL();
5343 
5344 	features = netdev_get_wanted_features(dev);
5345 
5346 	if (dev->netdev_ops->ndo_fix_features)
5347 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5348 
5349 	/* driver might be less strict about feature dependencies */
5350 	features = netdev_fix_features(dev, features);
5351 
5352 	if (dev->features == features)
5353 		return 0;
5354 
5355 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5356 		&dev->features, &features);
5357 
5358 	if (dev->netdev_ops->ndo_set_features)
5359 		err = dev->netdev_ops->ndo_set_features(dev, features);
5360 
5361 	if (unlikely(err < 0)) {
5362 		netdev_err(dev,
5363 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5364 			err, &features, &dev->features);
5365 		return -1;
5366 	}
5367 
5368 	if (!err)
5369 		dev->features = features;
5370 
5371 	return 1;
5372 }
5373 
5374 /**
5375  *	netdev_update_features - recalculate device features
5376  *	@dev: the device to check
5377  *
5378  *	Recalculate dev->features set and send notifications if it
5379  *	has changed. Should be called after driver or hardware dependent
5380  *	conditions might have changed that influence the features.
5381  */
netdev_update_features(struct net_device * dev)5382 void netdev_update_features(struct net_device *dev)
5383 {
5384 	if (__netdev_update_features(dev))
5385 		netdev_features_change(dev);
5386 }
5387 EXPORT_SYMBOL(netdev_update_features);
5388 
5389 /**
5390  *	netdev_change_features - recalculate device features
5391  *	@dev: the device to check
5392  *
5393  *	Recalculate dev->features set and send notifications even
5394  *	if they have not changed. Should be called instead of
5395  *	netdev_update_features() if also dev->vlan_features might
5396  *	have changed to allow the changes to be propagated to stacked
5397  *	VLAN devices.
5398  */
netdev_change_features(struct net_device * dev)5399 void netdev_change_features(struct net_device *dev)
5400 {
5401 	__netdev_update_features(dev);
5402 	netdev_features_change(dev);
5403 }
5404 EXPORT_SYMBOL(netdev_change_features);
5405 
5406 /**
5407  *	netif_stacked_transfer_operstate -	transfer operstate
5408  *	@rootdev: the root or lower level device to transfer state from
5409  *	@dev: the device to transfer operstate to
5410  *
5411  *	Transfer operational state from root to device. This is normally
5412  *	called when a stacking relationship exists between the root
5413  *	device and the device(a leaf device).
5414  */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)5415 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5416 					struct net_device *dev)
5417 {
5418 	if (rootdev->operstate == IF_OPER_DORMANT)
5419 		netif_dormant_on(dev);
5420 	else
5421 		netif_dormant_off(dev);
5422 
5423 	if (netif_carrier_ok(rootdev)) {
5424 		if (!netif_carrier_ok(dev))
5425 			netif_carrier_on(dev);
5426 	} else {
5427 		if (netif_carrier_ok(dev))
5428 			netif_carrier_off(dev);
5429 	}
5430 }
5431 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5432 
5433 #ifdef CONFIG_RPS
netif_alloc_rx_queues(struct net_device * dev)5434 static int netif_alloc_rx_queues(struct net_device *dev)
5435 {
5436 	unsigned int i, count = dev->num_rx_queues;
5437 	struct netdev_rx_queue *rx;
5438 
5439 	BUG_ON(count < 1);
5440 
5441 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5442 	if (!rx) {
5443 		pr_err("netdev: Unable to allocate %u rx queues\n", count);
5444 		return -ENOMEM;
5445 	}
5446 	dev->_rx = rx;
5447 
5448 	for (i = 0; i < count; i++)
5449 		rx[i].dev = dev;
5450 	return 0;
5451 }
5452 #endif
5453 
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)5454 static void netdev_init_one_queue(struct net_device *dev,
5455 				  struct netdev_queue *queue, void *_unused)
5456 {
5457 	/* Initialize queue lock */
5458 	spin_lock_init(&queue->_xmit_lock);
5459 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5460 	queue->xmit_lock_owner = -1;
5461 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5462 	queue->dev = dev;
5463 #ifdef CONFIG_BQL
5464 	dql_init(&queue->dql, HZ);
5465 #endif
5466 }
5467 
netif_alloc_netdev_queues(struct net_device * dev)5468 static int netif_alloc_netdev_queues(struct net_device *dev)
5469 {
5470 	unsigned int count = dev->num_tx_queues;
5471 	struct netdev_queue *tx;
5472 
5473 	BUG_ON(count < 1);
5474 
5475 	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5476 	if (!tx) {
5477 		pr_err("netdev: Unable to allocate %u tx queues\n", count);
5478 		return -ENOMEM;
5479 	}
5480 	dev->_tx = tx;
5481 
5482 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5483 	spin_lock_init(&dev->tx_global_lock);
5484 
5485 	return 0;
5486 }
5487 
5488 /**
5489  *	register_netdevice	- register a network device
5490  *	@dev: device to register
5491  *
5492  *	Take a completed network device structure and add it to the kernel
5493  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5494  *	chain. 0 is returned on success. A negative errno code is returned
5495  *	on a failure to set up the device, or if the name is a duplicate.
5496  *
5497  *	Callers must hold the rtnl semaphore. You may want
5498  *	register_netdev() instead of this.
5499  *
5500  *	BUGS:
5501  *	The locking appears insufficient to guarantee two parallel registers
5502  *	will not get the same name.
5503  */
5504 
register_netdevice(struct net_device * dev)5505 int register_netdevice(struct net_device *dev)
5506 {
5507 	int ret;
5508 	struct net *net = dev_net(dev);
5509 
5510 	BUG_ON(dev_boot_phase);
5511 	ASSERT_RTNL();
5512 
5513 	might_sleep();
5514 
5515 	/* When net_device's are persistent, this will be fatal. */
5516 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5517 	BUG_ON(!net);
5518 
5519 	spin_lock_init(&dev->addr_list_lock);
5520 	netdev_set_addr_lockdep_class(dev);
5521 
5522 	dev->iflink = -1;
5523 
5524 	ret = dev_get_valid_name(dev, dev->name);
5525 	if (ret < 0)
5526 		goto out;
5527 
5528 	/* Init, if this function is available */
5529 	if (dev->netdev_ops->ndo_init) {
5530 		ret = dev->netdev_ops->ndo_init(dev);
5531 		if (ret) {
5532 			if (ret > 0)
5533 				ret = -EIO;
5534 			goto out;
5535 		}
5536 	}
5537 
5538 	dev->ifindex = dev_new_index(net);
5539 	if (dev->iflink == -1)
5540 		dev->iflink = dev->ifindex;
5541 
5542 	/* Transfer changeable features to wanted_features and enable
5543 	 * software offloads (GSO and GRO).
5544 	 */
5545 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5546 	dev->features |= NETIF_F_SOFT_FEATURES;
5547 	dev->wanted_features = dev->features & dev->hw_features;
5548 
5549 	/* Turn on no cache copy if HW is doing checksum */
5550 	if (!(dev->flags & IFF_LOOPBACK)) {
5551 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5552 		if (dev->features & NETIF_F_ALL_CSUM) {
5553 			dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5554 			dev->features |= NETIF_F_NOCACHE_COPY;
5555 		}
5556 	}
5557 
5558 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5559 	 */
5560 	dev->vlan_features |= NETIF_F_HIGHDMA;
5561 
5562 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5563 	ret = notifier_to_errno(ret);
5564 	if (ret)
5565 		goto err_uninit;
5566 
5567 	ret = netdev_register_kobject(dev);
5568 	if (ret)
5569 		goto err_uninit;
5570 	dev->reg_state = NETREG_REGISTERED;
5571 
5572 	__netdev_update_features(dev);
5573 
5574 	/*
5575 	 *	Default initial state at registry is that the
5576 	 *	device is present.
5577 	 */
5578 
5579 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5580 
5581 	dev_init_scheduler(dev);
5582 	dev_hold(dev);
5583 	list_netdevice(dev);
5584 	add_device_randomness(dev->dev_addr, dev->addr_len);
5585 
5586 	/* Notify protocols, that a new device appeared. */
5587 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5588 	ret = notifier_to_errno(ret);
5589 	if (ret) {
5590 		rollback_registered(dev);
5591 		dev->reg_state = NETREG_UNREGISTERED;
5592 	}
5593 	/*
5594 	 *	Prevent userspace races by waiting until the network
5595 	 *	device is fully setup before sending notifications.
5596 	 */
5597 	if (!dev->rtnl_link_ops ||
5598 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5599 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5600 
5601 out:
5602 	return ret;
5603 
5604 err_uninit:
5605 	if (dev->netdev_ops->ndo_uninit)
5606 		dev->netdev_ops->ndo_uninit(dev);
5607 	goto out;
5608 }
5609 EXPORT_SYMBOL(register_netdevice);
5610 
5611 /**
5612  *	init_dummy_netdev	- init a dummy network device for NAPI
5613  *	@dev: device to init
5614  *
5615  *	This takes a network device structure and initialize the minimum
5616  *	amount of fields so it can be used to schedule NAPI polls without
5617  *	registering a full blown interface. This is to be used by drivers
5618  *	that need to tie several hardware interfaces to a single NAPI
5619  *	poll scheduler due to HW limitations.
5620  */
init_dummy_netdev(struct net_device * dev)5621 int init_dummy_netdev(struct net_device *dev)
5622 {
5623 	/* Clear everything. Note we don't initialize spinlocks
5624 	 * are they aren't supposed to be taken by any of the
5625 	 * NAPI code and this dummy netdev is supposed to be
5626 	 * only ever used for NAPI polls
5627 	 */
5628 	memset(dev, 0, sizeof(struct net_device));
5629 
5630 	/* make sure we BUG if trying to hit standard
5631 	 * register/unregister code path
5632 	 */
5633 	dev->reg_state = NETREG_DUMMY;
5634 
5635 	/* NAPI wants this */
5636 	INIT_LIST_HEAD(&dev->napi_list);
5637 
5638 	/* a dummy interface is started by default */
5639 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5640 	set_bit(__LINK_STATE_START, &dev->state);
5641 
5642 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5643 	 * because users of this 'device' dont need to change
5644 	 * its refcount.
5645 	 */
5646 
5647 	return 0;
5648 }
5649 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5650 
5651 
5652 /**
5653  *	register_netdev	- register a network device
5654  *	@dev: device to register
5655  *
5656  *	Take a completed network device structure and add it to the kernel
5657  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5658  *	chain. 0 is returned on success. A negative errno code is returned
5659  *	on a failure to set up the device, or if the name is a duplicate.
5660  *
5661  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5662  *	and expands the device name if you passed a format string to
5663  *	alloc_netdev.
5664  */
register_netdev(struct net_device * dev)5665 int register_netdev(struct net_device *dev)
5666 {
5667 	int err;
5668 
5669 	rtnl_lock();
5670 	err = register_netdevice(dev);
5671 	rtnl_unlock();
5672 	return err;
5673 }
5674 EXPORT_SYMBOL(register_netdev);
5675 
netdev_refcnt_read(const struct net_device * dev)5676 int netdev_refcnt_read(const struct net_device *dev)
5677 {
5678 	int i, refcnt = 0;
5679 
5680 	for_each_possible_cpu(i)
5681 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5682 	return refcnt;
5683 }
5684 EXPORT_SYMBOL(netdev_refcnt_read);
5685 
5686 /*
5687  * netdev_wait_allrefs - wait until all references are gone.
5688  *
5689  * This is called when unregistering network devices.
5690  *
5691  * Any protocol or device that holds a reference should register
5692  * for netdevice notification, and cleanup and put back the
5693  * reference if they receive an UNREGISTER event.
5694  * We can get stuck here if buggy protocols don't correctly
5695  * call dev_put.
5696  */
netdev_wait_allrefs(struct net_device * dev)5697 static void netdev_wait_allrefs(struct net_device *dev)
5698 {
5699 	unsigned long rebroadcast_time, warning_time;
5700 	int refcnt;
5701 
5702 	linkwatch_forget_dev(dev);
5703 
5704 	rebroadcast_time = warning_time = jiffies;
5705 	refcnt = netdev_refcnt_read(dev);
5706 
5707 	while (refcnt != 0) {
5708 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5709 			rtnl_lock();
5710 
5711 			/* Rebroadcast unregister notification */
5712 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5713 			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5714 			 * should have already handle it the first time */
5715 
5716 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5717 				     &dev->state)) {
5718 				/* We must not have linkwatch events
5719 				 * pending on unregister. If this
5720 				 * happens, we simply run the queue
5721 				 * unscheduled, resulting in a noop
5722 				 * for this device.
5723 				 */
5724 				linkwatch_run_queue();
5725 			}
5726 
5727 			__rtnl_unlock();
5728 
5729 			rebroadcast_time = jiffies;
5730 		}
5731 
5732 		msleep(250);
5733 
5734 		refcnt = netdev_refcnt_read(dev);
5735 
5736 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5737 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5738 				 dev->name, refcnt);
5739 			warning_time = jiffies;
5740 		}
5741 	}
5742 }
5743 
5744 /* The sequence is:
5745  *
5746  *	rtnl_lock();
5747  *	...
5748  *	register_netdevice(x1);
5749  *	register_netdevice(x2);
5750  *	...
5751  *	unregister_netdevice(y1);
5752  *	unregister_netdevice(y2);
5753  *      ...
5754  *	rtnl_unlock();
5755  *	free_netdev(y1);
5756  *	free_netdev(y2);
5757  *
5758  * We are invoked by rtnl_unlock().
5759  * This allows us to deal with problems:
5760  * 1) We can delete sysfs objects which invoke hotplug
5761  *    without deadlocking with linkwatch via keventd.
5762  * 2) Since we run with the RTNL semaphore not held, we can sleep
5763  *    safely in order to wait for the netdev refcnt to drop to zero.
5764  *
5765  * We must not return until all unregister events added during
5766  * the interval the lock was held have been completed.
5767  */
netdev_run_todo(void)5768 void netdev_run_todo(void)
5769 {
5770 	struct list_head list;
5771 
5772 	/* Snapshot list, allow later requests */
5773 	list_replace_init(&net_todo_list, &list);
5774 
5775 	__rtnl_unlock();
5776 
5777 	/* Wait for rcu callbacks to finish before attempting to drain
5778 	 * the device list.  This usually avoids a 250ms wait.
5779 	 */
5780 	if (!list_empty(&list))
5781 		rcu_barrier();
5782 
5783 	while (!list_empty(&list)) {
5784 		struct net_device *dev
5785 			= list_first_entry(&list, struct net_device, todo_list);
5786 		list_del(&dev->todo_list);
5787 
5788 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5789 			pr_err("network todo '%s' but state %d\n",
5790 			       dev->name, dev->reg_state);
5791 			dump_stack();
5792 			continue;
5793 		}
5794 
5795 		dev->reg_state = NETREG_UNREGISTERED;
5796 
5797 		on_each_cpu(flush_backlog, dev, 1);
5798 
5799 		netdev_wait_allrefs(dev);
5800 
5801 		/* paranoia */
5802 		BUG_ON(netdev_refcnt_read(dev));
5803 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
5804 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5805 		WARN_ON(dev->dn_ptr);
5806 
5807 		if (dev->destructor)
5808 			dev->destructor(dev);
5809 
5810 		/* Free network device */
5811 		kobject_put(&dev->dev.kobj);
5812 	}
5813 }
5814 
5815 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5816  * fields in the same order, with only the type differing.
5817  */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)5818 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5819 			     const struct net_device_stats *netdev_stats)
5820 {
5821 #if BITS_PER_LONG == 64
5822 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5823 	memcpy(stats64, netdev_stats, sizeof(*stats64));
5824 #else
5825 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5826 	const unsigned long *src = (const unsigned long *)netdev_stats;
5827 	u64 *dst = (u64 *)stats64;
5828 
5829 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5830 		     sizeof(*stats64) / sizeof(u64));
5831 	for (i = 0; i < n; i++)
5832 		dst[i] = src[i];
5833 #endif
5834 }
5835 EXPORT_SYMBOL(netdev_stats_to_stats64);
5836 
5837 /**
5838  *	dev_get_stats	- get network device statistics
5839  *	@dev: device to get statistics from
5840  *	@storage: place to store stats
5841  *
5842  *	Get network statistics from device. Return @storage.
5843  *	The device driver may provide its own method by setting
5844  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5845  *	otherwise the internal statistics structure is used.
5846  */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)5847 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5848 					struct rtnl_link_stats64 *storage)
5849 {
5850 	const struct net_device_ops *ops = dev->netdev_ops;
5851 
5852 	if (ops->ndo_get_stats64) {
5853 		memset(storage, 0, sizeof(*storage));
5854 		ops->ndo_get_stats64(dev, storage);
5855 	} else if (ops->ndo_get_stats) {
5856 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5857 	} else {
5858 		netdev_stats_to_stats64(storage, &dev->stats);
5859 	}
5860 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5861 	return storage;
5862 }
5863 EXPORT_SYMBOL(dev_get_stats);
5864 
dev_ingress_queue_create(struct net_device * dev)5865 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5866 {
5867 	struct netdev_queue *queue = dev_ingress_queue(dev);
5868 
5869 #ifdef CONFIG_NET_CLS_ACT
5870 	if (queue)
5871 		return queue;
5872 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5873 	if (!queue)
5874 		return NULL;
5875 	netdev_init_one_queue(dev, queue, NULL);
5876 	queue->qdisc = &noop_qdisc;
5877 	queue->qdisc_sleeping = &noop_qdisc;
5878 	rcu_assign_pointer(dev->ingress_queue, queue);
5879 #endif
5880 	return queue;
5881 }
5882 
5883 /**
5884  *	alloc_netdev_mqs - allocate network device
5885  *	@sizeof_priv:	size of private data to allocate space for
5886  *	@name:		device name format string
5887  *	@setup:		callback to initialize device
5888  *	@txqs:		the number of TX subqueues to allocate
5889  *	@rxqs:		the number of RX subqueues to allocate
5890  *
5891  *	Allocates a struct net_device with private data area for driver use
5892  *	and performs basic initialization.  Also allocates subquue structs
5893  *	for each queue on the device.
5894  */
alloc_netdev_mqs(int sizeof_priv,const char * name,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)5895 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5896 		void (*setup)(struct net_device *),
5897 		unsigned int txqs, unsigned int rxqs)
5898 {
5899 	struct net_device *dev;
5900 	size_t alloc_size;
5901 	struct net_device *p;
5902 
5903 	BUG_ON(strlen(name) >= sizeof(dev->name));
5904 
5905 	if (txqs < 1) {
5906 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5907 		return NULL;
5908 	}
5909 
5910 #ifdef CONFIG_RPS
5911 	if (rxqs < 1) {
5912 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5913 		return NULL;
5914 	}
5915 #endif
5916 
5917 	alloc_size = sizeof(struct net_device);
5918 	if (sizeof_priv) {
5919 		/* ensure 32-byte alignment of private area */
5920 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5921 		alloc_size += sizeof_priv;
5922 	}
5923 	/* ensure 32-byte alignment of whole construct */
5924 	alloc_size += NETDEV_ALIGN - 1;
5925 
5926 	p = kzalloc(alloc_size, GFP_KERNEL);
5927 	if (!p) {
5928 		pr_err("alloc_netdev: Unable to allocate device\n");
5929 		return NULL;
5930 	}
5931 
5932 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5933 	dev->padded = (char *)dev - (char *)p;
5934 
5935 	dev->pcpu_refcnt = alloc_percpu(int);
5936 	if (!dev->pcpu_refcnt)
5937 		goto free_p;
5938 
5939 	if (dev_addr_init(dev))
5940 		goto free_pcpu;
5941 
5942 	dev_mc_init(dev);
5943 	dev_uc_init(dev);
5944 
5945 	dev_net_set(dev, &init_net);
5946 
5947 	dev->gso_max_size = GSO_MAX_SIZE;
5948 	dev->gso_max_segs = GSO_MAX_SEGS;
5949 
5950 	INIT_LIST_HEAD(&dev->napi_list);
5951 	INIT_LIST_HEAD(&dev->unreg_list);
5952 	INIT_LIST_HEAD(&dev->link_watch_list);
5953 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
5954 	setup(dev);
5955 
5956 	dev->num_tx_queues = txqs;
5957 	dev->real_num_tx_queues = txqs;
5958 	if (netif_alloc_netdev_queues(dev))
5959 		goto free_all;
5960 
5961 #ifdef CONFIG_RPS
5962 	dev->num_rx_queues = rxqs;
5963 	dev->real_num_rx_queues = rxqs;
5964 	if (netif_alloc_rx_queues(dev))
5965 		goto free_all;
5966 #endif
5967 
5968 	strcpy(dev->name, name);
5969 	dev->group = INIT_NETDEV_GROUP;
5970 	return dev;
5971 
5972 free_all:
5973 	free_netdev(dev);
5974 	return NULL;
5975 
5976 free_pcpu:
5977 	free_percpu(dev->pcpu_refcnt);
5978 	kfree(dev->_tx);
5979 #ifdef CONFIG_RPS
5980 	kfree(dev->_rx);
5981 #endif
5982 
5983 free_p:
5984 	kfree(p);
5985 	return NULL;
5986 }
5987 EXPORT_SYMBOL(alloc_netdev_mqs);
5988 
5989 /**
5990  *	free_netdev - free network device
5991  *	@dev: device
5992  *
5993  *	This function does the last stage of destroying an allocated device
5994  * 	interface. The reference to the device object is released.
5995  *	If this is the last reference then it will be freed.
5996  */
free_netdev(struct net_device * dev)5997 void free_netdev(struct net_device *dev)
5998 {
5999 	struct napi_struct *p, *n;
6000 
6001 	release_net(dev_net(dev));
6002 
6003 	kfree(dev->_tx);
6004 #ifdef CONFIG_RPS
6005 	kfree(dev->_rx);
6006 #endif
6007 
6008 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6009 
6010 	/* Flush device addresses */
6011 	dev_addr_flush(dev);
6012 
6013 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6014 		netif_napi_del(p);
6015 
6016 	free_percpu(dev->pcpu_refcnt);
6017 	dev->pcpu_refcnt = NULL;
6018 
6019 	/*  Compatibility with error handling in drivers */
6020 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6021 		kfree((char *)dev - dev->padded);
6022 		return;
6023 	}
6024 
6025 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6026 	dev->reg_state = NETREG_RELEASED;
6027 
6028 	/* will free via device release */
6029 	put_device(&dev->dev);
6030 }
6031 EXPORT_SYMBOL(free_netdev);
6032 
6033 /**
6034  *	synchronize_net -  Synchronize with packet receive processing
6035  *
6036  *	Wait for packets currently being received to be done.
6037  *	Does not block later packets from starting.
6038  */
synchronize_net(void)6039 void synchronize_net(void)
6040 {
6041 	might_sleep();
6042 	if (rtnl_is_locked())
6043 		synchronize_rcu_expedited();
6044 	else
6045 		synchronize_rcu();
6046 }
6047 EXPORT_SYMBOL(synchronize_net);
6048 
6049 /**
6050  *	unregister_netdevice_queue - remove device from the kernel
6051  *	@dev: device
6052  *	@head: list
6053  *
6054  *	This function shuts down a device interface and removes it
6055  *	from the kernel tables.
6056  *	If head not NULL, device is queued to be unregistered later.
6057  *
6058  *	Callers must hold the rtnl semaphore.  You may want
6059  *	unregister_netdev() instead of this.
6060  */
6061 
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)6062 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6063 {
6064 	ASSERT_RTNL();
6065 
6066 	if (head) {
6067 		list_move_tail(&dev->unreg_list, head);
6068 	} else {
6069 		rollback_registered(dev);
6070 		/* Finish processing unregister after unlock */
6071 		net_set_todo(dev);
6072 	}
6073 }
6074 EXPORT_SYMBOL(unregister_netdevice_queue);
6075 
6076 /**
6077  *	unregister_netdevice_many - unregister many devices
6078  *	@head: list of devices
6079  */
unregister_netdevice_many(struct list_head * head)6080 void unregister_netdevice_many(struct list_head *head)
6081 {
6082 	struct net_device *dev;
6083 
6084 	if (!list_empty(head)) {
6085 		rollback_registered_many(head);
6086 		list_for_each_entry(dev, head, unreg_list)
6087 			net_set_todo(dev);
6088 	}
6089 }
6090 EXPORT_SYMBOL(unregister_netdevice_many);
6091 
6092 /**
6093  *	unregister_netdev - remove device from the kernel
6094  *	@dev: device
6095  *
6096  *	This function shuts down a device interface and removes it
6097  *	from the kernel tables.
6098  *
6099  *	This is just a wrapper for unregister_netdevice that takes
6100  *	the rtnl semaphore.  In general you want to use this and not
6101  *	unregister_netdevice.
6102  */
unregister_netdev(struct net_device * dev)6103 void unregister_netdev(struct net_device *dev)
6104 {
6105 	rtnl_lock();
6106 	unregister_netdevice(dev);
6107 	rtnl_unlock();
6108 }
6109 EXPORT_SYMBOL(unregister_netdev);
6110 
6111 /**
6112  *	dev_change_net_namespace - move device to different nethost namespace
6113  *	@dev: device
6114  *	@net: network namespace
6115  *	@pat: If not NULL name pattern to try if the current device name
6116  *	      is already taken in the destination network namespace.
6117  *
6118  *	This function shuts down a device interface and moves it
6119  *	to a new network namespace. On success 0 is returned, on
6120  *	a failure a netagive errno code is returned.
6121  *
6122  *	Callers must hold the rtnl semaphore.
6123  */
6124 
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)6125 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6126 {
6127 	int err;
6128 
6129 	ASSERT_RTNL();
6130 
6131 	/* Don't allow namespace local devices to be moved. */
6132 	err = -EINVAL;
6133 	if (dev->features & NETIF_F_NETNS_LOCAL)
6134 		goto out;
6135 
6136 	/* Ensure the device has been registrered */
6137 	err = -EINVAL;
6138 	if (dev->reg_state != NETREG_REGISTERED)
6139 		goto out;
6140 
6141 	/* Get out if there is nothing todo */
6142 	err = 0;
6143 	if (net_eq(dev_net(dev), net))
6144 		goto out;
6145 
6146 	/* Pick the destination device name, and ensure
6147 	 * we can use it in the destination network namespace.
6148 	 */
6149 	err = -EEXIST;
6150 	if (__dev_get_by_name(net, dev->name)) {
6151 		/* We get here if we can't use the current device name */
6152 		if (!pat)
6153 			goto out;
6154 		if (dev_get_valid_name(dev, pat) < 0)
6155 			goto out;
6156 	}
6157 
6158 	/*
6159 	 * And now a mini version of register_netdevice unregister_netdevice.
6160 	 */
6161 
6162 	/* If device is running close it first. */
6163 	dev_close(dev);
6164 
6165 	/* And unlink it from device chain */
6166 	err = -ENODEV;
6167 	unlist_netdevice(dev);
6168 
6169 	synchronize_net();
6170 
6171 	/* Shutdown queueing discipline. */
6172 	dev_shutdown(dev);
6173 
6174 	/* Notify protocols, that we are about to destroy
6175 	   this device. They should clean all the things.
6176 
6177 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6178 	   This is wanted because this way 8021q and macvlan know
6179 	   the device is just moving and can keep their slaves up.
6180 	*/
6181 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6182 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6183 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6184 
6185 	/*
6186 	 *	Flush the unicast and multicast chains
6187 	 */
6188 	dev_uc_flush(dev);
6189 	dev_mc_flush(dev);
6190 
6191 	/* Actually switch the network namespace */
6192 	dev_net_set(dev, net);
6193 
6194 	/* If there is an ifindex conflict assign a new one */
6195 	if (__dev_get_by_index(net, dev->ifindex)) {
6196 		int iflink = (dev->iflink == dev->ifindex);
6197 		dev->ifindex = dev_new_index(net);
6198 		if (iflink)
6199 			dev->iflink = dev->ifindex;
6200 	}
6201 
6202 	/* Fixup kobjects */
6203 	err = device_rename(&dev->dev, dev->name);
6204 	WARN_ON(err);
6205 
6206 	/* Add the device back in the hashes */
6207 	list_netdevice(dev);
6208 
6209 	/* Notify protocols, that a new device appeared. */
6210 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6211 
6212 	/*
6213 	 *	Prevent userspace races by waiting until the network
6214 	 *	device is fully setup before sending notifications.
6215 	 */
6216 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6217 
6218 	synchronize_net();
6219 	err = 0;
6220 out:
6221 	return err;
6222 }
6223 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6224 
dev_cpu_callback(struct notifier_block * nfb,unsigned long action,void * ocpu)6225 static int dev_cpu_callback(struct notifier_block *nfb,
6226 			    unsigned long action,
6227 			    void *ocpu)
6228 {
6229 	struct sk_buff **list_skb;
6230 	struct sk_buff *skb;
6231 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6232 	struct softnet_data *sd, *oldsd;
6233 
6234 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6235 		return NOTIFY_OK;
6236 
6237 	local_irq_disable();
6238 	cpu = smp_processor_id();
6239 	sd = &per_cpu(softnet_data, cpu);
6240 	oldsd = &per_cpu(softnet_data, oldcpu);
6241 
6242 	/* Find end of our completion_queue. */
6243 	list_skb = &sd->completion_queue;
6244 	while (*list_skb)
6245 		list_skb = &(*list_skb)->next;
6246 	/* Append completion queue from offline CPU. */
6247 	*list_skb = oldsd->completion_queue;
6248 	oldsd->completion_queue = NULL;
6249 
6250 	/* Append output queue from offline CPU. */
6251 	if (oldsd->output_queue) {
6252 		*sd->output_queue_tailp = oldsd->output_queue;
6253 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6254 		oldsd->output_queue = NULL;
6255 		oldsd->output_queue_tailp = &oldsd->output_queue;
6256 	}
6257 	/* Append NAPI poll list from offline CPU. */
6258 	if (!list_empty(&oldsd->poll_list)) {
6259 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6260 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6261 	}
6262 
6263 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6264 	local_irq_enable();
6265 
6266 	/* Process offline CPU's input_pkt_queue */
6267 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6268 		netif_rx(skb);
6269 		input_queue_head_incr(oldsd);
6270 	}
6271 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6272 		netif_rx(skb);
6273 		input_queue_head_incr(oldsd);
6274 	}
6275 
6276 	return NOTIFY_OK;
6277 }
6278 
6279 
6280 /**
6281  *	netdev_increment_features - increment feature set by one
6282  *	@all: current feature set
6283  *	@one: new feature set
6284  *	@mask: mask feature set
6285  *
6286  *	Computes a new feature set after adding a device with feature set
6287  *	@one to the master device with current feature set @all.  Will not
6288  *	enable anything that is off in @mask. Returns the new feature set.
6289  */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)6290 netdev_features_t netdev_increment_features(netdev_features_t all,
6291 	netdev_features_t one, netdev_features_t mask)
6292 {
6293 	if (mask & NETIF_F_GEN_CSUM)
6294 		mask |= NETIF_F_ALL_CSUM;
6295 	mask |= NETIF_F_VLAN_CHALLENGED;
6296 
6297 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6298 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6299 
6300 	/* If one device supports hw checksumming, set for all. */
6301 	if (all & NETIF_F_GEN_CSUM)
6302 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6303 
6304 	return all;
6305 }
6306 EXPORT_SYMBOL(netdev_increment_features);
6307 
netdev_create_hash(void)6308 static struct hlist_head *netdev_create_hash(void)
6309 {
6310 	int i;
6311 	struct hlist_head *hash;
6312 
6313 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6314 	if (hash != NULL)
6315 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6316 			INIT_HLIST_HEAD(&hash[i]);
6317 
6318 	return hash;
6319 }
6320 
6321 /* Initialize per network namespace state */
netdev_init(struct net * net)6322 static int __net_init netdev_init(struct net *net)
6323 {
6324 	if (net != &init_net)
6325 		INIT_LIST_HEAD(&net->dev_base_head);
6326 
6327 	net->dev_name_head = netdev_create_hash();
6328 	if (net->dev_name_head == NULL)
6329 		goto err_name;
6330 
6331 	net->dev_index_head = netdev_create_hash();
6332 	if (net->dev_index_head == NULL)
6333 		goto err_idx;
6334 
6335 	return 0;
6336 
6337 err_idx:
6338 	kfree(net->dev_name_head);
6339 err_name:
6340 	return -ENOMEM;
6341 }
6342 
6343 /**
6344  *	netdev_drivername - network driver for the device
6345  *	@dev: network device
6346  *
6347  *	Determine network driver for device.
6348  */
netdev_drivername(const struct net_device * dev)6349 const char *netdev_drivername(const struct net_device *dev)
6350 {
6351 	const struct device_driver *driver;
6352 	const struct device *parent;
6353 	const char *empty = "";
6354 
6355 	parent = dev->dev.parent;
6356 	if (!parent)
6357 		return empty;
6358 
6359 	driver = parent->driver;
6360 	if (driver && driver->name)
6361 		return driver->name;
6362 	return empty;
6363 }
6364 
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)6365 int __netdev_printk(const char *level, const struct net_device *dev,
6366 			   struct va_format *vaf)
6367 {
6368 	int r;
6369 
6370 	if (dev && dev->dev.parent)
6371 		r = dev_printk(level, dev->dev.parent, "%s: %pV",
6372 			       netdev_name(dev), vaf);
6373 	else if (dev)
6374 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6375 	else
6376 		r = printk("%s(NULL net_device): %pV", level, vaf);
6377 
6378 	return r;
6379 }
6380 EXPORT_SYMBOL(__netdev_printk);
6381 
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)6382 int netdev_printk(const char *level, const struct net_device *dev,
6383 		  const char *format, ...)
6384 {
6385 	struct va_format vaf;
6386 	va_list args;
6387 	int r;
6388 
6389 	va_start(args, format);
6390 
6391 	vaf.fmt = format;
6392 	vaf.va = &args;
6393 
6394 	r = __netdev_printk(level, dev, &vaf);
6395 	va_end(args);
6396 
6397 	return r;
6398 }
6399 EXPORT_SYMBOL(netdev_printk);
6400 
6401 #define define_netdev_printk_level(func, level)			\
6402 int func(const struct net_device *dev, const char *fmt, ...)	\
6403 {								\
6404 	int r;							\
6405 	struct va_format vaf;					\
6406 	va_list args;						\
6407 								\
6408 	va_start(args, fmt);					\
6409 								\
6410 	vaf.fmt = fmt;						\
6411 	vaf.va = &args;						\
6412 								\
6413 	r = __netdev_printk(level, dev, &vaf);			\
6414 	va_end(args);						\
6415 								\
6416 	return r;						\
6417 }								\
6418 EXPORT_SYMBOL(func);
6419 
6420 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6421 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6422 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6423 define_netdev_printk_level(netdev_err, KERN_ERR);
6424 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6425 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6426 define_netdev_printk_level(netdev_info, KERN_INFO);
6427 
netdev_exit(struct net * net)6428 static void __net_exit netdev_exit(struct net *net)
6429 {
6430 	kfree(net->dev_name_head);
6431 	kfree(net->dev_index_head);
6432 }
6433 
6434 static struct pernet_operations __net_initdata netdev_net_ops = {
6435 	.init = netdev_init,
6436 	.exit = netdev_exit,
6437 };
6438 
default_device_exit(struct net * net)6439 static void __net_exit default_device_exit(struct net *net)
6440 {
6441 	struct net_device *dev, *aux;
6442 	/*
6443 	 * Push all migratable network devices back to the
6444 	 * initial network namespace
6445 	 */
6446 	rtnl_lock();
6447 	for_each_netdev_safe(net, dev, aux) {
6448 		int err;
6449 		char fb_name[IFNAMSIZ];
6450 
6451 		/* Ignore unmoveable devices (i.e. loopback) */
6452 		if (dev->features & NETIF_F_NETNS_LOCAL)
6453 			continue;
6454 
6455 		/* Leave virtual devices for the generic cleanup */
6456 		if (dev->rtnl_link_ops)
6457 			continue;
6458 
6459 		/* Push remaining network devices to init_net */
6460 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6461 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6462 		if (err) {
6463 			pr_emerg("%s: failed to move %s to init_net: %d\n",
6464 				 __func__, dev->name, err);
6465 			BUG();
6466 		}
6467 	}
6468 	rtnl_unlock();
6469 }
6470 
default_device_exit_batch(struct list_head * net_list)6471 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6472 {
6473 	/* At exit all network devices most be removed from a network
6474 	 * namespace.  Do this in the reverse order of registration.
6475 	 * Do this across as many network namespaces as possible to
6476 	 * improve batching efficiency.
6477 	 */
6478 	struct net_device *dev;
6479 	struct net *net;
6480 	LIST_HEAD(dev_kill_list);
6481 
6482 	rtnl_lock();
6483 	list_for_each_entry(net, net_list, exit_list) {
6484 		for_each_netdev_reverse(net, dev) {
6485 			if (dev->rtnl_link_ops)
6486 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6487 			else
6488 				unregister_netdevice_queue(dev, &dev_kill_list);
6489 		}
6490 	}
6491 	unregister_netdevice_many(&dev_kill_list);
6492 	list_del(&dev_kill_list);
6493 	rtnl_unlock();
6494 }
6495 
6496 static struct pernet_operations __net_initdata default_device_ops = {
6497 	.exit = default_device_exit,
6498 	.exit_batch = default_device_exit_batch,
6499 };
6500 
6501 /*
6502  *	Initialize the DEV module. At boot time this walks the device list and
6503  *	unhooks any devices that fail to initialise (normally hardware not
6504  *	present) and leaves us with a valid list of present and active devices.
6505  *
6506  */
6507 
6508 /*
6509  *       This is called single threaded during boot, so no need
6510  *       to take the rtnl semaphore.
6511  */
net_dev_init(void)6512 static int __init net_dev_init(void)
6513 {
6514 	int i, rc = -ENOMEM;
6515 
6516 	BUG_ON(!dev_boot_phase);
6517 
6518 	if (dev_proc_init())
6519 		goto out;
6520 
6521 	if (netdev_kobject_init())
6522 		goto out;
6523 
6524 	INIT_LIST_HEAD(&ptype_all);
6525 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6526 		INIT_LIST_HEAD(&ptype_base[i]);
6527 
6528 	if (register_pernet_subsys(&netdev_net_ops))
6529 		goto out;
6530 
6531 	/*
6532 	 *	Initialise the packet receive queues.
6533 	 */
6534 
6535 	for_each_possible_cpu(i) {
6536 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6537 
6538 		memset(sd, 0, sizeof(*sd));
6539 		skb_queue_head_init(&sd->input_pkt_queue);
6540 		skb_queue_head_init(&sd->process_queue);
6541 		sd->completion_queue = NULL;
6542 		INIT_LIST_HEAD(&sd->poll_list);
6543 		sd->output_queue = NULL;
6544 		sd->output_queue_tailp = &sd->output_queue;
6545 #ifdef CONFIG_RPS
6546 		sd->csd.func = rps_trigger_softirq;
6547 		sd->csd.info = sd;
6548 		sd->csd.flags = 0;
6549 		sd->cpu = i;
6550 #endif
6551 
6552 		sd->backlog.poll = process_backlog;
6553 		sd->backlog.weight = weight_p;
6554 		sd->backlog.gro_list = NULL;
6555 		sd->backlog.gro_count = 0;
6556 	}
6557 
6558 	dev_boot_phase = 0;
6559 
6560 	/* The loopback device is special if any other network devices
6561 	 * is present in a network namespace the loopback device must
6562 	 * be present. Since we now dynamically allocate and free the
6563 	 * loopback device ensure this invariant is maintained by
6564 	 * keeping the loopback device as the first device on the
6565 	 * list of network devices.  Ensuring the loopback devices
6566 	 * is the first device that appears and the last network device
6567 	 * that disappears.
6568 	 */
6569 	if (register_pernet_device(&loopback_net_ops))
6570 		goto out;
6571 
6572 	if (register_pernet_device(&default_device_ops))
6573 		goto out;
6574 
6575 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6576 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6577 
6578 	hotcpu_notifier(dev_cpu_callback, 0);
6579 	dst_init();
6580 	dev_mcast_init();
6581 	rc = 0;
6582 out:
6583 	return rc;
6584 }
6585 
6586 subsys_initcall(net_dev_init);
6587 
initialize_hashrnd(void)6588 static int __init initialize_hashrnd(void)
6589 {
6590 	get_random_bytes(&hashrnd, sizeof(hashrnd));
6591 	return 0;
6592 }
6593 
6594 late_initcall_sync(initialize_hashrnd);
6595 
6596