1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/device.h>
25 #include <linux/export.h>
26 #include <linux/err.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/uaccess.h>
32 #include <linux/compat.h>
33 #include <uapi/linux/kfd_ioctl.h>
34 #include <linux/time.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/ptrace.h>
38 #include <linux/dma-buf.h>
39 #include <linux/fdtable.h>
40 #include <linux/processor.h>
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_svm.h"
44 #include "amdgpu_amdkfd.h"
45 #include "kfd_smi_events.h"
46 #include "amdgpu_dma_buf.h"
47 #include "kfd_debug.h"
48
49 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
50 static int kfd_open(struct inode *, struct file *);
51 static int kfd_release(struct inode *, struct file *);
52 static int kfd_mmap(struct file *, struct vm_area_struct *);
53
54 static const char kfd_dev_name[] = "kfd";
55
56 static const struct file_operations kfd_fops = {
57 .owner = THIS_MODULE,
58 .unlocked_ioctl = kfd_ioctl,
59 .compat_ioctl = compat_ptr_ioctl,
60 .open = kfd_open,
61 .release = kfd_release,
62 .mmap = kfd_mmap,
63 };
64
65 static int kfd_char_dev_major = -1;
66 static struct class *kfd_class;
67 struct device *kfd_device;
68
kfd_lock_pdd_by_id(struct kfd_process * p,__u32 gpu_id)69 static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id)
70 {
71 struct kfd_process_device *pdd;
72
73 mutex_lock(&p->mutex);
74 pdd = kfd_process_device_data_by_id(p, gpu_id);
75
76 if (pdd)
77 return pdd;
78
79 mutex_unlock(&p->mutex);
80 return NULL;
81 }
82
kfd_unlock_pdd(struct kfd_process_device * pdd)83 static inline void kfd_unlock_pdd(struct kfd_process_device *pdd)
84 {
85 mutex_unlock(&pdd->process->mutex);
86 }
87
kfd_chardev_init(void)88 int kfd_chardev_init(void)
89 {
90 int err = 0;
91
92 kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
93 err = kfd_char_dev_major;
94 if (err < 0)
95 goto err_register_chrdev;
96
97 kfd_class = class_create(kfd_dev_name);
98 err = PTR_ERR(kfd_class);
99 if (IS_ERR(kfd_class))
100 goto err_class_create;
101
102 kfd_device = device_create(kfd_class, NULL,
103 MKDEV(kfd_char_dev_major, 0),
104 NULL, kfd_dev_name);
105 err = PTR_ERR(kfd_device);
106 if (IS_ERR(kfd_device))
107 goto err_device_create;
108
109 return 0;
110
111 err_device_create:
112 class_destroy(kfd_class);
113 err_class_create:
114 unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
115 err_register_chrdev:
116 return err;
117 }
118
kfd_chardev_exit(void)119 void kfd_chardev_exit(void)
120 {
121 device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
122 class_destroy(kfd_class);
123 unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
124 kfd_device = NULL;
125 }
126
127
kfd_open(struct inode * inode,struct file * filep)128 static int kfd_open(struct inode *inode, struct file *filep)
129 {
130 struct kfd_process *process;
131 bool is_32bit_user_mode;
132
133 if (iminor(inode) != 0)
134 return -ENODEV;
135
136 is_32bit_user_mode = in_compat_syscall();
137
138 if (is_32bit_user_mode) {
139 dev_warn(kfd_device,
140 "Process %d (32-bit) failed to open /dev/kfd\n"
141 "32-bit processes are not supported by amdkfd\n",
142 current->pid);
143 return -EPERM;
144 }
145
146 process = kfd_create_process(current);
147 if (IS_ERR(process))
148 return PTR_ERR(process);
149
150 if (kfd_process_init_cwsr_apu(process, filep)) {
151 kfd_unref_process(process);
152 return -EFAULT;
153 }
154
155 /* filep now owns the reference returned by kfd_create_process */
156 filep->private_data = process;
157
158 dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
159 process->pasid, process->is_32bit_user_mode);
160
161 return 0;
162 }
163
kfd_release(struct inode * inode,struct file * filep)164 static int kfd_release(struct inode *inode, struct file *filep)
165 {
166 struct kfd_process *process = filep->private_data;
167
168 if (process)
169 kfd_unref_process(process);
170
171 return 0;
172 }
173
kfd_ioctl_get_version(struct file * filep,struct kfd_process * p,void * data)174 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
175 void *data)
176 {
177 struct kfd_ioctl_get_version_args *args = data;
178
179 args->major_version = KFD_IOCTL_MAJOR_VERSION;
180 args->minor_version = KFD_IOCTL_MINOR_VERSION;
181
182 return 0;
183 }
184
set_queue_properties_from_user(struct queue_properties * q_properties,struct kfd_ioctl_create_queue_args * args)185 static int set_queue_properties_from_user(struct queue_properties *q_properties,
186 struct kfd_ioctl_create_queue_args *args)
187 {
188 /*
189 * Repurpose queue percentage to accommodate new features:
190 * bit 0-7: queue percentage
191 * bit 8-15: pm4_target_xcc
192 */
193 if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
194 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
195 return -EINVAL;
196 }
197
198 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
199 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
200 return -EINVAL;
201 }
202
203 if ((args->ring_base_address) &&
204 (!access_ok((const void __user *) args->ring_base_address,
205 sizeof(uint64_t)))) {
206 pr_err("Can't access ring base address\n");
207 return -EFAULT;
208 }
209
210 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
211 pr_err("Ring size must be a power of 2 or 0\n");
212 return -EINVAL;
213 }
214
215 if (!access_ok((const void __user *) args->read_pointer_address,
216 sizeof(uint32_t))) {
217 pr_err("Can't access read pointer\n");
218 return -EFAULT;
219 }
220
221 if (!access_ok((const void __user *) args->write_pointer_address,
222 sizeof(uint32_t))) {
223 pr_err("Can't access write pointer\n");
224 return -EFAULT;
225 }
226
227 if (args->eop_buffer_address &&
228 !access_ok((const void __user *) args->eop_buffer_address,
229 sizeof(uint32_t))) {
230 pr_debug("Can't access eop buffer");
231 return -EFAULT;
232 }
233
234 if (args->ctx_save_restore_address &&
235 !access_ok((const void __user *) args->ctx_save_restore_address,
236 sizeof(uint32_t))) {
237 pr_debug("Can't access ctx save restore buffer");
238 return -EFAULT;
239 }
240
241 q_properties->is_interop = false;
242 q_properties->is_gws = false;
243 q_properties->queue_percent = args->queue_percentage & 0xFF;
244 /* bit 8-15 are repurposed to be PM4 target XCC */
245 q_properties->pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
246 q_properties->priority = args->queue_priority;
247 q_properties->queue_address = args->ring_base_address;
248 q_properties->queue_size = args->ring_size;
249 q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
250 q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
251 q_properties->eop_ring_buffer_address = args->eop_buffer_address;
252 q_properties->eop_ring_buffer_size = args->eop_buffer_size;
253 q_properties->ctx_save_restore_area_address =
254 args->ctx_save_restore_address;
255 q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
256 q_properties->ctl_stack_size = args->ctl_stack_size;
257 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
258 args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
259 q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
260 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
261 q_properties->type = KFD_QUEUE_TYPE_SDMA;
262 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
263 q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
264 else
265 return -ENOTSUPP;
266
267 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
268 q_properties->format = KFD_QUEUE_FORMAT_AQL;
269 else
270 q_properties->format = KFD_QUEUE_FORMAT_PM4;
271
272 pr_debug("Queue Percentage: %d, %d\n",
273 q_properties->queue_percent, args->queue_percentage);
274
275 pr_debug("Queue Priority: %d, %d\n",
276 q_properties->priority, args->queue_priority);
277
278 pr_debug("Queue Address: 0x%llX, 0x%llX\n",
279 q_properties->queue_address, args->ring_base_address);
280
281 pr_debug("Queue Size: 0x%llX, %u\n",
282 q_properties->queue_size, args->ring_size);
283
284 pr_debug("Queue r/w Pointers: %px, %px\n",
285 q_properties->read_ptr,
286 q_properties->write_ptr);
287
288 pr_debug("Queue Format: %d\n", q_properties->format);
289
290 pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
291
292 pr_debug("Queue CTX save area: 0x%llX\n",
293 q_properties->ctx_save_restore_area_address);
294
295 return 0;
296 }
297
kfd_ioctl_create_queue(struct file * filep,struct kfd_process * p,void * data)298 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
299 void *data)
300 {
301 struct kfd_ioctl_create_queue_args *args = data;
302 struct kfd_node *dev;
303 int err = 0;
304 unsigned int queue_id;
305 struct kfd_process_device *pdd;
306 struct queue_properties q_properties;
307 uint32_t doorbell_offset_in_process = 0;
308 struct amdgpu_bo *wptr_bo = NULL;
309
310 memset(&q_properties, 0, sizeof(struct queue_properties));
311
312 pr_debug("Creating queue ioctl\n");
313
314 err = set_queue_properties_from_user(&q_properties, args);
315 if (err)
316 return err;
317
318 pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
319
320 mutex_lock(&p->mutex);
321
322 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
323 if (!pdd) {
324 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
325 err = -EINVAL;
326 goto err_pdd;
327 }
328 dev = pdd->dev;
329
330 pdd = kfd_bind_process_to_device(dev, p);
331 if (IS_ERR(pdd)) {
332 err = -ESRCH;
333 goto err_bind_process;
334 }
335
336 if (!pdd->qpd.proc_doorbells) {
337 err = kfd_alloc_process_doorbells(dev->kfd, pdd);
338 if (err) {
339 pr_debug("failed to allocate process doorbells\n");
340 goto err_bind_process;
341 }
342 }
343
344 /* Starting with GFX11, wptr BOs must be mapped to GART for MES to determine work
345 * on unmapped queues for usermode queue oversubscription (no aggregated doorbell)
346 */
347 if (dev->kfd->shared_resources.enable_mes &&
348 ((dev->adev->mes.sched_version & AMDGPU_MES_API_VERSION_MASK)
349 >> AMDGPU_MES_API_VERSION_SHIFT) >= 2) {
350 struct amdgpu_bo_va_mapping *wptr_mapping;
351 struct amdgpu_vm *wptr_vm;
352
353 wptr_vm = drm_priv_to_vm(pdd->drm_priv);
354 err = amdgpu_bo_reserve(wptr_vm->root.bo, false);
355 if (err)
356 goto err_wptr_map_gart;
357
358 wptr_mapping = amdgpu_vm_bo_lookup_mapping(
359 wptr_vm, args->write_pointer_address >> PAGE_SHIFT);
360 amdgpu_bo_unreserve(wptr_vm->root.bo);
361 if (!wptr_mapping) {
362 pr_err("Failed to lookup wptr bo\n");
363 err = -EINVAL;
364 goto err_wptr_map_gart;
365 }
366
367 wptr_bo = wptr_mapping->bo_va->base.bo;
368 if (wptr_bo->tbo.base.size > PAGE_SIZE) {
369 pr_err("Requested GART mapping for wptr bo larger than one page\n");
370 err = -EINVAL;
371 goto err_wptr_map_gart;
372 }
373
374 err = amdgpu_amdkfd_map_gtt_bo_to_gart(dev->adev, wptr_bo);
375 if (err) {
376 pr_err("Failed to map wptr bo to GART\n");
377 goto err_wptr_map_gart;
378 }
379 }
380
381 pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
382 p->pasid,
383 dev->id);
384
385 err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id, wptr_bo,
386 NULL, NULL, NULL, &doorbell_offset_in_process);
387 if (err != 0)
388 goto err_create_queue;
389
390 args->queue_id = queue_id;
391
392
393 /* Return gpu_id as doorbell offset for mmap usage */
394 args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
395 args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
396 if (KFD_IS_SOC15(dev))
397 /* On SOC15 ASICs, include the doorbell offset within the
398 * process doorbell frame, which is 2 pages.
399 */
400 args->doorbell_offset |= doorbell_offset_in_process;
401
402 mutex_unlock(&p->mutex);
403
404 pr_debug("Queue id %d was created successfully\n", args->queue_id);
405
406 pr_debug("Ring buffer address == 0x%016llX\n",
407 args->ring_base_address);
408
409 pr_debug("Read ptr address == 0x%016llX\n",
410 args->read_pointer_address);
411
412 pr_debug("Write ptr address == 0x%016llX\n",
413 args->write_pointer_address);
414
415 kfd_dbg_ev_raise(KFD_EC_MASK(EC_QUEUE_NEW), p, dev, queue_id, false, NULL, 0);
416 return 0;
417
418 err_create_queue:
419 if (wptr_bo)
420 amdgpu_amdkfd_free_gtt_mem(dev->adev, wptr_bo);
421 err_wptr_map_gart:
422 err_bind_process:
423 err_pdd:
424 mutex_unlock(&p->mutex);
425 return err;
426 }
427
kfd_ioctl_destroy_queue(struct file * filp,struct kfd_process * p,void * data)428 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
429 void *data)
430 {
431 int retval;
432 struct kfd_ioctl_destroy_queue_args *args = data;
433
434 pr_debug("Destroying queue id %d for pasid 0x%x\n",
435 args->queue_id,
436 p->pasid);
437
438 mutex_lock(&p->mutex);
439
440 retval = pqm_destroy_queue(&p->pqm, args->queue_id);
441
442 mutex_unlock(&p->mutex);
443 return retval;
444 }
445
kfd_ioctl_update_queue(struct file * filp,struct kfd_process * p,void * data)446 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
447 void *data)
448 {
449 int retval;
450 struct kfd_ioctl_update_queue_args *args = data;
451 struct queue_properties properties;
452
453 /*
454 * Repurpose queue percentage to accommodate new features:
455 * bit 0-7: queue percentage
456 * bit 8-15: pm4_target_xcc
457 */
458 if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
459 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
460 return -EINVAL;
461 }
462
463 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
464 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
465 return -EINVAL;
466 }
467
468 if ((args->ring_base_address) &&
469 (!access_ok((const void __user *) args->ring_base_address,
470 sizeof(uint64_t)))) {
471 pr_err("Can't access ring base address\n");
472 return -EFAULT;
473 }
474
475 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
476 pr_err("Ring size must be a power of 2 or 0\n");
477 return -EINVAL;
478 }
479
480 properties.queue_address = args->ring_base_address;
481 properties.queue_size = args->ring_size;
482 properties.queue_percent = args->queue_percentage & 0xFF;
483 /* bit 8-15 are repurposed to be PM4 target XCC */
484 properties.pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
485 properties.priority = args->queue_priority;
486
487 pr_debug("Updating queue id %d for pasid 0x%x\n",
488 args->queue_id, p->pasid);
489
490 mutex_lock(&p->mutex);
491
492 retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties);
493
494 mutex_unlock(&p->mutex);
495
496 return retval;
497 }
498
kfd_ioctl_set_cu_mask(struct file * filp,struct kfd_process * p,void * data)499 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
500 void *data)
501 {
502 int retval;
503 const int max_num_cus = 1024;
504 struct kfd_ioctl_set_cu_mask_args *args = data;
505 struct mqd_update_info minfo = {0};
506 uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
507 size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
508
509 if ((args->num_cu_mask % 32) != 0) {
510 pr_debug("num_cu_mask 0x%x must be a multiple of 32",
511 args->num_cu_mask);
512 return -EINVAL;
513 }
514
515 minfo.cu_mask.count = args->num_cu_mask;
516 if (minfo.cu_mask.count == 0) {
517 pr_debug("CU mask cannot be 0");
518 return -EINVAL;
519 }
520
521 /* To prevent an unreasonably large CU mask size, set an arbitrary
522 * limit of max_num_cus bits. We can then just drop any CU mask bits
523 * past max_num_cus bits and just use the first max_num_cus bits.
524 */
525 if (minfo.cu_mask.count > max_num_cus) {
526 pr_debug("CU mask cannot be greater than 1024 bits");
527 minfo.cu_mask.count = max_num_cus;
528 cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
529 }
530
531 minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL);
532 if (!minfo.cu_mask.ptr)
533 return -ENOMEM;
534
535 retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size);
536 if (retval) {
537 pr_debug("Could not copy CU mask from userspace");
538 retval = -EFAULT;
539 goto out;
540 }
541
542 mutex_lock(&p->mutex);
543
544 retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo);
545
546 mutex_unlock(&p->mutex);
547
548 out:
549 kfree(minfo.cu_mask.ptr);
550 return retval;
551 }
552
kfd_ioctl_get_queue_wave_state(struct file * filep,struct kfd_process * p,void * data)553 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
554 struct kfd_process *p, void *data)
555 {
556 struct kfd_ioctl_get_queue_wave_state_args *args = data;
557 int r;
558
559 mutex_lock(&p->mutex);
560
561 r = pqm_get_wave_state(&p->pqm, args->queue_id,
562 (void __user *)args->ctl_stack_address,
563 &args->ctl_stack_used_size,
564 &args->save_area_used_size);
565
566 mutex_unlock(&p->mutex);
567
568 return r;
569 }
570
kfd_ioctl_set_memory_policy(struct file * filep,struct kfd_process * p,void * data)571 static int kfd_ioctl_set_memory_policy(struct file *filep,
572 struct kfd_process *p, void *data)
573 {
574 struct kfd_ioctl_set_memory_policy_args *args = data;
575 int err = 0;
576 struct kfd_process_device *pdd;
577 enum cache_policy default_policy, alternate_policy;
578
579 if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
580 && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
581 return -EINVAL;
582 }
583
584 if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
585 && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
586 return -EINVAL;
587 }
588
589 mutex_lock(&p->mutex);
590 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
591 if (!pdd) {
592 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
593 err = -EINVAL;
594 goto err_pdd;
595 }
596
597 pdd = kfd_bind_process_to_device(pdd->dev, p);
598 if (IS_ERR(pdd)) {
599 err = -ESRCH;
600 goto out;
601 }
602
603 default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
604 ? cache_policy_coherent : cache_policy_noncoherent;
605
606 alternate_policy =
607 (args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
608 ? cache_policy_coherent : cache_policy_noncoherent;
609
610 if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm,
611 &pdd->qpd,
612 default_policy,
613 alternate_policy,
614 (void __user *)args->alternate_aperture_base,
615 args->alternate_aperture_size))
616 err = -EINVAL;
617
618 out:
619 err_pdd:
620 mutex_unlock(&p->mutex);
621
622 return err;
623 }
624
kfd_ioctl_set_trap_handler(struct file * filep,struct kfd_process * p,void * data)625 static int kfd_ioctl_set_trap_handler(struct file *filep,
626 struct kfd_process *p, void *data)
627 {
628 struct kfd_ioctl_set_trap_handler_args *args = data;
629 int err = 0;
630 struct kfd_process_device *pdd;
631
632 mutex_lock(&p->mutex);
633
634 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
635 if (!pdd) {
636 err = -EINVAL;
637 goto err_pdd;
638 }
639
640 pdd = kfd_bind_process_to_device(pdd->dev, p);
641 if (IS_ERR(pdd)) {
642 err = -ESRCH;
643 goto out;
644 }
645
646 kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
647
648 out:
649 err_pdd:
650 mutex_unlock(&p->mutex);
651
652 return err;
653 }
654
kfd_ioctl_dbg_register(struct file * filep,struct kfd_process * p,void * data)655 static int kfd_ioctl_dbg_register(struct file *filep,
656 struct kfd_process *p, void *data)
657 {
658 return -EPERM;
659 }
660
kfd_ioctl_dbg_unregister(struct file * filep,struct kfd_process * p,void * data)661 static int kfd_ioctl_dbg_unregister(struct file *filep,
662 struct kfd_process *p, void *data)
663 {
664 return -EPERM;
665 }
666
kfd_ioctl_dbg_address_watch(struct file * filep,struct kfd_process * p,void * data)667 static int kfd_ioctl_dbg_address_watch(struct file *filep,
668 struct kfd_process *p, void *data)
669 {
670 return -EPERM;
671 }
672
673 /* Parse and generate fixed size data structure for wave control */
kfd_ioctl_dbg_wave_control(struct file * filep,struct kfd_process * p,void * data)674 static int kfd_ioctl_dbg_wave_control(struct file *filep,
675 struct kfd_process *p, void *data)
676 {
677 return -EPERM;
678 }
679
kfd_ioctl_get_clock_counters(struct file * filep,struct kfd_process * p,void * data)680 static int kfd_ioctl_get_clock_counters(struct file *filep,
681 struct kfd_process *p, void *data)
682 {
683 struct kfd_ioctl_get_clock_counters_args *args = data;
684 struct kfd_process_device *pdd;
685
686 mutex_lock(&p->mutex);
687 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
688 mutex_unlock(&p->mutex);
689 if (pdd)
690 /* Reading GPU clock counter from KGD */
691 args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev);
692 else
693 /* Node without GPU resource */
694 args->gpu_clock_counter = 0;
695
696 /* No access to rdtsc. Using raw monotonic time */
697 args->cpu_clock_counter = ktime_get_raw_ns();
698 args->system_clock_counter = ktime_get_boottime_ns();
699
700 /* Since the counter is in nano-seconds we use 1GHz frequency */
701 args->system_clock_freq = 1000000000;
702
703 return 0;
704 }
705
706
kfd_ioctl_get_process_apertures(struct file * filp,struct kfd_process * p,void * data)707 static int kfd_ioctl_get_process_apertures(struct file *filp,
708 struct kfd_process *p, void *data)
709 {
710 struct kfd_ioctl_get_process_apertures_args *args = data;
711 struct kfd_process_device_apertures *pAperture;
712 int i;
713
714 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
715
716 args->num_of_nodes = 0;
717
718 mutex_lock(&p->mutex);
719 /* Run over all pdd of the process */
720 for (i = 0; i < p->n_pdds; i++) {
721 struct kfd_process_device *pdd = p->pdds[i];
722
723 pAperture =
724 &args->process_apertures[args->num_of_nodes];
725 pAperture->gpu_id = pdd->dev->id;
726 pAperture->lds_base = pdd->lds_base;
727 pAperture->lds_limit = pdd->lds_limit;
728 pAperture->gpuvm_base = pdd->gpuvm_base;
729 pAperture->gpuvm_limit = pdd->gpuvm_limit;
730 pAperture->scratch_base = pdd->scratch_base;
731 pAperture->scratch_limit = pdd->scratch_limit;
732
733 dev_dbg(kfd_device,
734 "node id %u\n", args->num_of_nodes);
735 dev_dbg(kfd_device,
736 "gpu id %u\n", pdd->dev->id);
737 dev_dbg(kfd_device,
738 "lds_base %llX\n", pdd->lds_base);
739 dev_dbg(kfd_device,
740 "lds_limit %llX\n", pdd->lds_limit);
741 dev_dbg(kfd_device,
742 "gpuvm_base %llX\n", pdd->gpuvm_base);
743 dev_dbg(kfd_device,
744 "gpuvm_limit %llX\n", pdd->gpuvm_limit);
745 dev_dbg(kfd_device,
746 "scratch_base %llX\n", pdd->scratch_base);
747 dev_dbg(kfd_device,
748 "scratch_limit %llX\n", pdd->scratch_limit);
749
750 if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
751 break;
752 }
753 mutex_unlock(&p->mutex);
754
755 return 0;
756 }
757
kfd_ioctl_get_process_apertures_new(struct file * filp,struct kfd_process * p,void * data)758 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
759 struct kfd_process *p, void *data)
760 {
761 struct kfd_ioctl_get_process_apertures_new_args *args = data;
762 struct kfd_process_device_apertures *pa;
763 int ret;
764 int i;
765
766 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
767
768 if (args->num_of_nodes == 0) {
769 /* Return number of nodes, so that user space can alloacate
770 * sufficient memory
771 */
772 mutex_lock(&p->mutex);
773 args->num_of_nodes = p->n_pdds;
774 goto out_unlock;
775 }
776
777 /* Fill in process-aperture information for all available
778 * nodes, but not more than args->num_of_nodes as that is
779 * the amount of memory allocated by user
780 */
781 pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
782 args->num_of_nodes), GFP_KERNEL);
783 if (!pa)
784 return -ENOMEM;
785
786 mutex_lock(&p->mutex);
787
788 if (!p->n_pdds) {
789 args->num_of_nodes = 0;
790 kfree(pa);
791 goto out_unlock;
792 }
793
794 /* Run over all pdd of the process */
795 for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
796 struct kfd_process_device *pdd = p->pdds[i];
797
798 pa[i].gpu_id = pdd->dev->id;
799 pa[i].lds_base = pdd->lds_base;
800 pa[i].lds_limit = pdd->lds_limit;
801 pa[i].gpuvm_base = pdd->gpuvm_base;
802 pa[i].gpuvm_limit = pdd->gpuvm_limit;
803 pa[i].scratch_base = pdd->scratch_base;
804 pa[i].scratch_limit = pdd->scratch_limit;
805
806 dev_dbg(kfd_device,
807 "gpu id %u\n", pdd->dev->id);
808 dev_dbg(kfd_device,
809 "lds_base %llX\n", pdd->lds_base);
810 dev_dbg(kfd_device,
811 "lds_limit %llX\n", pdd->lds_limit);
812 dev_dbg(kfd_device,
813 "gpuvm_base %llX\n", pdd->gpuvm_base);
814 dev_dbg(kfd_device,
815 "gpuvm_limit %llX\n", pdd->gpuvm_limit);
816 dev_dbg(kfd_device,
817 "scratch_base %llX\n", pdd->scratch_base);
818 dev_dbg(kfd_device,
819 "scratch_limit %llX\n", pdd->scratch_limit);
820 }
821 mutex_unlock(&p->mutex);
822
823 args->num_of_nodes = i;
824 ret = copy_to_user(
825 (void __user *)args->kfd_process_device_apertures_ptr,
826 pa,
827 (i * sizeof(struct kfd_process_device_apertures)));
828 kfree(pa);
829 return ret ? -EFAULT : 0;
830
831 out_unlock:
832 mutex_unlock(&p->mutex);
833 return 0;
834 }
835
kfd_ioctl_create_event(struct file * filp,struct kfd_process * p,void * data)836 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
837 void *data)
838 {
839 struct kfd_ioctl_create_event_args *args = data;
840 int err;
841
842 /* For dGPUs the event page is allocated in user mode. The
843 * handle is passed to KFD with the first call to this IOCTL
844 * through the event_page_offset field.
845 */
846 if (args->event_page_offset) {
847 mutex_lock(&p->mutex);
848 err = kfd_kmap_event_page(p, args->event_page_offset);
849 mutex_unlock(&p->mutex);
850 if (err)
851 return err;
852 }
853
854 err = kfd_event_create(filp, p, args->event_type,
855 args->auto_reset != 0, args->node_id,
856 &args->event_id, &args->event_trigger_data,
857 &args->event_page_offset,
858 &args->event_slot_index);
859
860 pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__);
861 return err;
862 }
863
kfd_ioctl_destroy_event(struct file * filp,struct kfd_process * p,void * data)864 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
865 void *data)
866 {
867 struct kfd_ioctl_destroy_event_args *args = data;
868
869 return kfd_event_destroy(p, args->event_id);
870 }
871
kfd_ioctl_set_event(struct file * filp,struct kfd_process * p,void * data)872 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
873 void *data)
874 {
875 struct kfd_ioctl_set_event_args *args = data;
876
877 return kfd_set_event(p, args->event_id);
878 }
879
kfd_ioctl_reset_event(struct file * filp,struct kfd_process * p,void * data)880 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
881 void *data)
882 {
883 struct kfd_ioctl_reset_event_args *args = data;
884
885 return kfd_reset_event(p, args->event_id);
886 }
887
kfd_ioctl_wait_events(struct file * filp,struct kfd_process * p,void * data)888 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
889 void *data)
890 {
891 struct kfd_ioctl_wait_events_args *args = data;
892
893 return kfd_wait_on_events(p, args->num_events,
894 (void __user *)args->events_ptr,
895 (args->wait_for_all != 0),
896 &args->timeout, &args->wait_result);
897 }
kfd_ioctl_set_scratch_backing_va(struct file * filep,struct kfd_process * p,void * data)898 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
899 struct kfd_process *p, void *data)
900 {
901 struct kfd_ioctl_set_scratch_backing_va_args *args = data;
902 struct kfd_process_device *pdd;
903 struct kfd_node *dev;
904 long err;
905
906 mutex_lock(&p->mutex);
907 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
908 if (!pdd) {
909 err = -EINVAL;
910 goto err_pdd;
911 }
912 dev = pdd->dev;
913
914 pdd = kfd_bind_process_to_device(dev, p);
915 if (IS_ERR(pdd)) {
916 err = PTR_ERR(pdd);
917 goto bind_process_to_device_fail;
918 }
919
920 pdd->qpd.sh_hidden_private_base = args->va_addr;
921
922 mutex_unlock(&p->mutex);
923
924 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
925 pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
926 dev->kfd2kgd->set_scratch_backing_va(
927 dev->adev, args->va_addr, pdd->qpd.vmid);
928
929 return 0;
930
931 bind_process_to_device_fail:
932 err_pdd:
933 mutex_unlock(&p->mutex);
934 return err;
935 }
936
kfd_ioctl_get_tile_config(struct file * filep,struct kfd_process * p,void * data)937 static int kfd_ioctl_get_tile_config(struct file *filep,
938 struct kfd_process *p, void *data)
939 {
940 struct kfd_ioctl_get_tile_config_args *args = data;
941 struct kfd_process_device *pdd;
942 struct tile_config config;
943 int err = 0;
944
945 mutex_lock(&p->mutex);
946 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
947 mutex_unlock(&p->mutex);
948 if (!pdd)
949 return -EINVAL;
950
951 amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config);
952
953 args->gb_addr_config = config.gb_addr_config;
954 args->num_banks = config.num_banks;
955 args->num_ranks = config.num_ranks;
956
957 if (args->num_tile_configs > config.num_tile_configs)
958 args->num_tile_configs = config.num_tile_configs;
959 err = copy_to_user((void __user *)args->tile_config_ptr,
960 config.tile_config_ptr,
961 args->num_tile_configs * sizeof(uint32_t));
962 if (err) {
963 args->num_tile_configs = 0;
964 return -EFAULT;
965 }
966
967 if (args->num_macro_tile_configs > config.num_macro_tile_configs)
968 args->num_macro_tile_configs =
969 config.num_macro_tile_configs;
970 err = copy_to_user((void __user *)args->macro_tile_config_ptr,
971 config.macro_tile_config_ptr,
972 args->num_macro_tile_configs * sizeof(uint32_t));
973 if (err) {
974 args->num_macro_tile_configs = 0;
975 return -EFAULT;
976 }
977
978 return 0;
979 }
980
kfd_ioctl_acquire_vm(struct file * filep,struct kfd_process * p,void * data)981 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
982 void *data)
983 {
984 struct kfd_ioctl_acquire_vm_args *args = data;
985 struct kfd_process_device *pdd;
986 struct file *drm_file;
987 int ret;
988
989 drm_file = fget(args->drm_fd);
990 if (!drm_file)
991 return -EINVAL;
992
993 mutex_lock(&p->mutex);
994 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
995 if (!pdd) {
996 ret = -EINVAL;
997 goto err_pdd;
998 }
999
1000 if (pdd->drm_file) {
1001 ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
1002 goto err_drm_file;
1003 }
1004
1005 ret = kfd_process_device_init_vm(pdd, drm_file);
1006 if (ret)
1007 goto err_unlock;
1008
1009 /* On success, the PDD keeps the drm_file reference */
1010 mutex_unlock(&p->mutex);
1011
1012 return 0;
1013
1014 err_unlock:
1015 err_pdd:
1016 err_drm_file:
1017 mutex_unlock(&p->mutex);
1018 fput(drm_file);
1019 return ret;
1020 }
1021
kfd_dev_is_large_bar(struct kfd_node * dev)1022 bool kfd_dev_is_large_bar(struct kfd_node *dev)
1023 {
1024 if (debug_largebar) {
1025 pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1026 return true;
1027 }
1028
1029 if (dev->local_mem_info.local_mem_size_private == 0 &&
1030 dev->local_mem_info.local_mem_size_public > 0)
1031 return true;
1032
1033 if (dev->local_mem_info.local_mem_size_public == 0 &&
1034 dev->kfd->adev->gmc.is_app_apu) {
1035 pr_debug("APP APU, Consider like a large bar system\n");
1036 return true;
1037 }
1038
1039 return false;
1040 }
1041
kfd_ioctl_get_available_memory(struct file * filep,struct kfd_process * p,void * data)1042 static int kfd_ioctl_get_available_memory(struct file *filep,
1043 struct kfd_process *p, void *data)
1044 {
1045 struct kfd_ioctl_get_available_memory_args *args = data;
1046 struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id);
1047
1048 if (!pdd)
1049 return -EINVAL;
1050 args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev,
1051 pdd->dev->node_id);
1052 kfd_unlock_pdd(pdd);
1053 return 0;
1054 }
1055
kfd_ioctl_alloc_memory_of_gpu(struct file * filep,struct kfd_process * p,void * data)1056 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1057 struct kfd_process *p, void *data)
1058 {
1059 struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1060 struct kfd_process_device *pdd;
1061 void *mem;
1062 struct kfd_node *dev;
1063 int idr_handle;
1064 long err;
1065 uint64_t offset = args->mmap_offset;
1066 uint32_t flags = args->flags;
1067
1068 if (args->size == 0)
1069 return -EINVAL;
1070
1071 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1072 /* Flush pending deferred work to avoid racing with deferred actions
1073 * from previous memory map changes (e.g. munmap).
1074 */
1075 svm_range_list_lock_and_flush_work(&p->svms, current->mm);
1076 mutex_lock(&p->svms.lock);
1077 mmap_write_unlock(current->mm);
1078 if (interval_tree_iter_first(&p->svms.objects,
1079 args->va_addr >> PAGE_SHIFT,
1080 (args->va_addr + args->size - 1) >> PAGE_SHIFT)) {
1081 pr_err("Address: 0x%llx already allocated by SVM\n",
1082 args->va_addr);
1083 mutex_unlock(&p->svms.lock);
1084 return -EADDRINUSE;
1085 }
1086
1087 /* When register user buffer check if it has been registered by svm by
1088 * buffer cpu virtual address.
1089 */
1090 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) &&
1091 interval_tree_iter_first(&p->svms.objects,
1092 args->mmap_offset >> PAGE_SHIFT,
1093 (args->mmap_offset + args->size - 1) >> PAGE_SHIFT)) {
1094 pr_err("User Buffer Address: 0x%llx already allocated by SVM\n",
1095 args->mmap_offset);
1096 mutex_unlock(&p->svms.lock);
1097 return -EADDRINUSE;
1098 }
1099
1100 mutex_unlock(&p->svms.lock);
1101 #endif
1102 mutex_lock(&p->mutex);
1103 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1104 if (!pdd) {
1105 err = -EINVAL;
1106 goto err_pdd;
1107 }
1108
1109 dev = pdd->dev;
1110
1111 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1112 (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1113 !kfd_dev_is_large_bar(dev)) {
1114 pr_err("Alloc host visible vram on small bar is not allowed\n");
1115 err = -EINVAL;
1116 goto err_large_bar;
1117 }
1118
1119 pdd = kfd_bind_process_to_device(dev, p);
1120 if (IS_ERR(pdd)) {
1121 err = PTR_ERR(pdd);
1122 goto err_unlock;
1123 }
1124
1125 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1126 if (args->size != kfd_doorbell_process_slice(dev->kfd)) {
1127 err = -EINVAL;
1128 goto err_unlock;
1129 }
1130 offset = kfd_get_process_doorbells(pdd);
1131 if (!offset) {
1132 err = -ENOMEM;
1133 goto err_unlock;
1134 }
1135 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1136 if (args->size != PAGE_SIZE) {
1137 err = -EINVAL;
1138 goto err_unlock;
1139 }
1140 offset = dev->adev->rmmio_remap.bus_addr;
1141 if (!offset) {
1142 err = -ENOMEM;
1143 goto err_unlock;
1144 }
1145 }
1146
1147 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1148 dev->adev, args->va_addr, args->size,
1149 pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1150 flags, false);
1151
1152 if (err)
1153 goto err_unlock;
1154
1155 idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1156 if (idr_handle < 0) {
1157 err = -EFAULT;
1158 goto err_free;
1159 }
1160
1161 /* Update the VRAM usage count */
1162 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1163 uint64_t size = args->size;
1164
1165 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM)
1166 size >>= 1;
1167 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + PAGE_ALIGN(size));
1168 }
1169
1170 mutex_unlock(&p->mutex);
1171
1172 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1173 args->mmap_offset = offset;
1174
1175 /* MMIO is mapped through kfd device
1176 * Generate a kfd mmap offset
1177 */
1178 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1179 args->mmap_offset = KFD_MMAP_TYPE_MMIO
1180 | KFD_MMAP_GPU_ID(args->gpu_id);
1181
1182 return 0;
1183
1184 err_free:
1185 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem,
1186 pdd->drm_priv, NULL);
1187 err_unlock:
1188 err_pdd:
1189 err_large_bar:
1190 mutex_unlock(&p->mutex);
1191 return err;
1192 }
1193
kfd_ioctl_free_memory_of_gpu(struct file * filep,struct kfd_process * p,void * data)1194 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1195 struct kfd_process *p, void *data)
1196 {
1197 struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1198 struct kfd_process_device *pdd;
1199 void *mem;
1200 int ret;
1201 uint64_t size = 0;
1202
1203 mutex_lock(&p->mutex);
1204 /*
1205 * Safeguard to prevent user space from freeing signal BO.
1206 * It will be freed at process termination.
1207 */
1208 if (p->signal_handle && (p->signal_handle == args->handle)) {
1209 pr_err("Free signal BO is not allowed\n");
1210 ret = -EPERM;
1211 goto err_unlock;
1212 }
1213
1214 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1215 if (!pdd) {
1216 pr_err("Process device data doesn't exist\n");
1217 ret = -EINVAL;
1218 goto err_pdd;
1219 }
1220
1221 mem = kfd_process_device_translate_handle(
1222 pdd, GET_IDR_HANDLE(args->handle));
1223 if (!mem) {
1224 ret = -EINVAL;
1225 goto err_unlock;
1226 }
1227
1228 ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev,
1229 (struct kgd_mem *)mem, pdd->drm_priv, &size);
1230
1231 /* If freeing the buffer failed, leave the handle in place for
1232 * clean-up during process tear-down.
1233 */
1234 if (!ret)
1235 kfd_process_device_remove_obj_handle(
1236 pdd, GET_IDR_HANDLE(args->handle));
1237
1238 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size);
1239
1240 err_unlock:
1241 err_pdd:
1242 mutex_unlock(&p->mutex);
1243 return ret;
1244 }
1245
kfd_ioctl_map_memory_to_gpu(struct file * filep,struct kfd_process * p,void * data)1246 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1247 struct kfd_process *p, void *data)
1248 {
1249 struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1250 struct kfd_process_device *pdd, *peer_pdd;
1251 void *mem;
1252 struct kfd_node *dev;
1253 long err = 0;
1254 int i;
1255 uint32_t *devices_arr = NULL;
1256
1257 if (!args->n_devices) {
1258 pr_debug("Device IDs array empty\n");
1259 return -EINVAL;
1260 }
1261 if (args->n_success > args->n_devices) {
1262 pr_debug("n_success exceeds n_devices\n");
1263 return -EINVAL;
1264 }
1265
1266 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1267 GFP_KERNEL);
1268 if (!devices_arr)
1269 return -ENOMEM;
1270
1271 err = copy_from_user(devices_arr,
1272 (void __user *)args->device_ids_array_ptr,
1273 args->n_devices * sizeof(*devices_arr));
1274 if (err != 0) {
1275 err = -EFAULT;
1276 goto copy_from_user_failed;
1277 }
1278
1279 mutex_lock(&p->mutex);
1280 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1281 if (!pdd) {
1282 err = -EINVAL;
1283 goto get_process_device_data_failed;
1284 }
1285 dev = pdd->dev;
1286
1287 pdd = kfd_bind_process_to_device(dev, p);
1288 if (IS_ERR(pdd)) {
1289 err = PTR_ERR(pdd);
1290 goto bind_process_to_device_failed;
1291 }
1292
1293 mem = kfd_process_device_translate_handle(pdd,
1294 GET_IDR_HANDLE(args->handle));
1295 if (!mem) {
1296 err = -ENOMEM;
1297 goto get_mem_obj_from_handle_failed;
1298 }
1299
1300 for (i = args->n_success; i < args->n_devices; i++) {
1301 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1302 if (!peer_pdd) {
1303 pr_debug("Getting device by id failed for 0x%x\n",
1304 devices_arr[i]);
1305 err = -EINVAL;
1306 goto get_mem_obj_from_handle_failed;
1307 }
1308
1309 peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p);
1310 if (IS_ERR(peer_pdd)) {
1311 err = PTR_ERR(peer_pdd);
1312 goto get_mem_obj_from_handle_failed;
1313 }
1314
1315 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1316 peer_pdd->dev->adev, (struct kgd_mem *)mem,
1317 peer_pdd->drm_priv);
1318 if (err) {
1319 struct pci_dev *pdev = peer_pdd->dev->adev->pdev;
1320
1321 dev_err(dev->adev->dev,
1322 "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n",
1323 pci_domain_nr(pdev->bus),
1324 pdev->bus->number,
1325 PCI_SLOT(pdev->devfn),
1326 PCI_FUNC(pdev->devfn),
1327 ((struct kgd_mem *)mem)->domain);
1328 goto map_memory_to_gpu_failed;
1329 }
1330 args->n_success = i+1;
1331 }
1332
1333 err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true);
1334 if (err) {
1335 pr_debug("Sync memory failed, wait interrupted by user signal\n");
1336 goto sync_memory_failed;
1337 }
1338
1339 mutex_unlock(&p->mutex);
1340
1341 /* Flush TLBs after waiting for the page table updates to complete */
1342 for (i = 0; i < args->n_devices; i++) {
1343 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1344 if (WARN_ON_ONCE(!peer_pdd))
1345 continue;
1346 kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1347 }
1348 kfree(devices_arr);
1349
1350 return err;
1351
1352 get_process_device_data_failed:
1353 bind_process_to_device_failed:
1354 get_mem_obj_from_handle_failed:
1355 map_memory_to_gpu_failed:
1356 sync_memory_failed:
1357 mutex_unlock(&p->mutex);
1358 copy_from_user_failed:
1359 kfree(devices_arr);
1360
1361 return err;
1362 }
1363
kfd_ioctl_unmap_memory_from_gpu(struct file * filep,struct kfd_process * p,void * data)1364 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1365 struct kfd_process *p, void *data)
1366 {
1367 struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1368 struct kfd_process_device *pdd, *peer_pdd;
1369 void *mem;
1370 long err = 0;
1371 uint32_t *devices_arr = NULL, i;
1372 bool flush_tlb;
1373
1374 if (!args->n_devices) {
1375 pr_debug("Device IDs array empty\n");
1376 return -EINVAL;
1377 }
1378 if (args->n_success > args->n_devices) {
1379 pr_debug("n_success exceeds n_devices\n");
1380 return -EINVAL;
1381 }
1382
1383 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1384 GFP_KERNEL);
1385 if (!devices_arr)
1386 return -ENOMEM;
1387
1388 err = copy_from_user(devices_arr,
1389 (void __user *)args->device_ids_array_ptr,
1390 args->n_devices * sizeof(*devices_arr));
1391 if (err != 0) {
1392 err = -EFAULT;
1393 goto copy_from_user_failed;
1394 }
1395
1396 mutex_lock(&p->mutex);
1397 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1398 if (!pdd) {
1399 err = -EINVAL;
1400 goto bind_process_to_device_failed;
1401 }
1402
1403 mem = kfd_process_device_translate_handle(pdd,
1404 GET_IDR_HANDLE(args->handle));
1405 if (!mem) {
1406 err = -ENOMEM;
1407 goto get_mem_obj_from_handle_failed;
1408 }
1409
1410 for (i = args->n_success; i < args->n_devices; i++) {
1411 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1412 if (!peer_pdd) {
1413 err = -EINVAL;
1414 goto get_mem_obj_from_handle_failed;
1415 }
1416 err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1417 peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1418 if (err) {
1419 pr_err("Failed to unmap from gpu %d/%d\n",
1420 i, args->n_devices);
1421 goto unmap_memory_from_gpu_failed;
1422 }
1423 args->n_success = i+1;
1424 }
1425
1426 flush_tlb = kfd_flush_tlb_after_unmap(pdd->dev->kfd);
1427 if (flush_tlb) {
1428 err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev,
1429 (struct kgd_mem *) mem, true);
1430 if (err) {
1431 pr_debug("Sync memory failed, wait interrupted by user signal\n");
1432 goto sync_memory_failed;
1433 }
1434 }
1435 mutex_unlock(&p->mutex);
1436
1437 if (flush_tlb) {
1438 /* Flush TLBs after waiting for the page table updates to complete */
1439 for (i = 0; i < args->n_devices; i++) {
1440 peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1441 if (WARN_ON_ONCE(!peer_pdd))
1442 continue;
1443 kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT);
1444 }
1445 }
1446 kfree(devices_arr);
1447
1448 return 0;
1449
1450 bind_process_to_device_failed:
1451 get_mem_obj_from_handle_failed:
1452 unmap_memory_from_gpu_failed:
1453 sync_memory_failed:
1454 mutex_unlock(&p->mutex);
1455 copy_from_user_failed:
1456 kfree(devices_arr);
1457 return err;
1458 }
1459
kfd_ioctl_alloc_queue_gws(struct file * filep,struct kfd_process * p,void * data)1460 static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1461 struct kfd_process *p, void *data)
1462 {
1463 int retval;
1464 struct kfd_ioctl_alloc_queue_gws_args *args = data;
1465 struct queue *q;
1466 struct kfd_node *dev;
1467
1468 mutex_lock(&p->mutex);
1469 q = pqm_get_user_queue(&p->pqm, args->queue_id);
1470
1471 if (q) {
1472 dev = q->device;
1473 } else {
1474 retval = -EINVAL;
1475 goto out_unlock;
1476 }
1477
1478 if (!dev->gws) {
1479 retval = -ENODEV;
1480 goto out_unlock;
1481 }
1482
1483 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1484 retval = -ENODEV;
1485 goto out_unlock;
1486 }
1487
1488 if (p->debug_trap_enabled && (!kfd_dbg_has_gws_support(dev) ||
1489 kfd_dbg_has_cwsr_workaround(dev))) {
1490 retval = -EBUSY;
1491 goto out_unlock;
1492 }
1493
1494 retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1495 mutex_unlock(&p->mutex);
1496
1497 args->first_gws = 0;
1498 return retval;
1499
1500 out_unlock:
1501 mutex_unlock(&p->mutex);
1502 return retval;
1503 }
1504
kfd_ioctl_get_dmabuf_info(struct file * filep,struct kfd_process * p,void * data)1505 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1506 struct kfd_process *p, void *data)
1507 {
1508 struct kfd_ioctl_get_dmabuf_info_args *args = data;
1509 struct kfd_node *dev = NULL;
1510 struct amdgpu_device *dmabuf_adev;
1511 void *metadata_buffer = NULL;
1512 uint32_t flags;
1513 int8_t xcp_id;
1514 unsigned int i;
1515 int r;
1516
1517 /* Find a KFD GPU device that supports the get_dmabuf_info query */
1518 for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1519 if (dev)
1520 break;
1521 if (!dev)
1522 return -EINVAL;
1523
1524 if (args->metadata_ptr) {
1525 metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1526 if (!metadata_buffer)
1527 return -ENOMEM;
1528 }
1529
1530 /* Get dmabuf info from KGD */
1531 r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd,
1532 &dmabuf_adev, &args->size,
1533 metadata_buffer, args->metadata_size,
1534 &args->metadata_size, &flags, &xcp_id);
1535 if (r)
1536 goto exit;
1537
1538 if (xcp_id >= 0)
1539 args->gpu_id = dmabuf_adev->kfd.dev->nodes[xcp_id]->id;
1540 else
1541 args->gpu_id = dmabuf_adev->kfd.dev->nodes[0]->id;
1542 args->flags = flags;
1543
1544 /* Copy metadata buffer to user mode */
1545 if (metadata_buffer) {
1546 r = copy_to_user((void __user *)args->metadata_ptr,
1547 metadata_buffer, args->metadata_size);
1548 if (r != 0)
1549 r = -EFAULT;
1550 }
1551
1552 exit:
1553 kfree(metadata_buffer);
1554
1555 return r;
1556 }
1557
kfd_ioctl_import_dmabuf(struct file * filep,struct kfd_process * p,void * data)1558 static int kfd_ioctl_import_dmabuf(struct file *filep,
1559 struct kfd_process *p, void *data)
1560 {
1561 struct kfd_ioctl_import_dmabuf_args *args = data;
1562 struct kfd_process_device *pdd;
1563 struct dma_buf *dmabuf;
1564 int idr_handle;
1565 uint64_t size;
1566 void *mem;
1567 int r;
1568
1569 dmabuf = dma_buf_get(args->dmabuf_fd);
1570 if (IS_ERR(dmabuf))
1571 return PTR_ERR(dmabuf);
1572
1573 mutex_lock(&p->mutex);
1574 pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1575 if (!pdd) {
1576 r = -EINVAL;
1577 goto err_unlock;
1578 }
1579
1580 pdd = kfd_bind_process_to_device(pdd->dev, p);
1581 if (IS_ERR(pdd)) {
1582 r = PTR_ERR(pdd);
1583 goto err_unlock;
1584 }
1585
1586 r = amdgpu_amdkfd_gpuvm_import_dmabuf(pdd->dev->adev, dmabuf,
1587 args->va_addr, pdd->drm_priv,
1588 (struct kgd_mem **)&mem, &size,
1589 NULL);
1590 if (r)
1591 goto err_unlock;
1592
1593 idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1594 if (idr_handle < 0) {
1595 r = -EFAULT;
1596 goto err_free;
1597 }
1598
1599 mutex_unlock(&p->mutex);
1600 dma_buf_put(dmabuf);
1601
1602 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1603
1604 return 0;
1605
1606 err_free:
1607 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem,
1608 pdd->drm_priv, NULL);
1609 err_unlock:
1610 mutex_unlock(&p->mutex);
1611 dma_buf_put(dmabuf);
1612 return r;
1613 }
1614
kfd_ioctl_export_dmabuf(struct file * filep,struct kfd_process * p,void * data)1615 static int kfd_ioctl_export_dmabuf(struct file *filep,
1616 struct kfd_process *p, void *data)
1617 {
1618 struct kfd_ioctl_export_dmabuf_args *args = data;
1619 struct kfd_process_device *pdd;
1620 struct dma_buf *dmabuf;
1621 struct kfd_node *dev;
1622 void *mem;
1623 int ret = 0;
1624
1625 dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1626 if (!dev)
1627 return -EINVAL;
1628
1629 mutex_lock(&p->mutex);
1630
1631 pdd = kfd_get_process_device_data(dev, p);
1632 if (!pdd) {
1633 ret = -EINVAL;
1634 goto err_unlock;
1635 }
1636
1637 mem = kfd_process_device_translate_handle(pdd,
1638 GET_IDR_HANDLE(args->handle));
1639 if (!mem) {
1640 ret = -EINVAL;
1641 goto err_unlock;
1642 }
1643
1644 ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1645 mutex_unlock(&p->mutex);
1646 if (ret)
1647 goto err_out;
1648
1649 ret = dma_buf_fd(dmabuf, args->flags);
1650 if (ret < 0) {
1651 dma_buf_put(dmabuf);
1652 goto err_out;
1653 }
1654 /* dma_buf_fd assigns the reference count to the fd, no need to
1655 * put the reference here.
1656 */
1657 args->dmabuf_fd = ret;
1658
1659 return 0;
1660
1661 err_unlock:
1662 mutex_unlock(&p->mutex);
1663 err_out:
1664 return ret;
1665 }
1666
1667 /* Handle requests for watching SMI events */
kfd_ioctl_smi_events(struct file * filep,struct kfd_process * p,void * data)1668 static int kfd_ioctl_smi_events(struct file *filep,
1669 struct kfd_process *p, void *data)
1670 {
1671 struct kfd_ioctl_smi_events_args *args = data;
1672 struct kfd_process_device *pdd;
1673
1674 mutex_lock(&p->mutex);
1675
1676 pdd = kfd_process_device_data_by_id(p, args->gpuid);
1677 mutex_unlock(&p->mutex);
1678 if (!pdd)
1679 return -EINVAL;
1680
1681 return kfd_smi_event_open(pdd->dev, &args->anon_fd);
1682 }
1683
1684 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1685
kfd_ioctl_set_xnack_mode(struct file * filep,struct kfd_process * p,void * data)1686 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1687 struct kfd_process *p, void *data)
1688 {
1689 struct kfd_ioctl_set_xnack_mode_args *args = data;
1690 int r = 0;
1691
1692 mutex_lock(&p->mutex);
1693 if (args->xnack_enabled >= 0) {
1694 if (!list_empty(&p->pqm.queues)) {
1695 pr_debug("Process has user queues running\n");
1696 r = -EBUSY;
1697 goto out_unlock;
1698 }
1699
1700 if (p->xnack_enabled == args->xnack_enabled)
1701 goto out_unlock;
1702
1703 if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) {
1704 r = -EPERM;
1705 goto out_unlock;
1706 }
1707
1708 r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled);
1709 } else {
1710 args->xnack_enabled = p->xnack_enabled;
1711 }
1712
1713 out_unlock:
1714 mutex_unlock(&p->mutex);
1715
1716 return r;
1717 }
1718
kfd_ioctl_svm(struct file * filep,struct kfd_process * p,void * data)1719 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1720 {
1721 struct kfd_ioctl_svm_args *args = data;
1722 int r = 0;
1723
1724 pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1725 args->start_addr, args->size, args->op, args->nattr);
1726
1727 if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1728 return -EINVAL;
1729 if (!args->start_addr || !args->size)
1730 return -EINVAL;
1731
1732 r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1733 args->attrs);
1734
1735 return r;
1736 }
1737 #else
kfd_ioctl_set_xnack_mode(struct file * filep,struct kfd_process * p,void * data)1738 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1739 struct kfd_process *p, void *data)
1740 {
1741 return -EPERM;
1742 }
kfd_ioctl_svm(struct file * filep,struct kfd_process * p,void * data)1743 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1744 {
1745 return -EPERM;
1746 }
1747 #endif
1748
criu_checkpoint_process(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_offset)1749 static int criu_checkpoint_process(struct kfd_process *p,
1750 uint8_t __user *user_priv_data,
1751 uint64_t *priv_offset)
1752 {
1753 struct kfd_criu_process_priv_data process_priv;
1754 int ret;
1755
1756 memset(&process_priv, 0, sizeof(process_priv));
1757
1758 process_priv.version = KFD_CRIU_PRIV_VERSION;
1759 /* For CR, we don't consider negative xnack mode which is used for
1760 * querying without changing it, here 0 simply means disabled and 1
1761 * means enabled so retry for finding a valid PTE.
1762 */
1763 process_priv.xnack_mode = p->xnack_enabled ? 1 : 0;
1764
1765 ret = copy_to_user(user_priv_data + *priv_offset,
1766 &process_priv, sizeof(process_priv));
1767
1768 if (ret) {
1769 pr_err("Failed to copy process information to user\n");
1770 ret = -EFAULT;
1771 }
1772
1773 *priv_offset += sizeof(process_priv);
1774 return ret;
1775 }
1776
criu_checkpoint_devices(struct kfd_process * p,uint32_t num_devices,uint8_t __user * user_addr,uint8_t __user * user_priv_data,uint64_t * priv_offset)1777 static int criu_checkpoint_devices(struct kfd_process *p,
1778 uint32_t num_devices,
1779 uint8_t __user *user_addr,
1780 uint8_t __user *user_priv_data,
1781 uint64_t *priv_offset)
1782 {
1783 struct kfd_criu_device_priv_data *device_priv = NULL;
1784 struct kfd_criu_device_bucket *device_buckets = NULL;
1785 int ret = 0, i;
1786
1787 device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL);
1788 if (!device_buckets) {
1789 ret = -ENOMEM;
1790 goto exit;
1791 }
1792
1793 device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL);
1794 if (!device_priv) {
1795 ret = -ENOMEM;
1796 goto exit;
1797 }
1798
1799 for (i = 0; i < num_devices; i++) {
1800 struct kfd_process_device *pdd = p->pdds[i];
1801
1802 device_buckets[i].user_gpu_id = pdd->user_gpu_id;
1803 device_buckets[i].actual_gpu_id = pdd->dev->id;
1804
1805 /*
1806 * priv_data does not contain useful information for now and is reserved for
1807 * future use, so we do not set its contents.
1808 */
1809 }
1810
1811 ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets));
1812 if (ret) {
1813 pr_err("Failed to copy device information to user\n");
1814 ret = -EFAULT;
1815 goto exit;
1816 }
1817
1818 ret = copy_to_user(user_priv_data + *priv_offset,
1819 device_priv,
1820 num_devices * sizeof(*device_priv));
1821 if (ret) {
1822 pr_err("Failed to copy device information to user\n");
1823 ret = -EFAULT;
1824 }
1825 *priv_offset += num_devices * sizeof(*device_priv);
1826
1827 exit:
1828 kvfree(device_buckets);
1829 kvfree(device_priv);
1830 return ret;
1831 }
1832
get_process_num_bos(struct kfd_process * p)1833 static uint32_t get_process_num_bos(struct kfd_process *p)
1834 {
1835 uint32_t num_of_bos = 0;
1836 int i;
1837
1838 /* Run over all PDDs of the process */
1839 for (i = 0; i < p->n_pdds; i++) {
1840 struct kfd_process_device *pdd = p->pdds[i];
1841 void *mem;
1842 int id;
1843
1844 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1845 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
1846
1847 if (!kgd_mem->va || kgd_mem->va > pdd->gpuvm_base)
1848 num_of_bos++;
1849 }
1850 }
1851 return num_of_bos;
1852 }
1853
criu_get_prime_handle(struct kgd_mem * mem,int flags,u32 * shared_fd)1854 static int criu_get_prime_handle(struct kgd_mem *mem, int flags,
1855 u32 *shared_fd)
1856 {
1857 struct dma_buf *dmabuf;
1858 int ret;
1859
1860 ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1861 if (ret) {
1862 pr_err("dmabuf export failed for the BO\n");
1863 return ret;
1864 }
1865
1866 ret = dma_buf_fd(dmabuf, flags);
1867 if (ret < 0) {
1868 pr_err("dmabuf create fd failed, ret:%d\n", ret);
1869 goto out_free_dmabuf;
1870 }
1871
1872 *shared_fd = ret;
1873 return 0;
1874
1875 out_free_dmabuf:
1876 dma_buf_put(dmabuf);
1877 return ret;
1878 }
1879
criu_checkpoint_bos(struct kfd_process * p,uint32_t num_bos,uint8_t __user * user_bos,uint8_t __user * user_priv_data,uint64_t * priv_offset)1880 static int criu_checkpoint_bos(struct kfd_process *p,
1881 uint32_t num_bos,
1882 uint8_t __user *user_bos,
1883 uint8_t __user *user_priv_data,
1884 uint64_t *priv_offset)
1885 {
1886 struct kfd_criu_bo_bucket *bo_buckets;
1887 struct kfd_criu_bo_priv_data *bo_privs;
1888 int ret = 0, pdd_index, bo_index = 0, id;
1889 void *mem;
1890
1891 bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL);
1892 if (!bo_buckets)
1893 return -ENOMEM;
1894
1895 bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL);
1896 if (!bo_privs) {
1897 ret = -ENOMEM;
1898 goto exit;
1899 }
1900
1901 for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
1902 struct kfd_process_device *pdd = p->pdds[pdd_index];
1903 struct amdgpu_bo *dumper_bo;
1904 struct kgd_mem *kgd_mem;
1905
1906 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1907 struct kfd_criu_bo_bucket *bo_bucket;
1908 struct kfd_criu_bo_priv_data *bo_priv;
1909 int i, dev_idx = 0;
1910
1911 if (!mem) {
1912 ret = -ENOMEM;
1913 goto exit;
1914 }
1915
1916 kgd_mem = (struct kgd_mem *)mem;
1917 dumper_bo = kgd_mem->bo;
1918
1919 /* Skip checkpointing BOs that are used for Trap handler
1920 * code and state. Currently, these BOs have a VA that
1921 * is less GPUVM Base
1922 */
1923 if (kgd_mem->va && kgd_mem->va <= pdd->gpuvm_base)
1924 continue;
1925
1926 bo_bucket = &bo_buckets[bo_index];
1927 bo_priv = &bo_privs[bo_index];
1928
1929 bo_bucket->gpu_id = pdd->user_gpu_id;
1930 bo_bucket->addr = (uint64_t)kgd_mem->va;
1931 bo_bucket->size = amdgpu_bo_size(dumper_bo);
1932 bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags;
1933 bo_priv->idr_handle = id;
1934
1935 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1936 ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo,
1937 &bo_priv->user_addr);
1938 if (ret) {
1939 pr_err("Failed to obtain user address for user-pointer bo\n");
1940 goto exit;
1941 }
1942 }
1943 if (bo_bucket->alloc_flags
1944 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
1945 ret = criu_get_prime_handle(kgd_mem,
1946 bo_bucket->alloc_flags &
1947 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0,
1948 &bo_bucket->dmabuf_fd);
1949 if (ret)
1950 goto exit;
1951 } else {
1952 bo_bucket->dmabuf_fd = KFD_INVALID_FD;
1953 }
1954
1955 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
1956 bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL |
1957 KFD_MMAP_GPU_ID(pdd->dev->id);
1958 else if (bo_bucket->alloc_flags &
1959 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1960 bo_bucket->offset = KFD_MMAP_TYPE_MMIO |
1961 KFD_MMAP_GPU_ID(pdd->dev->id);
1962 else
1963 bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo);
1964
1965 for (i = 0; i < p->n_pdds; i++) {
1966 if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->dev->adev, kgd_mem))
1967 bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id;
1968 }
1969
1970 pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n"
1971 "gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x",
1972 bo_bucket->size,
1973 bo_bucket->addr,
1974 bo_bucket->offset,
1975 bo_bucket->gpu_id,
1976 bo_bucket->alloc_flags,
1977 bo_priv->idr_handle);
1978 bo_index++;
1979 }
1980 }
1981
1982 ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets));
1983 if (ret) {
1984 pr_err("Failed to copy BO information to user\n");
1985 ret = -EFAULT;
1986 goto exit;
1987 }
1988
1989 ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs));
1990 if (ret) {
1991 pr_err("Failed to copy BO priv information to user\n");
1992 ret = -EFAULT;
1993 goto exit;
1994 }
1995
1996 *priv_offset += num_bos * sizeof(*bo_privs);
1997
1998 exit:
1999 while (ret && bo_index--) {
2000 if (bo_buckets[bo_index].alloc_flags
2001 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
2002 close_fd(bo_buckets[bo_index].dmabuf_fd);
2003 }
2004
2005 kvfree(bo_buckets);
2006 kvfree(bo_privs);
2007 return ret;
2008 }
2009
criu_get_process_object_info(struct kfd_process * p,uint32_t * num_devices,uint32_t * num_bos,uint32_t * num_objects,uint64_t * objs_priv_size)2010 static int criu_get_process_object_info(struct kfd_process *p,
2011 uint32_t *num_devices,
2012 uint32_t *num_bos,
2013 uint32_t *num_objects,
2014 uint64_t *objs_priv_size)
2015 {
2016 uint64_t queues_priv_data_size, svm_priv_data_size, priv_size;
2017 uint32_t num_queues, num_events, num_svm_ranges;
2018 int ret;
2019
2020 *num_devices = p->n_pdds;
2021 *num_bos = get_process_num_bos(p);
2022
2023 ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size);
2024 if (ret)
2025 return ret;
2026
2027 num_events = kfd_get_num_events(p);
2028
2029 ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size);
2030 if (ret)
2031 return ret;
2032
2033 *num_objects = num_queues + num_events + num_svm_ranges;
2034
2035 if (objs_priv_size) {
2036 priv_size = sizeof(struct kfd_criu_process_priv_data);
2037 priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data);
2038 priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data);
2039 priv_size += queues_priv_data_size;
2040 priv_size += num_events * sizeof(struct kfd_criu_event_priv_data);
2041 priv_size += svm_priv_data_size;
2042 *objs_priv_size = priv_size;
2043 }
2044 return 0;
2045 }
2046
criu_checkpoint(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2047 static int criu_checkpoint(struct file *filep,
2048 struct kfd_process *p,
2049 struct kfd_ioctl_criu_args *args)
2050 {
2051 int ret;
2052 uint32_t num_devices, num_bos, num_objects;
2053 uint64_t priv_size, priv_offset = 0, bo_priv_offset;
2054
2055 if (!args->devices || !args->bos || !args->priv_data)
2056 return -EINVAL;
2057
2058 mutex_lock(&p->mutex);
2059
2060 if (!p->n_pdds) {
2061 pr_err("No pdd for given process\n");
2062 ret = -ENODEV;
2063 goto exit_unlock;
2064 }
2065
2066 /* Confirm all process queues are evicted */
2067 if (!p->queues_paused) {
2068 pr_err("Cannot dump process when queues are not in evicted state\n");
2069 /* CRIU plugin did not call op PROCESS_INFO before checkpointing */
2070 ret = -EINVAL;
2071 goto exit_unlock;
2072 }
2073
2074 ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size);
2075 if (ret)
2076 goto exit_unlock;
2077
2078 if (num_devices != args->num_devices ||
2079 num_bos != args->num_bos ||
2080 num_objects != args->num_objects ||
2081 priv_size != args->priv_data_size) {
2082
2083 ret = -EINVAL;
2084 goto exit_unlock;
2085 }
2086
2087 /* each function will store private data inside priv_data and adjust priv_offset */
2088 ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset);
2089 if (ret)
2090 goto exit_unlock;
2091
2092 ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices,
2093 (uint8_t __user *)args->priv_data, &priv_offset);
2094 if (ret)
2095 goto exit_unlock;
2096
2097 /* Leave room for BOs in the private data. They need to be restored
2098 * before events, but we checkpoint them last to simplify the error
2099 * handling.
2100 */
2101 bo_priv_offset = priv_offset;
2102 priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data);
2103
2104 if (num_objects) {
2105 ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data,
2106 &priv_offset);
2107 if (ret)
2108 goto exit_unlock;
2109
2110 ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data,
2111 &priv_offset);
2112 if (ret)
2113 goto exit_unlock;
2114
2115 ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset);
2116 if (ret)
2117 goto exit_unlock;
2118 }
2119
2120 /* This must be the last thing in this function that can fail.
2121 * Otherwise we leak dmabuf file descriptors.
2122 */
2123 ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos,
2124 (uint8_t __user *)args->priv_data, &bo_priv_offset);
2125
2126 exit_unlock:
2127 mutex_unlock(&p->mutex);
2128 if (ret)
2129 pr_err("Failed to dump CRIU ret:%d\n", ret);
2130 else
2131 pr_debug("CRIU dump ret:%d\n", ret);
2132
2133 return ret;
2134 }
2135
criu_restore_process(struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2136 static int criu_restore_process(struct kfd_process *p,
2137 struct kfd_ioctl_criu_args *args,
2138 uint64_t *priv_offset,
2139 uint64_t max_priv_data_size)
2140 {
2141 int ret = 0;
2142 struct kfd_criu_process_priv_data process_priv;
2143
2144 if (*priv_offset + sizeof(process_priv) > max_priv_data_size)
2145 return -EINVAL;
2146
2147 ret = copy_from_user(&process_priv,
2148 (void __user *)(args->priv_data + *priv_offset),
2149 sizeof(process_priv));
2150 if (ret) {
2151 pr_err("Failed to copy process private information from user\n");
2152 ret = -EFAULT;
2153 goto exit;
2154 }
2155 *priv_offset += sizeof(process_priv);
2156
2157 if (process_priv.version != KFD_CRIU_PRIV_VERSION) {
2158 pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n",
2159 process_priv.version, KFD_CRIU_PRIV_VERSION);
2160 return -EINVAL;
2161 }
2162
2163 pr_debug("Setting XNACK mode\n");
2164 if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) {
2165 pr_err("xnack mode cannot be set\n");
2166 ret = -EPERM;
2167 goto exit;
2168 } else {
2169 pr_debug("set xnack mode: %d\n", process_priv.xnack_mode);
2170 p->xnack_enabled = process_priv.xnack_mode;
2171 }
2172
2173 exit:
2174 return ret;
2175 }
2176
criu_restore_devices(struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2177 static int criu_restore_devices(struct kfd_process *p,
2178 struct kfd_ioctl_criu_args *args,
2179 uint64_t *priv_offset,
2180 uint64_t max_priv_data_size)
2181 {
2182 struct kfd_criu_device_bucket *device_buckets;
2183 struct kfd_criu_device_priv_data *device_privs;
2184 int ret = 0;
2185 uint32_t i;
2186
2187 if (args->num_devices != p->n_pdds)
2188 return -EINVAL;
2189
2190 if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size)
2191 return -EINVAL;
2192
2193 device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL);
2194 if (!device_buckets)
2195 return -ENOMEM;
2196
2197 ret = copy_from_user(device_buckets, (void __user *)args->devices,
2198 args->num_devices * sizeof(*device_buckets));
2199 if (ret) {
2200 pr_err("Failed to copy devices buckets from user\n");
2201 ret = -EFAULT;
2202 goto exit;
2203 }
2204
2205 for (i = 0; i < args->num_devices; i++) {
2206 struct kfd_node *dev;
2207 struct kfd_process_device *pdd;
2208 struct file *drm_file;
2209
2210 /* device private data is not currently used */
2211
2212 if (!device_buckets[i].user_gpu_id) {
2213 pr_err("Invalid user gpu_id\n");
2214 ret = -EINVAL;
2215 goto exit;
2216 }
2217
2218 dev = kfd_device_by_id(device_buckets[i].actual_gpu_id);
2219 if (!dev) {
2220 pr_err("Failed to find device with gpu_id = %x\n",
2221 device_buckets[i].actual_gpu_id);
2222 ret = -EINVAL;
2223 goto exit;
2224 }
2225
2226 pdd = kfd_get_process_device_data(dev, p);
2227 if (!pdd) {
2228 pr_err("Failed to get pdd for gpu_id = %x\n",
2229 device_buckets[i].actual_gpu_id);
2230 ret = -EINVAL;
2231 goto exit;
2232 }
2233 pdd->user_gpu_id = device_buckets[i].user_gpu_id;
2234
2235 drm_file = fget(device_buckets[i].drm_fd);
2236 if (!drm_file) {
2237 pr_err("Invalid render node file descriptor sent from plugin (%d)\n",
2238 device_buckets[i].drm_fd);
2239 ret = -EINVAL;
2240 goto exit;
2241 }
2242
2243 if (pdd->drm_file) {
2244 ret = -EINVAL;
2245 goto exit;
2246 }
2247
2248 /* create the vm using render nodes for kfd pdd */
2249 if (kfd_process_device_init_vm(pdd, drm_file)) {
2250 pr_err("could not init vm for given pdd\n");
2251 /* On success, the PDD keeps the drm_file reference */
2252 fput(drm_file);
2253 ret = -EINVAL;
2254 goto exit;
2255 }
2256 /*
2257 * pdd now already has the vm bound to render node so below api won't create a new
2258 * exclusive kfd mapping but use existing one with renderDXXX but is still needed
2259 * for iommu v2 binding and runtime pm.
2260 */
2261 pdd = kfd_bind_process_to_device(dev, p);
2262 if (IS_ERR(pdd)) {
2263 ret = PTR_ERR(pdd);
2264 goto exit;
2265 }
2266
2267 if (!pdd->qpd.proc_doorbells) {
2268 ret = kfd_alloc_process_doorbells(dev->kfd, pdd);
2269 if (ret)
2270 goto exit;
2271 }
2272 }
2273
2274 /*
2275 * We are not copying device private data from user as we are not using the data for now,
2276 * but we still adjust for its private data.
2277 */
2278 *priv_offset += args->num_devices * sizeof(*device_privs);
2279
2280 exit:
2281 kfree(device_buckets);
2282 return ret;
2283 }
2284
criu_restore_memory_of_gpu(struct kfd_process_device * pdd,struct kfd_criu_bo_bucket * bo_bucket,struct kfd_criu_bo_priv_data * bo_priv,struct kgd_mem ** kgd_mem)2285 static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd,
2286 struct kfd_criu_bo_bucket *bo_bucket,
2287 struct kfd_criu_bo_priv_data *bo_priv,
2288 struct kgd_mem **kgd_mem)
2289 {
2290 int idr_handle;
2291 int ret;
2292 const bool criu_resume = true;
2293 u64 offset;
2294
2295 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
2296 if (bo_bucket->size !=
2297 kfd_doorbell_process_slice(pdd->dev->kfd))
2298 return -EINVAL;
2299
2300 offset = kfd_get_process_doorbells(pdd);
2301 if (!offset)
2302 return -ENOMEM;
2303 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2304 /* MMIO BOs need remapped bus address */
2305 if (bo_bucket->size != PAGE_SIZE) {
2306 pr_err("Invalid page size\n");
2307 return -EINVAL;
2308 }
2309 offset = pdd->dev->adev->rmmio_remap.bus_addr;
2310 if (!offset) {
2311 pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n");
2312 return -ENOMEM;
2313 }
2314 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
2315 offset = bo_priv->user_addr;
2316 }
2317 /* Create the BO */
2318 ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr,
2319 bo_bucket->size, pdd->drm_priv, kgd_mem,
2320 &offset, bo_bucket->alloc_flags, criu_resume);
2321 if (ret) {
2322 pr_err("Could not create the BO\n");
2323 return ret;
2324 }
2325 pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n",
2326 bo_bucket->size, bo_bucket->addr, offset);
2327
2328 /* Restore previous IDR handle */
2329 pr_debug("Restoring old IDR handle for the BO");
2330 idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle,
2331 bo_priv->idr_handle + 1, GFP_KERNEL);
2332
2333 if (idr_handle < 0) {
2334 pr_err("Could not allocate idr\n");
2335 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv,
2336 NULL);
2337 return -ENOMEM;
2338 }
2339
2340 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
2341 bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id);
2342 if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2343 bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id);
2344 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
2345 bo_bucket->restored_offset = offset;
2346 } else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
2347 bo_bucket->restored_offset = offset;
2348 /* Update the VRAM usage count */
2349 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + bo_bucket->size);
2350 }
2351 return 0;
2352 }
2353
criu_restore_bo(struct kfd_process * p,struct kfd_criu_bo_bucket * bo_bucket,struct kfd_criu_bo_priv_data * bo_priv)2354 static int criu_restore_bo(struct kfd_process *p,
2355 struct kfd_criu_bo_bucket *bo_bucket,
2356 struct kfd_criu_bo_priv_data *bo_priv)
2357 {
2358 struct kfd_process_device *pdd;
2359 struct kgd_mem *kgd_mem;
2360 int ret;
2361 int j;
2362
2363 pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n",
2364 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags,
2365 bo_priv->idr_handle);
2366
2367 pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id);
2368 if (!pdd) {
2369 pr_err("Failed to get pdd\n");
2370 return -ENODEV;
2371 }
2372
2373 ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem);
2374 if (ret)
2375 return ret;
2376
2377 /* now map these BOs to GPU/s */
2378 for (j = 0; j < p->n_pdds; j++) {
2379 struct kfd_node *peer;
2380 struct kfd_process_device *peer_pdd;
2381
2382 if (!bo_priv->mapped_gpuids[j])
2383 break;
2384
2385 peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]);
2386 if (!peer_pdd)
2387 return -EINVAL;
2388
2389 peer = peer_pdd->dev;
2390
2391 peer_pdd = kfd_bind_process_to_device(peer, p);
2392 if (IS_ERR(peer_pdd))
2393 return PTR_ERR(peer_pdd);
2394
2395 ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem,
2396 peer_pdd->drm_priv);
2397 if (ret) {
2398 pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds);
2399 return ret;
2400 }
2401 }
2402
2403 pr_debug("map memory was successful for the BO\n");
2404 /* create the dmabuf object and export the bo */
2405 if (bo_bucket->alloc_flags
2406 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
2407 ret = criu_get_prime_handle(kgd_mem, DRM_RDWR,
2408 &bo_bucket->dmabuf_fd);
2409 if (ret)
2410 return ret;
2411 } else {
2412 bo_bucket->dmabuf_fd = KFD_INVALID_FD;
2413 }
2414
2415 return 0;
2416 }
2417
criu_restore_bos(struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2418 static int criu_restore_bos(struct kfd_process *p,
2419 struct kfd_ioctl_criu_args *args,
2420 uint64_t *priv_offset,
2421 uint64_t max_priv_data_size)
2422 {
2423 struct kfd_criu_bo_bucket *bo_buckets = NULL;
2424 struct kfd_criu_bo_priv_data *bo_privs = NULL;
2425 int ret = 0;
2426 uint32_t i = 0;
2427
2428 if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size)
2429 return -EINVAL;
2430
2431 /* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */
2432 amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info);
2433
2434 bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL);
2435 if (!bo_buckets)
2436 return -ENOMEM;
2437
2438 ret = copy_from_user(bo_buckets, (void __user *)args->bos,
2439 args->num_bos * sizeof(*bo_buckets));
2440 if (ret) {
2441 pr_err("Failed to copy BOs information from user\n");
2442 ret = -EFAULT;
2443 goto exit;
2444 }
2445
2446 bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL);
2447 if (!bo_privs) {
2448 ret = -ENOMEM;
2449 goto exit;
2450 }
2451
2452 ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset,
2453 args->num_bos * sizeof(*bo_privs));
2454 if (ret) {
2455 pr_err("Failed to copy BOs information from user\n");
2456 ret = -EFAULT;
2457 goto exit;
2458 }
2459 *priv_offset += args->num_bos * sizeof(*bo_privs);
2460
2461 /* Create and map new BOs */
2462 for (; i < args->num_bos; i++) {
2463 ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i]);
2464 if (ret) {
2465 pr_debug("Failed to restore BO[%d] ret%d\n", i, ret);
2466 goto exit;
2467 }
2468 } /* done */
2469
2470 /* Copy only the buckets back so user can read bo_buckets[N].restored_offset */
2471 ret = copy_to_user((void __user *)args->bos,
2472 bo_buckets,
2473 (args->num_bos * sizeof(*bo_buckets)));
2474 if (ret)
2475 ret = -EFAULT;
2476
2477 exit:
2478 while (ret && i--) {
2479 if (bo_buckets[i].alloc_flags
2480 & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
2481 close_fd(bo_buckets[i].dmabuf_fd);
2482 }
2483 kvfree(bo_buckets);
2484 kvfree(bo_privs);
2485 return ret;
2486 }
2487
criu_restore_objects(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args,uint64_t * priv_offset,uint64_t max_priv_data_size)2488 static int criu_restore_objects(struct file *filep,
2489 struct kfd_process *p,
2490 struct kfd_ioctl_criu_args *args,
2491 uint64_t *priv_offset,
2492 uint64_t max_priv_data_size)
2493 {
2494 int ret = 0;
2495 uint32_t i;
2496
2497 BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type));
2498 BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type));
2499 BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type));
2500
2501 for (i = 0; i < args->num_objects; i++) {
2502 uint32_t object_type;
2503
2504 if (*priv_offset + sizeof(object_type) > max_priv_data_size) {
2505 pr_err("Invalid private data size\n");
2506 return -EINVAL;
2507 }
2508
2509 ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset));
2510 if (ret) {
2511 pr_err("Failed to copy private information from user\n");
2512 goto exit;
2513 }
2514
2515 switch (object_type) {
2516 case KFD_CRIU_OBJECT_TYPE_QUEUE:
2517 ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data,
2518 priv_offset, max_priv_data_size);
2519 if (ret)
2520 goto exit;
2521 break;
2522 case KFD_CRIU_OBJECT_TYPE_EVENT:
2523 ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data,
2524 priv_offset, max_priv_data_size);
2525 if (ret)
2526 goto exit;
2527 break;
2528 case KFD_CRIU_OBJECT_TYPE_SVM_RANGE:
2529 ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data,
2530 priv_offset, max_priv_data_size);
2531 if (ret)
2532 goto exit;
2533 break;
2534 default:
2535 pr_err("Invalid object type:%u at index:%d\n", object_type, i);
2536 ret = -EINVAL;
2537 goto exit;
2538 }
2539 }
2540 exit:
2541 return ret;
2542 }
2543
criu_restore(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2544 static int criu_restore(struct file *filep,
2545 struct kfd_process *p,
2546 struct kfd_ioctl_criu_args *args)
2547 {
2548 uint64_t priv_offset = 0;
2549 int ret = 0;
2550
2551 pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n",
2552 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size);
2553
2554 if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size ||
2555 !args->num_devices || !args->num_bos)
2556 return -EINVAL;
2557
2558 mutex_lock(&p->mutex);
2559
2560 /*
2561 * Set the process to evicted state to avoid running any new queues before all the memory
2562 * mappings are ready.
2563 */
2564 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE);
2565 if (ret)
2566 goto exit_unlock;
2567
2568 /* Each function will adjust priv_offset based on how many bytes they consumed */
2569 ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size);
2570 if (ret)
2571 goto exit_unlock;
2572
2573 ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size);
2574 if (ret)
2575 goto exit_unlock;
2576
2577 ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size);
2578 if (ret)
2579 goto exit_unlock;
2580
2581 ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size);
2582 if (ret)
2583 goto exit_unlock;
2584
2585 if (priv_offset != args->priv_data_size) {
2586 pr_err("Invalid private data size\n");
2587 ret = -EINVAL;
2588 }
2589
2590 exit_unlock:
2591 mutex_unlock(&p->mutex);
2592 if (ret)
2593 pr_err("Failed to restore CRIU ret:%d\n", ret);
2594 else
2595 pr_debug("CRIU restore successful\n");
2596
2597 return ret;
2598 }
2599
criu_unpause(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2600 static int criu_unpause(struct file *filep,
2601 struct kfd_process *p,
2602 struct kfd_ioctl_criu_args *args)
2603 {
2604 int ret;
2605
2606 mutex_lock(&p->mutex);
2607
2608 if (!p->queues_paused) {
2609 mutex_unlock(&p->mutex);
2610 return -EINVAL;
2611 }
2612
2613 ret = kfd_process_restore_queues(p);
2614 if (ret)
2615 pr_err("Failed to unpause queues ret:%d\n", ret);
2616 else
2617 p->queues_paused = false;
2618
2619 mutex_unlock(&p->mutex);
2620
2621 return ret;
2622 }
2623
criu_resume(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2624 static int criu_resume(struct file *filep,
2625 struct kfd_process *p,
2626 struct kfd_ioctl_criu_args *args)
2627 {
2628 struct kfd_process *target = NULL;
2629 struct pid *pid = NULL;
2630 int ret = 0;
2631
2632 pr_debug("Inside %s, target pid for criu restore: %d\n", __func__,
2633 args->pid);
2634
2635 pid = find_get_pid(args->pid);
2636 if (!pid) {
2637 pr_err("Cannot find pid info for %i\n", args->pid);
2638 return -ESRCH;
2639 }
2640
2641 pr_debug("calling kfd_lookup_process_by_pid\n");
2642 target = kfd_lookup_process_by_pid(pid);
2643
2644 put_pid(pid);
2645
2646 if (!target) {
2647 pr_debug("Cannot find process info for %i\n", args->pid);
2648 return -ESRCH;
2649 }
2650
2651 mutex_lock(&target->mutex);
2652 ret = kfd_criu_resume_svm(target);
2653 if (ret) {
2654 pr_err("kfd_criu_resume_svm failed for %i\n", args->pid);
2655 goto exit;
2656 }
2657
2658 ret = amdgpu_amdkfd_criu_resume(target->kgd_process_info);
2659 if (ret)
2660 pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid);
2661
2662 exit:
2663 mutex_unlock(&target->mutex);
2664
2665 kfd_unref_process(target);
2666 return ret;
2667 }
2668
criu_process_info(struct file * filep,struct kfd_process * p,struct kfd_ioctl_criu_args * args)2669 static int criu_process_info(struct file *filep,
2670 struct kfd_process *p,
2671 struct kfd_ioctl_criu_args *args)
2672 {
2673 int ret = 0;
2674
2675 mutex_lock(&p->mutex);
2676
2677 if (!p->n_pdds) {
2678 pr_err("No pdd for given process\n");
2679 ret = -ENODEV;
2680 goto err_unlock;
2681 }
2682
2683 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT);
2684 if (ret)
2685 goto err_unlock;
2686
2687 p->queues_paused = true;
2688
2689 args->pid = task_pid_nr_ns(p->lead_thread,
2690 task_active_pid_ns(p->lead_thread));
2691
2692 ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos,
2693 &args->num_objects, &args->priv_data_size);
2694 if (ret)
2695 goto err_unlock;
2696
2697 dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n",
2698 args->num_devices, args->num_bos, args->num_objects,
2699 args->priv_data_size);
2700
2701 err_unlock:
2702 if (ret) {
2703 kfd_process_restore_queues(p);
2704 p->queues_paused = false;
2705 }
2706 mutex_unlock(&p->mutex);
2707 return ret;
2708 }
2709
kfd_ioctl_criu(struct file * filep,struct kfd_process * p,void * data)2710 static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data)
2711 {
2712 struct kfd_ioctl_criu_args *args = data;
2713 int ret;
2714
2715 dev_dbg(kfd_device, "CRIU operation: %d\n", args->op);
2716 switch (args->op) {
2717 case KFD_CRIU_OP_PROCESS_INFO:
2718 ret = criu_process_info(filep, p, args);
2719 break;
2720 case KFD_CRIU_OP_CHECKPOINT:
2721 ret = criu_checkpoint(filep, p, args);
2722 break;
2723 case KFD_CRIU_OP_UNPAUSE:
2724 ret = criu_unpause(filep, p, args);
2725 break;
2726 case KFD_CRIU_OP_RESTORE:
2727 ret = criu_restore(filep, p, args);
2728 break;
2729 case KFD_CRIU_OP_RESUME:
2730 ret = criu_resume(filep, p, args);
2731 break;
2732 default:
2733 dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op);
2734 ret = -EINVAL;
2735 break;
2736 }
2737
2738 if (ret)
2739 dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret);
2740
2741 return ret;
2742 }
2743
runtime_enable(struct kfd_process * p,uint64_t r_debug,bool enable_ttmp_setup)2744 static int runtime_enable(struct kfd_process *p, uint64_t r_debug,
2745 bool enable_ttmp_setup)
2746 {
2747 int i = 0, ret = 0;
2748
2749 if (p->is_runtime_retry)
2750 goto retry;
2751
2752 if (p->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_DISABLED)
2753 return -EBUSY;
2754
2755 for (i = 0; i < p->n_pdds; i++) {
2756 struct kfd_process_device *pdd = p->pdds[i];
2757
2758 if (pdd->qpd.queue_count)
2759 return -EEXIST;
2760
2761 /*
2762 * Setup TTMPs by default.
2763 * Note that this call must remain here for MES ADD QUEUE to
2764 * skip_process_ctx_clear unconditionally as the first call to
2765 * SET_SHADER_DEBUGGER clears any stale process context data
2766 * saved in MES.
2767 */
2768 if (pdd->dev->kfd->shared_resources.enable_mes)
2769 kfd_dbg_set_mes_debug_mode(pdd, !kfd_dbg_has_cwsr_workaround(pdd->dev));
2770 }
2771
2772 p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_ENABLED;
2773 p->runtime_info.r_debug = r_debug;
2774 p->runtime_info.ttmp_setup = enable_ttmp_setup;
2775
2776 if (p->runtime_info.ttmp_setup) {
2777 for (i = 0; i < p->n_pdds; i++) {
2778 struct kfd_process_device *pdd = p->pdds[i];
2779
2780 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) {
2781 amdgpu_gfx_off_ctrl(pdd->dev->adev, false);
2782 pdd->dev->kfd2kgd->enable_debug_trap(
2783 pdd->dev->adev,
2784 true,
2785 pdd->dev->vm_info.last_vmid_kfd);
2786 } else if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2787 pdd->spi_dbg_override = pdd->dev->kfd2kgd->enable_debug_trap(
2788 pdd->dev->adev,
2789 false,
2790 0);
2791 }
2792 }
2793 }
2794
2795 retry:
2796 if (p->debug_trap_enabled) {
2797 if (!p->is_runtime_retry) {
2798 kfd_dbg_trap_activate(p);
2799 kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2800 p, NULL, 0, false, NULL, 0);
2801 }
2802
2803 mutex_unlock(&p->mutex);
2804 ret = down_interruptible(&p->runtime_enable_sema);
2805 mutex_lock(&p->mutex);
2806
2807 p->is_runtime_retry = !!ret;
2808 }
2809
2810 return ret;
2811 }
2812
runtime_disable(struct kfd_process * p)2813 static int runtime_disable(struct kfd_process *p)
2814 {
2815 int i = 0, ret;
2816 bool was_enabled = p->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED;
2817
2818 p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_DISABLED;
2819 p->runtime_info.r_debug = 0;
2820
2821 if (p->debug_trap_enabled) {
2822 if (was_enabled)
2823 kfd_dbg_trap_deactivate(p, false, 0);
2824
2825 if (!p->is_runtime_retry)
2826 kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2827 p, NULL, 0, false, NULL, 0);
2828
2829 mutex_unlock(&p->mutex);
2830 ret = down_interruptible(&p->runtime_enable_sema);
2831 mutex_lock(&p->mutex);
2832
2833 p->is_runtime_retry = !!ret;
2834 if (ret)
2835 return ret;
2836 }
2837
2838 if (was_enabled && p->runtime_info.ttmp_setup) {
2839 for (i = 0; i < p->n_pdds; i++) {
2840 struct kfd_process_device *pdd = p->pdds[i];
2841
2842 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev))
2843 amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
2844 }
2845 }
2846
2847 p->runtime_info.ttmp_setup = false;
2848
2849 /* disable ttmp setup */
2850 for (i = 0; i < p->n_pdds; i++) {
2851 struct kfd_process_device *pdd = p->pdds[i];
2852
2853 if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2854 pdd->spi_dbg_override =
2855 pdd->dev->kfd2kgd->disable_debug_trap(
2856 pdd->dev->adev,
2857 false,
2858 pdd->dev->vm_info.last_vmid_kfd);
2859
2860 if (!pdd->dev->kfd->shared_resources.enable_mes)
2861 debug_refresh_runlist(pdd->dev->dqm);
2862 else
2863 kfd_dbg_set_mes_debug_mode(pdd,
2864 !kfd_dbg_has_cwsr_workaround(pdd->dev));
2865 }
2866 }
2867
2868 return 0;
2869 }
2870
kfd_ioctl_runtime_enable(struct file * filep,struct kfd_process * p,void * data)2871 static int kfd_ioctl_runtime_enable(struct file *filep, struct kfd_process *p, void *data)
2872 {
2873 struct kfd_ioctl_runtime_enable_args *args = data;
2874 int r;
2875
2876 mutex_lock(&p->mutex);
2877
2878 if (args->mode_mask & KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK)
2879 r = runtime_enable(p, args->r_debug,
2880 !!(args->mode_mask & KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK));
2881 else
2882 r = runtime_disable(p);
2883
2884 mutex_unlock(&p->mutex);
2885
2886 return r;
2887 }
2888
kfd_ioctl_set_debug_trap(struct file * filep,struct kfd_process * p,void * data)2889 static int kfd_ioctl_set_debug_trap(struct file *filep, struct kfd_process *p, void *data)
2890 {
2891 struct kfd_ioctl_dbg_trap_args *args = data;
2892 struct task_struct *thread = NULL;
2893 struct mm_struct *mm = NULL;
2894 struct pid *pid = NULL;
2895 struct kfd_process *target = NULL;
2896 struct kfd_process_device *pdd = NULL;
2897 int r = 0;
2898
2899 if (sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2900 pr_err("Debugging does not support sched_policy %i", sched_policy);
2901 return -EINVAL;
2902 }
2903
2904 pid = find_get_pid(args->pid);
2905 if (!pid) {
2906 pr_debug("Cannot find pid info for %i\n", args->pid);
2907 r = -ESRCH;
2908 goto out;
2909 }
2910
2911 thread = get_pid_task(pid, PIDTYPE_PID);
2912 if (!thread) {
2913 r = -ESRCH;
2914 goto out;
2915 }
2916
2917 mm = get_task_mm(thread);
2918 if (!mm) {
2919 r = -ESRCH;
2920 goto out;
2921 }
2922
2923 if (args->op == KFD_IOC_DBG_TRAP_ENABLE) {
2924 bool create_process;
2925
2926 rcu_read_lock();
2927 create_process = thread && thread != current && ptrace_parent(thread) == current;
2928 rcu_read_unlock();
2929
2930 target = create_process ? kfd_create_process(thread) :
2931 kfd_lookup_process_by_pid(pid);
2932 } else {
2933 target = kfd_lookup_process_by_pid(pid);
2934 }
2935
2936 if (IS_ERR_OR_NULL(target)) {
2937 pr_debug("Cannot find process PID %i to debug\n", args->pid);
2938 r = target ? PTR_ERR(target) : -ESRCH;
2939 goto out;
2940 }
2941
2942 /* Check if target is still PTRACED. */
2943 rcu_read_lock();
2944 if (target != p && args->op != KFD_IOC_DBG_TRAP_DISABLE
2945 && ptrace_parent(target->lead_thread) != current) {
2946 pr_err("PID %i is not PTRACED and cannot be debugged\n", args->pid);
2947 r = -EPERM;
2948 }
2949 rcu_read_unlock();
2950
2951 if (r)
2952 goto out;
2953
2954 mutex_lock(&target->mutex);
2955
2956 if (args->op != KFD_IOC_DBG_TRAP_ENABLE && !target->debug_trap_enabled) {
2957 pr_err("PID %i not debug enabled for op %i\n", args->pid, args->op);
2958 r = -EINVAL;
2959 goto unlock_out;
2960 }
2961
2962 if (target->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_ENABLED &&
2963 (args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE ||
2964 args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE ||
2965 args->op == KFD_IOC_DBG_TRAP_SUSPEND_QUEUES ||
2966 args->op == KFD_IOC_DBG_TRAP_RESUME_QUEUES ||
2967 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2968 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH ||
2969 args->op == KFD_IOC_DBG_TRAP_SET_FLAGS)) {
2970 r = -EPERM;
2971 goto unlock_out;
2972 }
2973
2974 if (args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2975 args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH) {
2976 int user_gpu_id = kfd_process_get_user_gpu_id(target,
2977 args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ?
2978 args->set_node_address_watch.gpu_id :
2979 args->clear_node_address_watch.gpu_id);
2980
2981 pdd = kfd_process_device_data_by_id(target, user_gpu_id);
2982 if (user_gpu_id == -EINVAL || !pdd) {
2983 r = -ENODEV;
2984 goto unlock_out;
2985 }
2986 }
2987
2988 switch (args->op) {
2989 case KFD_IOC_DBG_TRAP_ENABLE:
2990 if (target != p)
2991 target->debugger_process = p;
2992
2993 r = kfd_dbg_trap_enable(target,
2994 args->enable.dbg_fd,
2995 (void __user *)args->enable.rinfo_ptr,
2996 &args->enable.rinfo_size);
2997 if (!r)
2998 target->exception_enable_mask = args->enable.exception_mask;
2999
3000 break;
3001 case KFD_IOC_DBG_TRAP_DISABLE:
3002 r = kfd_dbg_trap_disable(target);
3003 break;
3004 case KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT:
3005 r = kfd_dbg_send_exception_to_runtime(target,
3006 args->send_runtime_event.gpu_id,
3007 args->send_runtime_event.queue_id,
3008 args->send_runtime_event.exception_mask);
3009 break;
3010 case KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED:
3011 kfd_dbg_set_enabled_debug_exception_mask(target,
3012 args->set_exceptions_enabled.exception_mask);
3013 break;
3014 case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE:
3015 r = kfd_dbg_trap_set_wave_launch_override(target,
3016 args->launch_override.override_mode,
3017 args->launch_override.enable_mask,
3018 args->launch_override.support_request_mask,
3019 &args->launch_override.enable_mask,
3020 &args->launch_override.support_request_mask);
3021 break;
3022 case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE:
3023 r = kfd_dbg_trap_set_wave_launch_mode(target,
3024 args->launch_mode.launch_mode);
3025 break;
3026 case KFD_IOC_DBG_TRAP_SUSPEND_QUEUES:
3027 r = suspend_queues(target,
3028 args->suspend_queues.num_queues,
3029 args->suspend_queues.grace_period,
3030 args->suspend_queues.exception_mask,
3031 (uint32_t *)args->suspend_queues.queue_array_ptr);
3032
3033 break;
3034 case KFD_IOC_DBG_TRAP_RESUME_QUEUES:
3035 r = resume_queues(target, args->resume_queues.num_queues,
3036 (uint32_t *)args->resume_queues.queue_array_ptr);
3037 break;
3038 case KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH:
3039 r = kfd_dbg_trap_set_dev_address_watch(pdd,
3040 args->set_node_address_watch.address,
3041 args->set_node_address_watch.mask,
3042 &args->set_node_address_watch.id,
3043 args->set_node_address_watch.mode);
3044 break;
3045 case KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH:
3046 r = kfd_dbg_trap_clear_dev_address_watch(pdd,
3047 args->clear_node_address_watch.id);
3048 break;
3049 case KFD_IOC_DBG_TRAP_SET_FLAGS:
3050 r = kfd_dbg_trap_set_flags(target, &args->set_flags.flags);
3051 break;
3052 case KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT:
3053 r = kfd_dbg_ev_query_debug_event(target,
3054 &args->query_debug_event.queue_id,
3055 &args->query_debug_event.gpu_id,
3056 args->query_debug_event.exception_mask,
3057 &args->query_debug_event.exception_mask);
3058 break;
3059 case KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO:
3060 r = kfd_dbg_trap_query_exception_info(target,
3061 args->query_exception_info.source_id,
3062 args->query_exception_info.exception_code,
3063 args->query_exception_info.clear_exception,
3064 (void __user *)args->query_exception_info.info_ptr,
3065 &args->query_exception_info.info_size);
3066 break;
3067 case KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT:
3068 r = pqm_get_queue_snapshot(&target->pqm,
3069 args->queue_snapshot.exception_mask,
3070 (void __user *)args->queue_snapshot.snapshot_buf_ptr,
3071 &args->queue_snapshot.num_queues,
3072 &args->queue_snapshot.entry_size);
3073 break;
3074 case KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT:
3075 r = kfd_dbg_trap_device_snapshot(target,
3076 args->device_snapshot.exception_mask,
3077 (void __user *)args->device_snapshot.snapshot_buf_ptr,
3078 &args->device_snapshot.num_devices,
3079 &args->device_snapshot.entry_size);
3080 break;
3081 default:
3082 pr_err("Invalid option: %i\n", args->op);
3083 r = -EINVAL;
3084 }
3085
3086 unlock_out:
3087 mutex_unlock(&target->mutex);
3088
3089 out:
3090 if (thread)
3091 put_task_struct(thread);
3092
3093 if (mm)
3094 mmput(mm);
3095
3096 if (pid)
3097 put_pid(pid);
3098
3099 if (target)
3100 kfd_unref_process(target);
3101
3102 return r;
3103 }
3104
3105 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
3106 [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
3107 .cmd_drv = 0, .name = #ioctl}
3108
3109 /** Ioctl table */
3110 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
3111 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
3112 kfd_ioctl_get_version, 0),
3113
3114 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
3115 kfd_ioctl_create_queue, 0),
3116
3117 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
3118 kfd_ioctl_destroy_queue, 0),
3119
3120 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
3121 kfd_ioctl_set_memory_policy, 0),
3122
3123 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
3124 kfd_ioctl_get_clock_counters, 0),
3125
3126 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
3127 kfd_ioctl_get_process_apertures, 0),
3128
3129 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
3130 kfd_ioctl_update_queue, 0),
3131
3132 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
3133 kfd_ioctl_create_event, 0),
3134
3135 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
3136 kfd_ioctl_destroy_event, 0),
3137
3138 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
3139 kfd_ioctl_set_event, 0),
3140
3141 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
3142 kfd_ioctl_reset_event, 0),
3143
3144 AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
3145 kfd_ioctl_wait_events, 0),
3146
3147 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED,
3148 kfd_ioctl_dbg_register, 0),
3149
3150 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED,
3151 kfd_ioctl_dbg_unregister, 0),
3152
3153 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED,
3154 kfd_ioctl_dbg_address_watch, 0),
3155
3156 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED,
3157 kfd_ioctl_dbg_wave_control, 0),
3158
3159 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
3160 kfd_ioctl_set_scratch_backing_va, 0),
3161
3162 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
3163 kfd_ioctl_get_tile_config, 0),
3164
3165 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
3166 kfd_ioctl_set_trap_handler, 0),
3167
3168 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
3169 kfd_ioctl_get_process_apertures_new, 0),
3170
3171 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
3172 kfd_ioctl_acquire_vm, 0),
3173
3174 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
3175 kfd_ioctl_alloc_memory_of_gpu, 0),
3176
3177 AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
3178 kfd_ioctl_free_memory_of_gpu, 0),
3179
3180 AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
3181 kfd_ioctl_map_memory_to_gpu, 0),
3182
3183 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
3184 kfd_ioctl_unmap_memory_from_gpu, 0),
3185
3186 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
3187 kfd_ioctl_set_cu_mask, 0),
3188
3189 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
3190 kfd_ioctl_get_queue_wave_state, 0),
3191
3192 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
3193 kfd_ioctl_get_dmabuf_info, 0),
3194
3195 AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
3196 kfd_ioctl_import_dmabuf, 0),
3197
3198 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
3199 kfd_ioctl_alloc_queue_gws, 0),
3200
3201 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
3202 kfd_ioctl_smi_events, 0),
3203
3204 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
3205
3206 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
3207 kfd_ioctl_set_xnack_mode, 0),
3208
3209 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP,
3210 kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE),
3211
3212 AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY,
3213 kfd_ioctl_get_available_memory, 0),
3214
3215 AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF,
3216 kfd_ioctl_export_dmabuf, 0),
3217
3218 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RUNTIME_ENABLE,
3219 kfd_ioctl_runtime_enable, 0),
3220
3221 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_TRAP,
3222 kfd_ioctl_set_debug_trap, 0),
3223 };
3224
3225 #define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls)
3226
kfd_ioctl(struct file * filep,unsigned int cmd,unsigned long arg)3227 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
3228 {
3229 struct kfd_process *process;
3230 amdkfd_ioctl_t *func;
3231 const struct amdkfd_ioctl_desc *ioctl = NULL;
3232 unsigned int nr = _IOC_NR(cmd);
3233 char stack_kdata[128];
3234 char *kdata = NULL;
3235 unsigned int usize, asize;
3236 int retcode = -EINVAL;
3237 bool ptrace_attached = false;
3238
3239 if (nr >= AMDKFD_CORE_IOCTL_COUNT)
3240 goto err_i1;
3241
3242 if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
3243 u32 amdkfd_size;
3244
3245 ioctl = &amdkfd_ioctls[nr];
3246
3247 amdkfd_size = _IOC_SIZE(ioctl->cmd);
3248 usize = asize = _IOC_SIZE(cmd);
3249 if (amdkfd_size > asize)
3250 asize = amdkfd_size;
3251
3252 cmd = ioctl->cmd;
3253 } else
3254 goto err_i1;
3255
3256 dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
3257
3258 /* Get the process struct from the filep. Only the process
3259 * that opened /dev/kfd can use the file descriptor. Child
3260 * processes need to create their own KFD device context.
3261 */
3262 process = filep->private_data;
3263
3264 rcu_read_lock();
3265 if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) &&
3266 ptrace_parent(process->lead_thread) == current)
3267 ptrace_attached = true;
3268 rcu_read_unlock();
3269
3270 if (process->lead_thread != current->group_leader
3271 && !ptrace_attached) {
3272 dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
3273 retcode = -EBADF;
3274 goto err_i1;
3275 }
3276
3277 /* Do not trust userspace, use our own definition */
3278 func = ioctl->func;
3279
3280 if (unlikely(!func)) {
3281 dev_dbg(kfd_device, "no function\n");
3282 retcode = -EINVAL;
3283 goto err_i1;
3284 }
3285
3286 /*
3287 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support
3288 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a
3289 * more priviledged access.
3290 */
3291 if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) {
3292 if (!capable(CAP_CHECKPOINT_RESTORE) &&
3293 !capable(CAP_SYS_ADMIN)) {
3294 retcode = -EACCES;
3295 goto err_i1;
3296 }
3297 }
3298
3299 if (cmd & (IOC_IN | IOC_OUT)) {
3300 if (asize <= sizeof(stack_kdata)) {
3301 kdata = stack_kdata;
3302 } else {
3303 kdata = kmalloc(asize, GFP_KERNEL);
3304 if (!kdata) {
3305 retcode = -ENOMEM;
3306 goto err_i1;
3307 }
3308 }
3309 if (asize > usize)
3310 memset(kdata + usize, 0, asize - usize);
3311 }
3312
3313 if (cmd & IOC_IN) {
3314 if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
3315 retcode = -EFAULT;
3316 goto err_i1;
3317 }
3318 } else if (cmd & IOC_OUT) {
3319 memset(kdata, 0, usize);
3320 }
3321
3322 retcode = func(filep, process, kdata);
3323
3324 if (cmd & IOC_OUT)
3325 if (copy_to_user((void __user *)arg, kdata, usize) != 0)
3326 retcode = -EFAULT;
3327
3328 err_i1:
3329 if (!ioctl)
3330 dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
3331 task_pid_nr(current), cmd, nr);
3332
3333 if (kdata != stack_kdata)
3334 kfree(kdata);
3335
3336 if (retcode)
3337 dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
3338 nr, arg, retcode);
3339
3340 return retcode;
3341 }
3342
kfd_mmio_mmap(struct kfd_node * dev,struct kfd_process * process,struct vm_area_struct * vma)3343 static int kfd_mmio_mmap(struct kfd_node *dev, struct kfd_process *process,
3344 struct vm_area_struct *vma)
3345 {
3346 phys_addr_t address;
3347
3348 if (vma->vm_end - vma->vm_start != PAGE_SIZE)
3349 return -EINVAL;
3350
3351 address = dev->adev->rmmio_remap.bus_addr;
3352
3353 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
3354 VM_DONTDUMP | VM_PFNMAP);
3355
3356 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
3357
3358 pr_debug("pasid 0x%x mapping mmio page\n"
3359 " target user address == 0x%08llX\n"
3360 " physical address == 0x%08llX\n"
3361 " vm_flags == 0x%04lX\n"
3362 " size == 0x%04lX\n",
3363 process->pasid, (unsigned long long) vma->vm_start,
3364 address, vma->vm_flags, PAGE_SIZE);
3365
3366 return io_remap_pfn_range(vma,
3367 vma->vm_start,
3368 address >> PAGE_SHIFT,
3369 PAGE_SIZE,
3370 vma->vm_page_prot);
3371 }
3372
3373
kfd_mmap(struct file * filp,struct vm_area_struct * vma)3374 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
3375 {
3376 struct kfd_process *process;
3377 struct kfd_node *dev = NULL;
3378 unsigned long mmap_offset;
3379 unsigned int gpu_id;
3380
3381 process = kfd_get_process(current);
3382 if (IS_ERR(process))
3383 return PTR_ERR(process);
3384
3385 mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
3386 gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
3387 if (gpu_id)
3388 dev = kfd_device_by_id(gpu_id);
3389
3390 switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
3391 case KFD_MMAP_TYPE_DOORBELL:
3392 if (!dev)
3393 return -ENODEV;
3394 return kfd_doorbell_mmap(dev, process, vma);
3395
3396 case KFD_MMAP_TYPE_EVENTS:
3397 return kfd_event_mmap(process, vma);
3398
3399 case KFD_MMAP_TYPE_RESERVED_MEM:
3400 if (!dev)
3401 return -ENODEV;
3402 return kfd_reserved_mem_mmap(dev, process, vma);
3403 case KFD_MMAP_TYPE_MMIO:
3404 if (!dev)
3405 return -ENODEV;
3406 return kfd_mmio_mmap(dev, process, vma);
3407 }
3408
3409 return -EFAULT;
3410 }
3411