1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
23
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "led.h"
27 #include "mesh.h"
28 #include "wep.h"
29 #include "wpa.h"
30 #include "tkip.h"
31 #include "wme.h"
32 #include "rate.h"
33
34 /*
35 * monitor mode reception
36 *
37 * This function cleans up the SKB, i.e. it removes all the stuff
38 * only useful for monitoring.
39 */
remove_monitor_info(struct ieee80211_local * local,struct sk_buff * skb)40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41 struct sk_buff *skb)
42 {
43 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
44 if (likely(skb->len > FCS_LEN))
45 __pskb_trim(skb, skb->len - FCS_LEN);
46 else {
47 /* driver bug */
48 WARN_ON(1);
49 dev_kfree_skb(skb);
50 skb = NULL;
51 }
52 }
53
54 return skb;
55 }
56
should_drop_frame(struct sk_buff * skb,int present_fcs_len)57 static inline int should_drop_frame(struct sk_buff *skb,
58 int present_fcs_len)
59 {
60 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
61 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
62
63 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
64 return 1;
65 if (unlikely(skb->len < 16 + present_fcs_len))
66 return 1;
67 if (ieee80211_is_ctl(hdr->frame_control) &&
68 !ieee80211_is_pspoll(hdr->frame_control) &&
69 !ieee80211_is_back_req(hdr->frame_control))
70 return 1;
71 return 0;
72 }
73
74 static int
ieee80211_rx_radiotap_len(struct ieee80211_local * local,struct ieee80211_rx_status * status)75 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
76 struct ieee80211_rx_status *status)
77 {
78 int len;
79
80 /* always present fields */
81 len = sizeof(struct ieee80211_radiotap_header) + 9;
82
83 if (status->flag & RX_FLAG_MACTIME_MPDU)
84 len += 8;
85 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
86 len += 1;
87
88 if (len & 1) /* padding for RX_FLAGS if necessary */
89 len++;
90
91 if (status->flag & RX_FLAG_HT) /* HT info */
92 len += 3;
93
94 return len;
95 }
96
97 /*
98 * ieee80211_add_rx_radiotap_header - add radiotap header
99 *
100 * add a radiotap header containing all the fields which the hardware provided.
101 */
102 static void
ieee80211_add_rx_radiotap_header(struct ieee80211_local * local,struct sk_buff * skb,struct ieee80211_rate * rate,int rtap_len,bool has_fcs)103 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
104 struct sk_buff *skb,
105 struct ieee80211_rate *rate,
106 int rtap_len, bool has_fcs)
107 {
108 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
109 struct ieee80211_radiotap_header *rthdr;
110 unsigned char *pos;
111 u16 rx_flags = 0;
112
113 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
114 memset(rthdr, 0, rtap_len);
115
116 /* radiotap header, set always present flags */
117 rthdr->it_present =
118 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
119 (1 << IEEE80211_RADIOTAP_CHANNEL) |
120 (1 << IEEE80211_RADIOTAP_ANTENNA) |
121 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
122 rthdr->it_len = cpu_to_le16(rtap_len);
123
124 pos = (unsigned char *)(rthdr+1);
125
126 /* the order of the following fields is important */
127
128 /* IEEE80211_RADIOTAP_TSFT */
129 if (status->flag & RX_FLAG_MACTIME_MPDU) {
130 put_unaligned_le64(status->mactime, pos);
131 rthdr->it_present |=
132 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
133 pos += 8;
134 }
135
136 /* IEEE80211_RADIOTAP_FLAGS */
137 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
138 *pos |= IEEE80211_RADIOTAP_F_FCS;
139 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
140 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
141 if (status->flag & RX_FLAG_SHORTPRE)
142 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
143 pos++;
144
145 /* IEEE80211_RADIOTAP_RATE */
146 if (!rate || status->flag & RX_FLAG_HT) {
147 /*
148 * Without rate information don't add it. If we have,
149 * MCS information is a separate field in radiotap,
150 * added below. The byte here is needed as padding
151 * for the channel though, so initialise it to 0.
152 */
153 *pos = 0;
154 } else {
155 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
156 *pos = rate->bitrate / 5;
157 }
158 pos++;
159
160 /* IEEE80211_RADIOTAP_CHANNEL */
161 put_unaligned_le16(status->freq, pos);
162 pos += 2;
163 if (status->band == IEEE80211_BAND_5GHZ)
164 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
165 pos);
166 else if (status->flag & RX_FLAG_HT)
167 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
168 pos);
169 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
170 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
171 pos);
172 else if (rate)
173 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
174 pos);
175 else
176 put_unaligned_le16(IEEE80211_CHAN_2GHZ, pos);
177 pos += 2;
178
179 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
180 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
181 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
182 *pos = status->signal;
183 rthdr->it_present |=
184 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
185 pos++;
186 }
187
188 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
189
190 /* IEEE80211_RADIOTAP_ANTENNA */
191 *pos = status->antenna;
192 pos++;
193
194 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
195
196 /* IEEE80211_RADIOTAP_RX_FLAGS */
197 /* ensure 2 byte alignment for the 2 byte field as required */
198 if ((pos - (u8 *)rthdr) & 1)
199 pos++;
200 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
201 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
202 put_unaligned_le16(rx_flags, pos);
203 pos += 2;
204
205 if (status->flag & RX_FLAG_HT) {
206 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
207 *pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS |
208 IEEE80211_RADIOTAP_MCS_HAVE_GI |
209 IEEE80211_RADIOTAP_MCS_HAVE_BW;
210 *pos = 0;
211 if (status->flag & RX_FLAG_SHORT_GI)
212 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
213 if (status->flag & RX_FLAG_40MHZ)
214 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
215 pos++;
216 *pos++ = status->rate_idx;
217 }
218 }
219
220 /*
221 * This function copies a received frame to all monitor interfaces and
222 * returns a cleaned-up SKB that no longer includes the FCS nor the
223 * radiotap header the driver might have added.
224 */
225 static struct sk_buff *
ieee80211_rx_monitor(struct ieee80211_local * local,struct sk_buff * origskb,struct ieee80211_rate * rate)226 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
227 struct ieee80211_rate *rate)
228 {
229 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
230 struct ieee80211_sub_if_data *sdata;
231 int needed_headroom;
232 struct sk_buff *skb, *skb2;
233 struct net_device *prev_dev = NULL;
234 int present_fcs_len = 0;
235
236 /*
237 * First, we may need to make a copy of the skb because
238 * (1) we need to modify it for radiotap (if not present), and
239 * (2) the other RX handlers will modify the skb we got.
240 *
241 * We don't need to, of course, if we aren't going to return
242 * the SKB because it has a bad FCS/PLCP checksum.
243 */
244
245 /* room for the radiotap header based on driver features */
246 needed_headroom = ieee80211_rx_radiotap_len(local, status);
247
248 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
249 present_fcs_len = FCS_LEN;
250
251 /* make sure hdr->frame_control is on the linear part */
252 if (!pskb_may_pull(origskb, 2)) {
253 dev_kfree_skb(origskb);
254 return NULL;
255 }
256
257 if (!local->monitors) {
258 if (should_drop_frame(origskb, present_fcs_len)) {
259 dev_kfree_skb(origskb);
260 return NULL;
261 }
262
263 return remove_monitor_info(local, origskb);
264 }
265
266 if (should_drop_frame(origskb, present_fcs_len)) {
267 /* only need to expand headroom if necessary */
268 skb = origskb;
269 origskb = NULL;
270
271 /*
272 * This shouldn't trigger often because most devices have an
273 * RX header they pull before we get here, and that should
274 * be big enough for our radiotap information. We should
275 * probably export the length to drivers so that we can have
276 * them allocate enough headroom to start with.
277 */
278 if (skb_headroom(skb) < needed_headroom &&
279 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
280 dev_kfree_skb(skb);
281 return NULL;
282 }
283 } else {
284 /*
285 * Need to make a copy and possibly remove radiotap header
286 * and FCS from the original.
287 */
288 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
289
290 origskb = remove_monitor_info(local, origskb);
291
292 if (!skb)
293 return origskb;
294 }
295
296 /* prepend radiotap information */
297 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
298 true);
299
300 skb_reset_mac_header(skb);
301 skb->ip_summed = CHECKSUM_UNNECESSARY;
302 skb->pkt_type = PACKET_OTHERHOST;
303 skb->protocol = htons(ETH_P_802_2);
304
305 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
306 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
307 continue;
308
309 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
310 continue;
311
312 if (!ieee80211_sdata_running(sdata))
313 continue;
314
315 if (prev_dev) {
316 skb2 = skb_clone(skb, GFP_ATOMIC);
317 if (skb2) {
318 skb2->dev = prev_dev;
319 netif_receive_skb(skb2);
320 }
321 }
322
323 prev_dev = sdata->dev;
324 sdata->dev->stats.rx_packets++;
325 sdata->dev->stats.rx_bytes += skb->len;
326 }
327
328 if (prev_dev) {
329 skb->dev = prev_dev;
330 netif_receive_skb(skb);
331 } else
332 dev_kfree_skb(skb);
333
334 return origskb;
335 }
336
337
ieee80211_parse_qos(struct ieee80211_rx_data * rx)338 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
339 {
340 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
341 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
342 int tid, seqno_idx, security_idx;
343
344 /* does the frame have a qos control field? */
345 if (ieee80211_is_data_qos(hdr->frame_control)) {
346 u8 *qc = ieee80211_get_qos_ctl(hdr);
347 /* frame has qos control */
348 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
349 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
350 status->rx_flags |= IEEE80211_RX_AMSDU;
351
352 seqno_idx = tid;
353 security_idx = tid;
354 } else {
355 /*
356 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
357 *
358 * Sequence numbers for management frames, QoS data
359 * frames with a broadcast/multicast address in the
360 * Address 1 field, and all non-QoS data frames sent
361 * by QoS STAs are assigned using an additional single
362 * modulo-4096 counter, [...]
363 *
364 * We also use that counter for non-QoS STAs.
365 */
366 seqno_idx = NUM_RX_DATA_QUEUES;
367 security_idx = 0;
368 if (ieee80211_is_mgmt(hdr->frame_control))
369 security_idx = NUM_RX_DATA_QUEUES;
370 tid = 0;
371 }
372
373 rx->seqno_idx = seqno_idx;
374 rx->security_idx = security_idx;
375 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
376 * For now, set skb->priority to 0 for other cases. */
377 rx->skb->priority = (tid > 7) ? 0 : tid;
378 }
379
380 /**
381 * DOC: Packet alignment
382 *
383 * Drivers always need to pass packets that are aligned to two-byte boundaries
384 * to the stack.
385 *
386 * Additionally, should, if possible, align the payload data in a way that
387 * guarantees that the contained IP header is aligned to a four-byte
388 * boundary. In the case of regular frames, this simply means aligning the
389 * payload to a four-byte boundary (because either the IP header is directly
390 * contained, or IV/RFC1042 headers that have a length divisible by four are
391 * in front of it). If the payload data is not properly aligned and the
392 * architecture doesn't support efficient unaligned operations, mac80211
393 * will align the data.
394 *
395 * With A-MSDU frames, however, the payload data address must yield two modulo
396 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
397 * push the IP header further back to a multiple of four again. Thankfully, the
398 * specs were sane enough this time around to require padding each A-MSDU
399 * subframe to a length that is a multiple of four.
400 *
401 * Padding like Atheros hardware adds which is between the 802.11 header and
402 * the payload is not supported, the driver is required to move the 802.11
403 * header to be directly in front of the payload in that case.
404 */
ieee80211_verify_alignment(struct ieee80211_rx_data * rx)405 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
406 {
407 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
408 WARN_ONCE((unsigned long)rx->skb->data & 1,
409 "unaligned packet at 0x%p\n", rx->skb->data);
410 #endif
411 }
412
413
414 /* rx handlers */
415
416 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_passive_scan(struct ieee80211_rx_data * rx)417 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
418 {
419 struct ieee80211_local *local = rx->local;
420 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
421 struct sk_buff *skb = rx->skb;
422
423 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
424 !local->sched_scanning))
425 return RX_CONTINUE;
426
427 if (test_bit(SCAN_HW_SCANNING, &local->scanning) ||
428 test_bit(SCAN_SW_SCANNING, &local->scanning) ||
429 local->sched_scanning)
430 return ieee80211_scan_rx(rx->sdata, skb);
431
432 /* scanning finished during invoking of handlers */
433 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
434 return RX_DROP_UNUSABLE;
435 }
436
437
ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff * skb)438 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
439 {
440 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
441
442 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
443 return 0;
444
445 return ieee80211_is_robust_mgmt_frame(hdr);
446 }
447
448
ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff * skb)449 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
450 {
451 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
452
453 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
454 return 0;
455
456 return ieee80211_is_robust_mgmt_frame(hdr);
457 }
458
459
460 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
ieee80211_get_mmie_keyidx(struct sk_buff * skb)461 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
462 {
463 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
464 struct ieee80211_mmie *mmie;
465
466 if (skb->len < 24 + sizeof(*mmie) ||
467 !is_multicast_ether_addr(hdr->da))
468 return -1;
469
470 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
471 return -1; /* not a robust management frame */
472
473 mmie = (struct ieee80211_mmie *)
474 (skb->data + skb->len - sizeof(*mmie));
475 if (mmie->element_id != WLAN_EID_MMIE ||
476 mmie->length != sizeof(*mmie) - 2)
477 return -1;
478
479 return le16_to_cpu(mmie->key_id);
480 }
481
482
483 static ieee80211_rx_result
ieee80211_rx_mesh_check(struct ieee80211_rx_data * rx)484 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
485 {
486 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
487 char *dev_addr = rx->sdata->vif.addr;
488
489 if (ieee80211_is_data(hdr->frame_control)) {
490 if (is_multicast_ether_addr(hdr->addr1)) {
491 if (ieee80211_has_tods(hdr->frame_control) ||
492 !ieee80211_has_fromds(hdr->frame_control))
493 return RX_DROP_MONITOR;
494 if (compare_ether_addr(hdr->addr3, dev_addr) == 0)
495 return RX_DROP_MONITOR;
496 } else {
497 if (!ieee80211_has_a4(hdr->frame_control))
498 return RX_DROP_MONITOR;
499 if (compare_ether_addr(hdr->addr4, dev_addr) == 0)
500 return RX_DROP_MONITOR;
501 }
502 }
503
504 /* If there is not an established peer link and this is not a peer link
505 * establisment frame, beacon or probe, drop the frame.
506 */
507
508 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
509 struct ieee80211_mgmt *mgmt;
510
511 if (!ieee80211_is_mgmt(hdr->frame_control))
512 return RX_DROP_MONITOR;
513
514 if (ieee80211_is_action(hdr->frame_control)) {
515 u8 category;
516
517 /* make sure category field is present */
518 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
519 return RX_DROP_MONITOR;
520
521 mgmt = (struct ieee80211_mgmt *)hdr;
522 category = mgmt->u.action.category;
523 if (category != WLAN_CATEGORY_MESH_ACTION &&
524 category != WLAN_CATEGORY_SELF_PROTECTED)
525 return RX_DROP_MONITOR;
526 return RX_CONTINUE;
527 }
528
529 if (ieee80211_is_probe_req(hdr->frame_control) ||
530 ieee80211_is_probe_resp(hdr->frame_control) ||
531 ieee80211_is_beacon(hdr->frame_control) ||
532 ieee80211_is_auth(hdr->frame_control))
533 return RX_CONTINUE;
534
535 return RX_DROP_MONITOR;
536
537 }
538
539 return RX_CONTINUE;
540 }
541
542 #define SEQ_MODULO 0x1000
543 #define SEQ_MASK 0xfff
544
seq_less(u16 sq1,u16 sq2)545 static inline int seq_less(u16 sq1, u16 sq2)
546 {
547 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
548 }
549
seq_inc(u16 sq)550 static inline u16 seq_inc(u16 sq)
551 {
552 return (sq + 1) & SEQ_MASK;
553 }
554
seq_sub(u16 sq1,u16 sq2)555 static inline u16 seq_sub(u16 sq1, u16 sq2)
556 {
557 return (sq1 - sq2) & SEQ_MASK;
558 }
559
560
ieee80211_release_reorder_frame(struct ieee80211_hw * hw,struct tid_ampdu_rx * tid_agg_rx,int index)561 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
562 struct tid_ampdu_rx *tid_agg_rx,
563 int index)
564 {
565 struct ieee80211_local *local = hw_to_local(hw);
566 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
567 struct ieee80211_rx_status *status;
568
569 lockdep_assert_held(&tid_agg_rx->reorder_lock);
570
571 if (!skb)
572 goto no_frame;
573
574 /* release the frame from the reorder ring buffer */
575 tid_agg_rx->stored_mpdu_num--;
576 tid_agg_rx->reorder_buf[index] = NULL;
577 status = IEEE80211_SKB_RXCB(skb);
578 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
579 skb_queue_tail(&local->rx_skb_queue, skb);
580
581 no_frame:
582 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
583 }
584
ieee80211_release_reorder_frames(struct ieee80211_hw * hw,struct tid_ampdu_rx * tid_agg_rx,u16 head_seq_num)585 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
586 struct tid_ampdu_rx *tid_agg_rx,
587 u16 head_seq_num)
588 {
589 int index;
590
591 lockdep_assert_held(&tid_agg_rx->reorder_lock);
592
593 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
594 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
595 tid_agg_rx->buf_size;
596 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
597 }
598 }
599
600 /*
601 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
602 * the skb was added to the buffer longer than this time ago, the earlier
603 * frames that have not yet been received are assumed to be lost and the skb
604 * can be released for processing. This may also release other skb's from the
605 * reorder buffer if there are no additional gaps between the frames.
606 *
607 * Callers must hold tid_agg_rx->reorder_lock.
608 */
609 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
610
ieee80211_sta_reorder_release(struct ieee80211_hw * hw,struct tid_ampdu_rx * tid_agg_rx)611 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
612 struct tid_ampdu_rx *tid_agg_rx)
613 {
614 int index, j;
615
616 lockdep_assert_held(&tid_agg_rx->reorder_lock);
617
618 /* release the buffer until next missing frame */
619 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
620 tid_agg_rx->buf_size;
621 if (!tid_agg_rx->reorder_buf[index] &&
622 tid_agg_rx->stored_mpdu_num) {
623 /*
624 * No buffers ready to be released, but check whether any
625 * frames in the reorder buffer have timed out.
626 */
627 int skipped = 1;
628 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
629 j = (j + 1) % tid_agg_rx->buf_size) {
630 if (!tid_agg_rx->reorder_buf[j]) {
631 skipped++;
632 continue;
633 }
634 if (skipped &&
635 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
636 HT_RX_REORDER_BUF_TIMEOUT))
637 goto set_release_timer;
638
639 #ifdef CONFIG_MAC80211_HT_DEBUG
640 if (net_ratelimit())
641 wiphy_debug(hw->wiphy,
642 "release an RX reorder frame due to timeout on earlier frames\n");
643 #endif
644 ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
645
646 /*
647 * Increment the head seq# also for the skipped slots.
648 */
649 tid_agg_rx->head_seq_num =
650 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
651 skipped = 0;
652 }
653 } else while (tid_agg_rx->reorder_buf[index]) {
654 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
655 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
656 tid_agg_rx->buf_size;
657 }
658
659 if (tid_agg_rx->stored_mpdu_num) {
660 j = index = seq_sub(tid_agg_rx->head_seq_num,
661 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
662
663 for (; j != (index - 1) % tid_agg_rx->buf_size;
664 j = (j + 1) % tid_agg_rx->buf_size) {
665 if (tid_agg_rx->reorder_buf[j])
666 break;
667 }
668
669 set_release_timer:
670
671 mod_timer(&tid_agg_rx->reorder_timer,
672 tid_agg_rx->reorder_time[j] + 1 +
673 HT_RX_REORDER_BUF_TIMEOUT);
674 } else {
675 del_timer(&tid_agg_rx->reorder_timer);
676 }
677 }
678
679 /*
680 * As this function belongs to the RX path it must be under
681 * rcu_read_lock protection. It returns false if the frame
682 * can be processed immediately, true if it was consumed.
683 */
ieee80211_sta_manage_reorder_buf(struct ieee80211_hw * hw,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff * skb)684 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
685 struct tid_ampdu_rx *tid_agg_rx,
686 struct sk_buff *skb)
687 {
688 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
689 u16 sc = le16_to_cpu(hdr->seq_ctrl);
690 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
691 u16 head_seq_num, buf_size;
692 int index;
693 bool ret = true;
694
695 spin_lock(&tid_agg_rx->reorder_lock);
696
697 buf_size = tid_agg_rx->buf_size;
698 head_seq_num = tid_agg_rx->head_seq_num;
699
700 /* frame with out of date sequence number */
701 if (seq_less(mpdu_seq_num, head_seq_num)) {
702 dev_kfree_skb(skb);
703 goto out;
704 }
705
706 /*
707 * If frame the sequence number exceeds our buffering window
708 * size release some previous frames to make room for this one.
709 */
710 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
711 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
712 /* release stored frames up to new head to stack */
713 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num);
714 }
715
716 /* Now the new frame is always in the range of the reordering buffer */
717
718 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
719
720 /* check if we already stored this frame */
721 if (tid_agg_rx->reorder_buf[index]) {
722 dev_kfree_skb(skb);
723 goto out;
724 }
725
726 /*
727 * If the current MPDU is in the right order and nothing else
728 * is stored we can process it directly, no need to buffer it.
729 * If it is first but there's something stored, we may be able
730 * to release frames after this one.
731 */
732 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
733 tid_agg_rx->stored_mpdu_num == 0) {
734 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
735 ret = false;
736 goto out;
737 }
738
739 /* put the frame in the reordering buffer */
740 tid_agg_rx->reorder_buf[index] = skb;
741 tid_agg_rx->reorder_time[index] = jiffies;
742 tid_agg_rx->stored_mpdu_num++;
743 ieee80211_sta_reorder_release(hw, tid_agg_rx);
744
745 out:
746 spin_unlock(&tid_agg_rx->reorder_lock);
747 return ret;
748 }
749
750 /*
751 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
752 * true if the MPDU was buffered, false if it should be processed.
753 */
ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data * rx)754 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
755 {
756 struct sk_buff *skb = rx->skb;
757 struct ieee80211_local *local = rx->local;
758 struct ieee80211_hw *hw = &local->hw;
759 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
760 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
761 struct sta_info *sta = rx->sta;
762 struct tid_ampdu_rx *tid_agg_rx;
763 u16 sc;
764 u8 tid, ack_policy;
765
766 if (!ieee80211_is_data_qos(hdr->frame_control) ||
767 is_multicast_ether_addr(hdr->addr1))
768 goto dont_reorder;
769
770 /*
771 * filter the QoS data rx stream according to
772 * STA/TID and check if this STA/TID is on aggregation
773 */
774
775 if (!sta)
776 goto dont_reorder;
777
778 ack_policy = *ieee80211_get_qos_ctl(hdr) &
779 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
780 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
781
782 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
783 if (!tid_agg_rx)
784 goto dont_reorder;
785
786 /* qos null data frames are excluded */
787 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
788 goto dont_reorder;
789
790 /* not part of a BA session */
791 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
792 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
793 goto dont_reorder;
794
795 /* not actually part of this BA session */
796 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
797 goto dont_reorder;
798
799 /* new, potentially un-ordered, ampdu frame - process it */
800
801 /* reset session timer */
802 if (tid_agg_rx->timeout)
803 mod_timer(&tid_agg_rx->session_timer,
804 TU_TO_EXP_TIME(tid_agg_rx->timeout));
805
806 /* if this mpdu is fragmented - terminate rx aggregation session */
807 sc = le16_to_cpu(hdr->seq_ctrl);
808 if (sc & IEEE80211_SCTL_FRAG) {
809 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
810 skb_queue_tail(&rx->sdata->skb_queue, skb);
811 ieee80211_queue_work(&local->hw, &rx->sdata->work);
812 return;
813 }
814
815 /*
816 * No locking needed -- we will only ever process one
817 * RX packet at a time, and thus own tid_agg_rx. All
818 * other code manipulating it needs to (and does) make
819 * sure that we cannot get to it any more before doing
820 * anything with it.
821 */
822 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb))
823 return;
824
825 dont_reorder:
826 skb_queue_tail(&local->rx_skb_queue, skb);
827 }
828
829 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check(struct ieee80211_rx_data * rx)830 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
831 {
832 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
833 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
834
835 /*
836 * Drop duplicate 802.11 retransmissions
837 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
838 */
839 if (rx->skb->len >= 24 && rx->sta &&
840 !ieee80211_is_ctl(hdr->frame_control) &&
841 !ieee80211_is_qos_nullfunc(hdr->frame_control) &&
842 !is_multicast_ether_addr(hdr->addr1)) {
843 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
844 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
845 hdr->seq_ctrl)) {
846 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
847 rx->local->dot11FrameDuplicateCount++;
848 rx->sta->num_duplicates++;
849 }
850 return RX_DROP_UNUSABLE;
851 } else
852 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
853 }
854
855 if (unlikely(rx->skb->len < 16)) {
856 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
857 return RX_DROP_MONITOR;
858 }
859
860 /* Drop disallowed frame classes based on STA auth/assoc state;
861 * IEEE 802.11, Chap 5.5.
862 *
863 * mac80211 filters only based on association state, i.e. it drops
864 * Class 3 frames from not associated stations. hostapd sends
865 * deauth/disassoc frames when needed. In addition, hostapd is
866 * responsible for filtering on both auth and assoc states.
867 */
868
869 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
870 return ieee80211_rx_mesh_check(rx);
871
872 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
873 ieee80211_is_pspoll(hdr->frame_control)) &&
874 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
875 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
876 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
877 /*
878 * accept port control frames from the AP even when it's not
879 * yet marked ASSOC to prevent a race where we don't set the
880 * assoc bit quickly enough before it sends the first frame
881 */
882 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
883 ieee80211_is_data_present(hdr->frame_control)) {
884 unsigned int hdrlen;
885 __be16 ethertype;
886
887 hdrlen = ieee80211_hdrlen(hdr->frame_control);
888
889 if (rx->skb->len < hdrlen + 8)
890 return RX_DROP_MONITOR;
891
892 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2);
893 if (ethertype == rx->sdata->control_port_protocol)
894 return RX_CONTINUE;
895 }
896
897 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
898 cfg80211_rx_spurious_frame(rx->sdata->dev,
899 hdr->addr2,
900 GFP_ATOMIC))
901 return RX_DROP_UNUSABLE;
902
903 return RX_DROP_MONITOR;
904 }
905
906 return RX_CONTINUE;
907 }
908
909
910 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_decrypt(struct ieee80211_rx_data * rx)911 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
912 {
913 struct sk_buff *skb = rx->skb;
914 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
915 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
916 int keyidx;
917 int hdrlen;
918 ieee80211_rx_result result = RX_DROP_UNUSABLE;
919 struct ieee80211_key *sta_ptk = NULL;
920 int mmie_keyidx = -1;
921 __le16 fc;
922
923 /*
924 * Key selection 101
925 *
926 * There are four types of keys:
927 * - GTK (group keys)
928 * - IGTK (group keys for management frames)
929 * - PTK (pairwise keys)
930 * - STK (station-to-station pairwise keys)
931 *
932 * When selecting a key, we have to distinguish between multicast
933 * (including broadcast) and unicast frames, the latter can only
934 * use PTKs and STKs while the former always use GTKs and IGTKs.
935 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
936 * unicast frames can also use key indices like GTKs. Hence, if we
937 * don't have a PTK/STK we check the key index for a WEP key.
938 *
939 * Note that in a regular BSS, multicast frames are sent by the
940 * AP only, associated stations unicast the frame to the AP first
941 * which then multicasts it on their behalf.
942 *
943 * There is also a slight problem in IBSS mode: GTKs are negotiated
944 * with each station, that is something we don't currently handle.
945 * The spec seems to expect that one negotiates the same key with
946 * every station but there's no such requirement; VLANs could be
947 * possible.
948 */
949
950 /*
951 * No point in finding a key and decrypting if the frame is neither
952 * addressed to us nor a multicast frame.
953 */
954 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
955 return RX_CONTINUE;
956
957 /* start without a key */
958 rx->key = NULL;
959
960 if (rx->sta)
961 sta_ptk = rcu_dereference(rx->sta->ptk);
962
963 fc = hdr->frame_control;
964
965 if (!ieee80211_has_protected(fc))
966 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
967
968 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
969 rx->key = sta_ptk;
970 if ((status->flag & RX_FLAG_DECRYPTED) &&
971 (status->flag & RX_FLAG_IV_STRIPPED))
972 return RX_CONTINUE;
973 /* Skip decryption if the frame is not protected. */
974 if (!ieee80211_has_protected(fc))
975 return RX_CONTINUE;
976 } else if (mmie_keyidx >= 0) {
977 /* Broadcast/multicast robust management frame / BIP */
978 if ((status->flag & RX_FLAG_DECRYPTED) &&
979 (status->flag & RX_FLAG_IV_STRIPPED))
980 return RX_CONTINUE;
981
982 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
983 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
984 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
985 if (rx->sta)
986 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
987 if (!rx->key)
988 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
989 } else if (!ieee80211_has_protected(fc)) {
990 /*
991 * The frame was not protected, so skip decryption. However, we
992 * need to set rx->key if there is a key that could have been
993 * used so that the frame may be dropped if encryption would
994 * have been expected.
995 */
996 struct ieee80211_key *key = NULL;
997 struct ieee80211_sub_if_data *sdata = rx->sdata;
998 int i;
999
1000 if (ieee80211_is_mgmt(fc) &&
1001 is_multicast_ether_addr(hdr->addr1) &&
1002 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1003 rx->key = key;
1004 else {
1005 if (rx->sta) {
1006 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1007 key = rcu_dereference(rx->sta->gtk[i]);
1008 if (key)
1009 break;
1010 }
1011 }
1012 if (!key) {
1013 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1014 key = rcu_dereference(sdata->keys[i]);
1015 if (key)
1016 break;
1017 }
1018 }
1019 if (key)
1020 rx->key = key;
1021 }
1022 return RX_CONTINUE;
1023 } else {
1024 u8 keyid;
1025 /*
1026 * The device doesn't give us the IV so we won't be
1027 * able to look up the key. That's ok though, we
1028 * don't need to decrypt the frame, we just won't
1029 * be able to keep statistics accurate.
1030 * Except for key threshold notifications, should
1031 * we somehow allow the driver to tell us which key
1032 * the hardware used if this flag is set?
1033 */
1034 if ((status->flag & RX_FLAG_DECRYPTED) &&
1035 (status->flag & RX_FLAG_IV_STRIPPED))
1036 return RX_CONTINUE;
1037
1038 hdrlen = ieee80211_hdrlen(fc);
1039
1040 if (rx->skb->len < 8 + hdrlen)
1041 return RX_DROP_UNUSABLE; /* TODO: count this? */
1042
1043 /*
1044 * no need to call ieee80211_wep_get_keyidx,
1045 * it verifies a bunch of things we've done already
1046 */
1047 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1048 keyidx = keyid >> 6;
1049
1050 /* check per-station GTK first, if multicast packet */
1051 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1052 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1053
1054 /* if not found, try default key */
1055 if (!rx->key) {
1056 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1057
1058 /*
1059 * RSNA-protected unicast frames should always be
1060 * sent with pairwise or station-to-station keys,
1061 * but for WEP we allow using a key index as well.
1062 */
1063 if (rx->key &&
1064 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1065 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1066 !is_multicast_ether_addr(hdr->addr1))
1067 rx->key = NULL;
1068 }
1069 }
1070
1071 if (rx->key) {
1072 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1073 return RX_DROP_MONITOR;
1074
1075 rx->key->tx_rx_count++;
1076 /* TODO: add threshold stuff again */
1077 } else {
1078 return RX_DROP_MONITOR;
1079 }
1080
1081 switch (rx->key->conf.cipher) {
1082 case WLAN_CIPHER_SUITE_WEP40:
1083 case WLAN_CIPHER_SUITE_WEP104:
1084 result = ieee80211_crypto_wep_decrypt(rx);
1085 break;
1086 case WLAN_CIPHER_SUITE_TKIP:
1087 result = ieee80211_crypto_tkip_decrypt(rx);
1088 break;
1089 case WLAN_CIPHER_SUITE_CCMP:
1090 result = ieee80211_crypto_ccmp_decrypt(rx);
1091 break;
1092 case WLAN_CIPHER_SUITE_AES_CMAC:
1093 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1094 break;
1095 default:
1096 /*
1097 * We can reach here only with HW-only algorithms
1098 * but why didn't it decrypt the frame?!
1099 */
1100 return RX_DROP_UNUSABLE;
1101 }
1102
1103 /* the hdr variable is invalid after the decrypt handlers */
1104
1105 /* either the frame has been decrypted or will be dropped */
1106 status->flag |= RX_FLAG_DECRYPTED;
1107
1108 return result;
1109 }
1110
1111 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_more_data(struct ieee80211_rx_data * rx)1112 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1113 {
1114 struct ieee80211_local *local;
1115 struct ieee80211_hdr *hdr;
1116 struct sk_buff *skb;
1117
1118 local = rx->local;
1119 skb = rx->skb;
1120 hdr = (struct ieee80211_hdr *) skb->data;
1121
1122 if (!local->pspolling)
1123 return RX_CONTINUE;
1124
1125 if (!ieee80211_has_fromds(hdr->frame_control))
1126 /* this is not from AP */
1127 return RX_CONTINUE;
1128
1129 if (!ieee80211_is_data(hdr->frame_control))
1130 return RX_CONTINUE;
1131
1132 if (!ieee80211_has_moredata(hdr->frame_control)) {
1133 /* AP has no more frames buffered for us */
1134 local->pspolling = false;
1135 return RX_CONTINUE;
1136 }
1137
1138 /* more data bit is set, let's request a new frame from the AP */
1139 ieee80211_send_pspoll(local, rx->sdata);
1140
1141 return RX_CONTINUE;
1142 }
1143
ap_sta_ps_start(struct sta_info * sta)1144 static void ap_sta_ps_start(struct sta_info *sta)
1145 {
1146 struct ieee80211_sub_if_data *sdata = sta->sdata;
1147 struct ieee80211_local *local = sdata->local;
1148
1149 atomic_inc(&sdata->bss->num_sta_ps);
1150 set_sta_flag(sta, WLAN_STA_PS_STA);
1151 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1152 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1153 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1154 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1155 sdata->name, sta->sta.addr, sta->sta.aid);
1156 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1157 }
1158
ap_sta_ps_end(struct sta_info * sta)1159 static void ap_sta_ps_end(struct sta_info *sta)
1160 {
1161 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1162 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1163 sta->sdata->name, sta->sta.addr, sta->sta.aid);
1164 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1165
1166 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1167 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1168 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1169 sta->sdata->name, sta->sta.addr, sta->sta.aid);
1170 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1171 return;
1172 }
1173
1174 ieee80211_sta_ps_deliver_wakeup(sta);
1175 }
1176
ieee80211_sta_ps_transition(struct ieee80211_sta * sta,bool start)1177 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1178 {
1179 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1180 bool in_ps;
1181
1182 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1183
1184 /* Don't let the same PS state be set twice */
1185 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1186 if ((start && in_ps) || (!start && !in_ps))
1187 return -EINVAL;
1188
1189 if (start)
1190 ap_sta_ps_start(sta_inf);
1191 else
1192 ap_sta_ps_end(sta_inf);
1193
1194 return 0;
1195 }
1196 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1197
1198 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data * rx)1199 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1200 {
1201 struct ieee80211_sub_if_data *sdata = rx->sdata;
1202 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1203 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1204 int tid, ac;
1205
1206 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1207 return RX_CONTINUE;
1208
1209 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1210 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1211 return RX_CONTINUE;
1212
1213 /*
1214 * The device handles station powersave, so don't do anything about
1215 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1216 * it to mac80211 since they're handled.)
1217 */
1218 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1219 return RX_CONTINUE;
1220
1221 /*
1222 * Don't do anything if the station isn't already asleep. In
1223 * the uAPSD case, the station will probably be marked asleep,
1224 * in the PS-Poll case the station must be confused ...
1225 */
1226 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1227 return RX_CONTINUE;
1228
1229 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1230 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1231 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1232 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1233 else
1234 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1235 }
1236
1237 /* Free PS Poll skb here instead of returning RX_DROP that would
1238 * count as an dropped frame. */
1239 dev_kfree_skb(rx->skb);
1240
1241 return RX_QUEUED;
1242 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1243 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1244 ieee80211_has_pm(hdr->frame_control) &&
1245 (ieee80211_is_data_qos(hdr->frame_control) ||
1246 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1247 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1248 ac = ieee802_1d_to_ac[tid & 7];
1249
1250 /*
1251 * If this AC is not trigger-enabled do nothing.
1252 *
1253 * NB: This could/should check a separate bitmap of trigger-
1254 * enabled queues, but for now we only implement uAPSD w/o
1255 * TSPEC changes to the ACs, so they're always the same.
1256 */
1257 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1258 return RX_CONTINUE;
1259
1260 /* if we are in a service period, do nothing */
1261 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1262 return RX_CONTINUE;
1263
1264 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1265 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1266 else
1267 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1268 }
1269
1270 return RX_CONTINUE;
1271 }
1272
1273 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_sta_process(struct ieee80211_rx_data * rx)1274 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1275 {
1276 struct sta_info *sta = rx->sta;
1277 struct sk_buff *skb = rx->skb;
1278 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1279 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1280
1281 if (!sta)
1282 return RX_CONTINUE;
1283
1284 /*
1285 * Update last_rx only for IBSS packets which are for the current
1286 * BSSID to avoid keeping the current IBSS network alive in cases
1287 * where other STAs start using different BSSID.
1288 */
1289 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1290 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1291 NL80211_IFTYPE_ADHOC);
1292 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) {
1293 sta->last_rx = jiffies;
1294 if (ieee80211_is_data(hdr->frame_control)) {
1295 sta->last_rx_rate_idx = status->rate_idx;
1296 sta->last_rx_rate_flag = status->flag;
1297 }
1298 }
1299 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1300 /*
1301 * Mesh beacons will update last_rx when if they are found to
1302 * match the current local configuration when processed.
1303 */
1304 sta->last_rx = jiffies;
1305 if (ieee80211_is_data(hdr->frame_control)) {
1306 sta->last_rx_rate_idx = status->rate_idx;
1307 sta->last_rx_rate_flag = status->flag;
1308 }
1309 }
1310
1311 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1312 return RX_CONTINUE;
1313
1314 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1315 ieee80211_sta_rx_notify(rx->sdata, hdr);
1316
1317 sta->rx_fragments++;
1318 sta->rx_bytes += rx->skb->len;
1319 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1320 sta->last_signal = status->signal;
1321 ewma_add(&sta->avg_signal, -status->signal);
1322 }
1323
1324 /*
1325 * Change STA power saving mode only at the end of a frame
1326 * exchange sequence.
1327 */
1328 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1329 !ieee80211_has_morefrags(hdr->frame_control) &&
1330 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1331 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1332 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1333 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1334 /*
1335 * Ignore doze->wake transitions that are
1336 * indicated by non-data frames, the standard
1337 * is unclear here, but for example going to
1338 * PS mode and then scanning would cause a
1339 * doze->wake transition for the probe request,
1340 * and that is clearly undesirable.
1341 */
1342 if (ieee80211_is_data(hdr->frame_control) &&
1343 !ieee80211_has_pm(hdr->frame_control))
1344 ap_sta_ps_end(sta);
1345 } else {
1346 if (ieee80211_has_pm(hdr->frame_control))
1347 ap_sta_ps_start(sta);
1348 }
1349 }
1350
1351 /*
1352 * Drop (qos-)data::nullfunc frames silently, since they
1353 * are used only to control station power saving mode.
1354 */
1355 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1356 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1357 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1358
1359 /*
1360 * If we receive a 4-addr nullfunc frame from a STA
1361 * that was not moved to a 4-addr STA vlan yet send
1362 * the event to userspace and for older hostapd drop
1363 * the frame to the monitor interface.
1364 */
1365 if (ieee80211_has_a4(hdr->frame_control) &&
1366 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1367 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1368 !rx->sdata->u.vlan.sta))) {
1369 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1370 cfg80211_rx_unexpected_4addr_frame(
1371 rx->sdata->dev, sta->sta.addr,
1372 GFP_ATOMIC);
1373 return RX_DROP_MONITOR;
1374 }
1375 /*
1376 * Update counter and free packet here to avoid
1377 * counting this as a dropped packed.
1378 */
1379 sta->rx_packets++;
1380 dev_kfree_skb(rx->skb);
1381 return RX_QUEUED;
1382 }
1383
1384 return RX_CONTINUE;
1385 } /* ieee80211_rx_h_sta_process */
1386
1387 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_add(struct ieee80211_sub_if_data * sdata,unsigned int frag,unsigned int seq,int rx_queue,struct sk_buff ** skb)1388 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1389 unsigned int frag, unsigned int seq, int rx_queue,
1390 struct sk_buff **skb)
1391 {
1392 struct ieee80211_fragment_entry *entry;
1393 int idx;
1394
1395 idx = sdata->fragment_next;
1396 entry = &sdata->fragments[sdata->fragment_next++];
1397 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1398 sdata->fragment_next = 0;
1399
1400 if (!skb_queue_empty(&entry->skb_list)) {
1401 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1402 struct ieee80211_hdr *hdr =
1403 (struct ieee80211_hdr *) entry->skb_list.next->data;
1404 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1405 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1406 "addr1=%pM addr2=%pM\n",
1407 sdata->name, idx,
1408 jiffies - entry->first_frag_time, entry->seq,
1409 entry->last_frag, hdr->addr1, hdr->addr2);
1410 #endif
1411 __skb_queue_purge(&entry->skb_list);
1412 }
1413
1414 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1415 *skb = NULL;
1416 entry->first_frag_time = jiffies;
1417 entry->seq = seq;
1418 entry->rx_queue = rx_queue;
1419 entry->last_frag = frag;
1420 entry->ccmp = 0;
1421 entry->extra_len = 0;
1422
1423 return entry;
1424 }
1425
1426 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_find(struct ieee80211_sub_if_data * sdata,unsigned int frag,unsigned int seq,int rx_queue,struct ieee80211_hdr * hdr)1427 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1428 unsigned int frag, unsigned int seq,
1429 int rx_queue, struct ieee80211_hdr *hdr)
1430 {
1431 struct ieee80211_fragment_entry *entry;
1432 int i, idx;
1433
1434 idx = sdata->fragment_next;
1435 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1436 struct ieee80211_hdr *f_hdr;
1437
1438 idx--;
1439 if (idx < 0)
1440 idx = IEEE80211_FRAGMENT_MAX - 1;
1441
1442 entry = &sdata->fragments[idx];
1443 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1444 entry->rx_queue != rx_queue ||
1445 entry->last_frag + 1 != frag)
1446 continue;
1447
1448 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1449
1450 /*
1451 * Check ftype and addresses are equal, else check next fragment
1452 */
1453 if (((hdr->frame_control ^ f_hdr->frame_control) &
1454 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1455 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1456 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1457 continue;
1458
1459 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1460 __skb_queue_purge(&entry->skb_list);
1461 continue;
1462 }
1463 return entry;
1464 }
1465
1466 return NULL;
1467 }
1468
1469 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_defragment(struct ieee80211_rx_data * rx)1470 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1471 {
1472 struct ieee80211_hdr *hdr;
1473 u16 sc;
1474 __le16 fc;
1475 unsigned int frag, seq;
1476 struct ieee80211_fragment_entry *entry;
1477 struct sk_buff *skb;
1478 struct ieee80211_rx_status *status;
1479
1480 hdr = (struct ieee80211_hdr *)rx->skb->data;
1481 fc = hdr->frame_control;
1482
1483 if (ieee80211_is_ctl(fc))
1484 return RX_CONTINUE;
1485
1486 sc = le16_to_cpu(hdr->seq_ctrl);
1487 frag = sc & IEEE80211_SCTL_FRAG;
1488
1489 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1490 is_multicast_ether_addr(hdr->addr1))) {
1491 /* not fragmented */
1492 goto out;
1493 }
1494 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1495
1496 if (skb_linearize(rx->skb))
1497 return RX_DROP_UNUSABLE;
1498
1499 /*
1500 * skb_linearize() might change the skb->data and
1501 * previously cached variables (in this case, hdr) need to
1502 * be refreshed with the new data.
1503 */
1504 hdr = (struct ieee80211_hdr *)rx->skb->data;
1505 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1506
1507 if (frag == 0) {
1508 /* This is the first fragment of a new frame. */
1509 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1510 rx->seqno_idx, &(rx->skb));
1511 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1512 ieee80211_has_protected(fc)) {
1513 int queue = rx->security_idx;
1514 /* Store CCMP PN so that we can verify that the next
1515 * fragment has a sequential PN value. */
1516 entry->ccmp = 1;
1517 memcpy(entry->last_pn,
1518 rx->key->u.ccmp.rx_pn[queue],
1519 CCMP_PN_LEN);
1520 }
1521 return RX_QUEUED;
1522 }
1523
1524 /* This is a fragment for a frame that should already be pending in
1525 * fragment cache. Add this fragment to the end of the pending entry.
1526 */
1527 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1528 rx->seqno_idx, hdr);
1529 if (!entry) {
1530 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1531 return RX_DROP_MONITOR;
1532 }
1533
1534 /* Verify that MPDUs within one MSDU have sequential PN values.
1535 * (IEEE 802.11i, 8.3.3.4.5) */
1536 if (entry->ccmp) {
1537 int i;
1538 u8 pn[CCMP_PN_LEN], *rpn;
1539 int queue;
1540 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1541 return RX_DROP_UNUSABLE;
1542 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1543 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1544 pn[i]++;
1545 if (pn[i])
1546 break;
1547 }
1548 queue = rx->security_idx;
1549 rpn = rx->key->u.ccmp.rx_pn[queue];
1550 if (memcmp(pn, rpn, CCMP_PN_LEN))
1551 return RX_DROP_UNUSABLE;
1552 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1553 }
1554
1555 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1556 __skb_queue_tail(&entry->skb_list, rx->skb);
1557 entry->last_frag = frag;
1558 entry->extra_len += rx->skb->len;
1559 if (ieee80211_has_morefrags(fc)) {
1560 rx->skb = NULL;
1561 return RX_QUEUED;
1562 }
1563
1564 rx->skb = __skb_dequeue(&entry->skb_list);
1565 if (skb_tailroom(rx->skb) < entry->extra_len) {
1566 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1567 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1568 GFP_ATOMIC))) {
1569 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1570 __skb_queue_purge(&entry->skb_list);
1571 return RX_DROP_UNUSABLE;
1572 }
1573 }
1574 while ((skb = __skb_dequeue(&entry->skb_list))) {
1575 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1576 dev_kfree_skb(skb);
1577 }
1578
1579 /* Complete frame has been reassembled - process it now */
1580 status = IEEE80211_SKB_RXCB(rx->skb);
1581 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1582
1583 out:
1584 if (rx->sta)
1585 rx->sta->rx_packets++;
1586 if (is_multicast_ether_addr(hdr->addr1))
1587 rx->local->dot11MulticastReceivedFrameCount++;
1588 else
1589 ieee80211_led_rx(rx->local);
1590 return RX_CONTINUE;
1591 }
1592
1593 static int
ieee80211_802_1x_port_control(struct ieee80211_rx_data * rx)1594 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1595 {
1596 if (unlikely(!rx->sta ||
1597 !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1598 return -EACCES;
1599
1600 return 0;
1601 }
1602
1603 static int
ieee80211_drop_unencrypted(struct ieee80211_rx_data * rx,__le16 fc)1604 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1605 {
1606 struct sk_buff *skb = rx->skb;
1607 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1608
1609 /*
1610 * Pass through unencrypted frames if the hardware has
1611 * decrypted them already.
1612 */
1613 if (status->flag & RX_FLAG_DECRYPTED)
1614 return 0;
1615
1616 /* Drop unencrypted frames if key is set. */
1617 if (unlikely(!ieee80211_has_protected(fc) &&
1618 !ieee80211_is_nullfunc(fc) &&
1619 ieee80211_is_data(fc) &&
1620 (rx->key || rx->sdata->drop_unencrypted)))
1621 return -EACCES;
1622
1623 return 0;
1624 }
1625
1626 static int
ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data * rx)1627 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1628 {
1629 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1630 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1631 __le16 fc = hdr->frame_control;
1632
1633 /*
1634 * Pass through unencrypted frames if the hardware has
1635 * decrypted them already.
1636 */
1637 if (status->flag & RX_FLAG_DECRYPTED)
1638 return 0;
1639
1640 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1641 if (unlikely(!ieee80211_has_protected(fc) &&
1642 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1643 rx->key)) {
1644 if (ieee80211_is_deauth(fc))
1645 cfg80211_send_unprot_deauth(rx->sdata->dev,
1646 rx->skb->data,
1647 rx->skb->len);
1648 else if (ieee80211_is_disassoc(fc))
1649 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1650 rx->skb->data,
1651 rx->skb->len);
1652 return -EACCES;
1653 }
1654 /* BIP does not use Protected field, so need to check MMIE */
1655 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1656 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1657 if (ieee80211_is_deauth(fc))
1658 cfg80211_send_unprot_deauth(rx->sdata->dev,
1659 rx->skb->data,
1660 rx->skb->len);
1661 else if (ieee80211_is_disassoc(fc))
1662 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1663 rx->skb->data,
1664 rx->skb->len);
1665 return -EACCES;
1666 }
1667 /*
1668 * When using MFP, Action frames are not allowed prior to
1669 * having configured keys.
1670 */
1671 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1672 ieee80211_is_robust_mgmt_frame(
1673 (struct ieee80211_hdr *) rx->skb->data)))
1674 return -EACCES;
1675 }
1676
1677 return 0;
1678 }
1679
1680 static int
__ieee80211_data_to_8023(struct ieee80211_rx_data * rx,bool * port_control)1681 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1682 {
1683 struct ieee80211_sub_if_data *sdata = rx->sdata;
1684 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1685 bool check_port_control = false;
1686 struct ethhdr *ehdr;
1687 int ret;
1688
1689 *port_control = false;
1690 if (ieee80211_has_a4(hdr->frame_control) &&
1691 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1692 return -1;
1693
1694 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1695 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1696
1697 if (!sdata->u.mgd.use_4addr)
1698 return -1;
1699 else
1700 check_port_control = true;
1701 }
1702
1703 if (is_multicast_ether_addr(hdr->addr1) &&
1704 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1705 return -1;
1706
1707 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1708 if (ret < 0)
1709 return ret;
1710
1711 ehdr = (struct ethhdr *) rx->skb->data;
1712 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1713 *port_control = true;
1714 else if (check_port_control)
1715 return -1;
1716
1717 return 0;
1718 }
1719
1720 /*
1721 * requires that rx->skb is a frame with ethernet header
1722 */
ieee80211_frame_allowed(struct ieee80211_rx_data * rx,__le16 fc)1723 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1724 {
1725 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1726 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1727 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1728
1729 /*
1730 * Allow EAPOL frames to us/the PAE group address regardless
1731 * of whether the frame was encrypted or not.
1732 */
1733 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1734 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1735 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1736 return true;
1737
1738 if (ieee80211_802_1x_port_control(rx) ||
1739 ieee80211_drop_unencrypted(rx, fc))
1740 return false;
1741
1742 return true;
1743 }
1744
1745 /*
1746 * requires that rx->skb is a frame with ethernet header
1747 */
1748 static void
ieee80211_deliver_skb(struct ieee80211_rx_data * rx)1749 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1750 {
1751 struct ieee80211_sub_if_data *sdata = rx->sdata;
1752 struct net_device *dev = sdata->dev;
1753 struct sk_buff *skb, *xmit_skb;
1754 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1755 struct sta_info *dsta;
1756 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1757
1758 skb = rx->skb;
1759 xmit_skb = NULL;
1760
1761 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1762 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1763 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1764 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1765 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1766 if (is_multicast_ether_addr(ehdr->h_dest)) {
1767 /*
1768 * send multicast frames both to higher layers in
1769 * local net stack and back to the wireless medium
1770 */
1771 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1772 if (!xmit_skb && net_ratelimit())
1773 printk(KERN_DEBUG "%s: failed to clone "
1774 "multicast frame\n", dev->name);
1775 } else {
1776 dsta = sta_info_get(sdata, skb->data);
1777 if (dsta) {
1778 /*
1779 * The destination station is associated to
1780 * this AP (in this VLAN), so send the frame
1781 * directly to it and do not pass it to local
1782 * net stack.
1783 */
1784 xmit_skb = skb;
1785 skb = NULL;
1786 }
1787 }
1788 }
1789
1790 if (skb) {
1791 int align __maybe_unused;
1792
1793 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1794 /*
1795 * 'align' will only take the values 0 or 2 here
1796 * since all frames are required to be aligned
1797 * to 2-byte boundaries when being passed to
1798 * mac80211. That also explains the __skb_push()
1799 * below.
1800 */
1801 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1802 if (align) {
1803 if (WARN_ON(skb_headroom(skb) < 3)) {
1804 dev_kfree_skb(skb);
1805 skb = NULL;
1806 } else {
1807 u8 *data = skb->data;
1808 size_t len = skb_headlen(skb);
1809 skb->data -= align;
1810 memmove(skb->data, data, len);
1811 skb_set_tail_pointer(skb, len);
1812 }
1813 }
1814 #endif
1815
1816 if (skb) {
1817 /* deliver to local stack */
1818 skb->protocol = eth_type_trans(skb, dev);
1819 memset(skb->cb, 0, sizeof(skb->cb));
1820 netif_receive_skb(skb);
1821 }
1822 }
1823
1824 if (xmit_skb) {
1825 /*
1826 * Send to wireless media and increase priority by 256 to
1827 * keep the received priority instead of reclassifying
1828 * the frame (see cfg80211_classify8021d).
1829 */
1830 xmit_skb->priority += 256;
1831 xmit_skb->protocol = htons(ETH_P_802_3);
1832 skb_reset_network_header(xmit_skb);
1833 skb_reset_mac_header(xmit_skb);
1834 dev_queue_xmit(xmit_skb);
1835 }
1836 }
1837
1838 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_amsdu(struct ieee80211_rx_data * rx)1839 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1840 {
1841 struct net_device *dev = rx->sdata->dev;
1842 struct sk_buff *skb = rx->skb;
1843 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1844 __le16 fc = hdr->frame_control;
1845 struct sk_buff_head frame_list;
1846 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1847
1848 if (unlikely(!ieee80211_is_data(fc)))
1849 return RX_CONTINUE;
1850
1851 if (unlikely(!ieee80211_is_data_present(fc)))
1852 return RX_DROP_MONITOR;
1853
1854 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1855 return RX_CONTINUE;
1856
1857 if (ieee80211_has_a4(hdr->frame_control) &&
1858 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1859 !rx->sdata->u.vlan.sta)
1860 return RX_DROP_UNUSABLE;
1861
1862 if (is_multicast_ether_addr(hdr->addr1) &&
1863 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1864 rx->sdata->u.vlan.sta) ||
1865 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1866 rx->sdata->u.mgd.use_4addr)))
1867 return RX_DROP_UNUSABLE;
1868
1869 skb->dev = dev;
1870 __skb_queue_head_init(&frame_list);
1871
1872 if (skb_linearize(skb))
1873 return RX_DROP_UNUSABLE;
1874
1875 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1876 rx->sdata->vif.type,
1877 rx->local->hw.extra_tx_headroom, true);
1878
1879 while (!skb_queue_empty(&frame_list)) {
1880 rx->skb = __skb_dequeue(&frame_list);
1881
1882 if (!ieee80211_frame_allowed(rx, fc)) {
1883 dev_kfree_skb(rx->skb);
1884 continue;
1885 }
1886 dev->stats.rx_packets++;
1887 dev->stats.rx_bytes += rx->skb->len;
1888
1889 ieee80211_deliver_skb(rx);
1890 }
1891
1892 return RX_QUEUED;
1893 }
1894
1895 #ifdef CONFIG_MAC80211_MESH
1896 static ieee80211_rx_result
ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data * rx)1897 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1898 {
1899 struct ieee80211_hdr *fwd_hdr, *hdr;
1900 struct ieee80211_tx_info *info;
1901 struct ieee80211s_hdr *mesh_hdr;
1902 struct sk_buff *skb = rx->skb, *fwd_skb;
1903 struct ieee80211_local *local = rx->local;
1904 struct ieee80211_sub_if_data *sdata = rx->sdata;
1905 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1906 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
1907 __le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD);
1908 u16 q, hdrlen;
1909
1910 hdr = (struct ieee80211_hdr *) skb->data;
1911 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1912
1913 /* make sure fixed part of mesh header is there, also checks skb len */
1914 if (!pskb_may_pull(rx->skb, hdrlen + 6))
1915 return RX_DROP_MONITOR;
1916
1917 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1918
1919 /* make sure full mesh header is there, also checks skb len */
1920 if (!pskb_may_pull(rx->skb,
1921 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
1922 return RX_DROP_MONITOR;
1923
1924 /* reload pointers */
1925 hdr = (struct ieee80211_hdr *) skb->data;
1926 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1927
1928 /* frame is in RMC, don't forward */
1929 if (ieee80211_is_data(hdr->frame_control) &&
1930 is_multicast_ether_addr(hdr->addr1) &&
1931 mesh_rmc_check(hdr->addr3, mesh_hdr, rx->sdata))
1932 return RX_DROP_MONITOR;
1933
1934 if (!ieee80211_is_data(hdr->frame_control) ||
1935 !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1936 return RX_CONTINUE;
1937
1938 if (!mesh_hdr->ttl)
1939 return RX_DROP_MONITOR;
1940
1941 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1942 struct mesh_path *mppath;
1943 char *proxied_addr;
1944 char *mpp_addr;
1945
1946 if (is_multicast_ether_addr(hdr->addr1)) {
1947 mpp_addr = hdr->addr3;
1948 proxied_addr = mesh_hdr->eaddr1;
1949 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
1950 /* has_a4 already checked in ieee80211_rx_mesh_check */
1951 mpp_addr = hdr->addr4;
1952 proxied_addr = mesh_hdr->eaddr2;
1953 } else {
1954 return RX_DROP_MONITOR;
1955 }
1956
1957 rcu_read_lock();
1958 mppath = mpp_path_lookup(proxied_addr, sdata);
1959 if (!mppath) {
1960 mpp_path_add(proxied_addr, mpp_addr, sdata);
1961 } else {
1962 spin_lock_bh(&mppath->state_lock);
1963 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1964 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1965 spin_unlock_bh(&mppath->state_lock);
1966 }
1967 rcu_read_unlock();
1968 }
1969
1970 /* Frame has reached destination. Don't forward */
1971 if (!is_multicast_ether_addr(hdr->addr1) &&
1972 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1973 return RX_CONTINUE;
1974
1975 q = ieee80211_select_queue_80211(local, skb, hdr);
1976 if (ieee80211_queue_stopped(&local->hw, q)) {
1977 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
1978 return RX_DROP_MONITOR;
1979 }
1980 skb_set_queue_mapping(skb, q);
1981
1982 if (!--mesh_hdr->ttl) {
1983 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
1984 return RX_DROP_MONITOR;
1985 }
1986
1987 if (!ifmsh->mshcfg.dot11MeshForwarding)
1988 goto out;
1989
1990 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1991 if (!fwd_skb) {
1992 if (net_ratelimit())
1993 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1994 sdata->name);
1995 goto out;
1996 }
1997
1998 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1999 info = IEEE80211_SKB_CB(fwd_skb);
2000 memset(info, 0, sizeof(*info));
2001 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2002 info->control.vif = &rx->sdata->vif;
2003 info->control.jiffies = jiffies;
2004 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2005 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2006 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2007 } else if (!mesh_nexthop_lookup(fwd_skb, sdata)) {
2008 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2009 } else {
2010 /* unable to resolve next hop */
2011 mesh_path_error_tx(ifmsh->mshcfg.element_ttl, fwd_hdr->addr3,
2012 0, reason, fwd_hdr->addr2, sdata);
2013 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2014 kfree_skb(fwd_skb);
2015 return RX_DROP_MONITOR;
2016 }
2017
2018 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2019 ieee80211_add_pending_skb(local, fwd_skb);
2020 out:
2021 if (is_multicast_ether_addr(hdr->addr1) ||
2022 sdata->dev->flags & IFF_PROMISC)
2023 return RX_CONTINUE;
2024 else
2025 return RX_DROP_MONITOR;
2026 }
2027 #endif
2028
2029 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_data(struct ieee80211_rx_data * rx)2030 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2031 {
2032 struct ieee80211_sub_if_data *sdata = rx->sdata;
2033 struct ieee80211_local *local = rx->local;
2034 struct net_device *dev = sdata->dev;
2035 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2036 __le16 fc = hdr->frame_control;
2037 bool port_control;
2038 int err;
2039
2040 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2041 return RX_CONTINUE;
2042
2043 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2044 return RX_DROP_MONITOR;
2045
2046 /*
2047 * Send unexpected-4addr-frame event to hostapd. For older versions,
2048 * also drop the frame to cooked monitor interfaces.
2049 */
2050 if (ieee80211_has_a4(hdr->frame_control) &&
2051 sdata->vif.type == NL80211_IFTYPE_AP) {
2052 if (rx->sta &&
2053 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2054 cfg80211_rx_unexpected_4addr_frame(
2055 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2056 return RX_DROP_MONITOR;
2057 }
2058
2059 err = __ieee80211_data_to_8023(rx, &port_control);
2060 if (unlikely(err))
2061 return RX_DROP_UNUSABLE;
2062
2063 if (!ieee80211_frame_allowed(rx, fc))
2064 return RX_DROP_MONITOR;
2065
2066 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2067 unlikely(port_control) && sdata->bss) {
2068 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2069 u.ap);
2070 dev = sdata->dev;
2071 rx->sdata = sdata;
2072 }
2073
2074 rx->skb->dev = dev;
2075
2076 dev->stats.rx_packets++;
2077 dev->stats.rx_bytes += rx->skb->len;
2078
2079 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2080 !is_multicast_ether_addr(
2081 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2082 (!local->scanning &&
2083 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2084 mod_timer(&local->dynamic_ps_timer, jiffies +
2085 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2086 }
2087
2088 ieee80211_deliver_skb(rx);
2089
2090 return RX_QUEUED;
2091 }
2092
2093 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ctrl(struct ieee80211_rx_data * rx)2094 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
2095 {
2096 struct ieee80211_local *local = rx->local;
2097 struct ieee80211_hw *hw = &local->hw;
2098 struct sk_buff *skb = rx->skb;
2099 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2100 struct tid_ampdu_rx *tid_agg_rx;
2101 u16 start_seq_num;
2102 u16 tid;
2103
2104 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2105 return RX_CONTINUE;
2106
2107 if (ieee80211_is_back_req(bar->frame_control)) {
2108 struct {
2109 __le16 control, start_seq_num;
2110 } __packed bar_data;
2111
2112 if (!rx->sta)
2113 return RX_DROP_MONITOR;
2114
2115 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2116 &bar_data, sizeof(bar_data)))
2117 return RX_DROP_MONITOR;
2118
2119 tid = le16_to_cpu(bar_data.control) >> 12;
2120
2121 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2122 if (!tid_agg_rx)
2123 return RX_DROP_MONITOR;
2124
2125 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2126
2127 /* reset session timer */
2128 if (tid_agg_rx->timeout)
2129 mod_timer(&tid_agg_rx->session_timer,
2130 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2131
2132 spin_lock(&tid_agg_rx->reorder_lock);
2133 /* release stored frames up to start of BAR */
2134 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num);
2135 spin_unlock(&tid_agg_rx->reorder_lock);
2136
2137 kfree_skb(skb);
2138 return RX_QUEUED;
2139 }
2140
2141 /*
2142 * After this point, we only want management frames,
2143 * so we can drop all remaining control frames to
2144 * cooked monitor interfaces.
2145 */
2146 return RX_DROP_MONITOR;
2147 }
2148
ieee80211_process_sa_query_req(struct ieee80211_sub_if_data * sdata,struct ieee80211_mgmt * mgmt,size_t len)2149 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2150 struct ieee80211_mgmt *mgmt,
2151 size_t len)
2152 {
2153 struct ieee80211_local *local = sdata->local;
2154 struct sk_buff *skb;
2155 struct ieee80211_mgmt *resp;
2156
2157 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
2158 /* Not to own unicast address */
2159 return;
2160 }
2161
2162 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
2163 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
2164 /* Not from the current AP or not associated yet. */
2165 return;
2166 }
2167
2168 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2169 /* Too short SA Query request frame */
2170 return;
2171 }
2172
2173 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2174 if (skb == NULL)
2175 return;
2176
2177 skb_reserve(skb, local->hw.extra_tx_headroom);
2178 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2179 memset(resp, 0, 24);
2180 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2181 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2182 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2183 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2184 IEEE80211_STYPE_ACTION);
2185 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2186 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2187 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2188 memcpy(resp->u.action.u.sa_query.trans_id,
2189 mgmt->u.action.u.sa_query.trans_id,
2190 WLAN_SA_QUERY_TR_ID_LEN);
2191
2192 ieee80211_tx_skb(sdata, skb);
2193 }
2194
2195 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data * rx)2196 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2197 {
2198 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2199 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2200
2201 /*
2202 * From here on, look only at management frames.
2203 * Data and control frames are already handled,
2204 * and unknown (reserved) frames are useless.
2205 */
2206 if (rx->skb->len < 24)
2207 return RX_DROP_MONITOR;
2208
2209 if (!ieee80211_is_mgmt(mgmt->frame_control))
2210 return RX_DROP_MONITOR;
2211
2212 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2213 ieee80211_is_beacon(mgmt->frame_control) &&
2214 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2215 int sig = 0;
2216
2217 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2218 sig = status->signal;
2219
2220 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2221 rx->skb->data, rx->skb->len,
2222 status->freq, sig, GFP_ATOMIC);
2223 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2224 }
2225
2226 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2227 return RX_DROP_MONITOR;
2228
2229 if (ieee80211_drop_unencrypted_mgmt(rx))
2230 return RX_DROP_UNUSABLE;
2231
2232 return RX_CONTINUE;
2233 }
2234
2235 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action(struct ieee80211_rx_data * rx)2236 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2237 {
2238 struct ieee80211_local *local = rx->local;
2239 struct ieee80211_sub_if_data *sdata = rx->sdata;
2240 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2241 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2242 int len = rx->skb->len;
2243
2244 if (!ieee80211_is_action(mgmt->frame_control))
2245 return RX_CONTINUE;
2246
2247 /* drop too small frames */
2248 if (len < IEEE80211_MIN_ACTION_SIZE)
2249 return RX_DROP_UNUSABLE;
2250
2251 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2252 return RX_DROP_UNUSABLE;
2253
2254 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2255 return RX_DROP_UNUSABLE;
2256
2257 switch (mgmt->u.action.category) {
2258 case WLAN_CATEGORY_HT:
2259 /* reject HT action frames from stations not supporting HT */
2260 if (!rx->sta->sta.ht_cap.ht_supported)
2261 goto invalid;
2262
2263 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2264 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2265 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2266 sdata->vif.type != NL80211_IFTYPE_AP &&
2267 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2268 break;
2269
2270 /* verify action & smps_control are present */
2271 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2272 goto invalid;
2273
2274 switch (mgmt->u.action.u.ht_smps.action) {
2275 case WLAN_HT_ACTION_SMPS: {
2276 struct ieee80211_supported_band *sband;
2277 u8 smps;
2278
2279 /* convert to HT capability */
2280 switch (mgmt->u.action.u.ht_smps.smps_control) {
2281 case WLAN_HT_SMPS_CONTROL_DISABLED:
2282 smps = WLAN_HT_CAP_SM_PS_DISABLED;
2283 break;
2284 case WLAN_HT_SMPS_CONTROL_STATIC:
2285 smps = WLAN_HT_CAP_SM_PS_STATIC;
2286 break;
2287 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2288 smps = WLAN_HT_CAP_SM_PS_DYNAMIC;
2289 break;
2290 default:
2291 goto invalid;
2292 }
2293 smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT;
2294
2295 /* if no change do nothing */
2296 if ((rx->sta->sta.ht_cap.cap &
2297 IEEE80211_HT_CAP_SM_PS) == smps)
2298 goto handled;
2299
2300 rx->sta->sta.ht_cap.cap &= ~IEEE80211_HT_CAP_SM_PS;
2301 rx->sta->sta.ht_cap.cap |= smps;
2302
2303 sband = rx->local->hw.wiphy->bands[status->band];
2304
2305 rate_control_rate_update(
2306 local, sband, rx->sta,
2307 IEEE80211_RC_SMPS_CHANGED,
2308 ieee80211_get_tx_channel_type(
2309 local, local->_oper_channel_type));
2310 goto handled;
2311 }
2312 default:
2313 goto invalid;
2314 }
2315
2316 break;
2317 case WLAN_CATEGORY_BACK:
2318 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2319 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2320 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2321 sdata->vif.type != NL80211_IFTYPE_AP &&
2322 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2323 break;
2324
2325 /* verify action_code is present */
2326 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2327 break;
2328
2329 switch (mgmt->u.action.u.addba_req.action_code) {
2330 case WLAN_ACTION_ADDBA_REQ:
2331 if (len < (IEEE80211_MIN_ACTION_SIZE +
2332 sizeof(mgmt->u.action.u.addba_req)))
2333 goto invalid;
2334 break;
2335 case WLAN_ACTION_ADDBA_RESP:
2336 if (len < (IEEE80211_MIN_ACTION_SIZE +
2337 sizeof(mgmt->u.action.u.addba_resp)))
2338 goto invalid;
2339 break;
2340 case WLAN_ACTION_DELBA:
2341 if (len < (IEEE80211_MIN_ACTION_SIZE +
2342 sizeof(mgmt->u.action.u.delba)))
2343 goto invalid;
2344 break;
2345 default:
2346 goto invalid;
2347 }
2348
2349 goto queue;
2350 case WLAN_CATEGORY_SPECTRUM_MGMT:
2351 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2352 break;
2353
2354 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2355 break;
2356
2357 /* verify action_code is present */
2358 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2359 break;
2360
2361 switch (mgmt->u.action.u.measurement.action_code) {
2362 case WLAN_ACTION_SPCT_MSR_REQ:
2363 if (len < (IEEE80211_MIN_ACTION_SIZE +
2364 sizeof(mgmt->u.action.u.measurement)))
2365 break;
2366 ieee80211_process_measurement_req(sdata, mgmt, len);
2367 goto handled;
2368 case WLAN_ACTION_SPCT_CHL_SWITCH:
2369 if (len < (IEEE80211_MIN_ACTION_SIZE +
2370 sizeof(mgmt->u.action.u.chan_switch)))
2371 break;
2372
2373 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2374 break;
2375
2376 if (compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid))
2377 break;
2378
2379 goto queue;
2380 }
2381 break;
2382 case WLAN_CATEGORY_SA_QUERY:
2383 if (len < (IEEE80211_MIN_ACTION_SIZE +
2384 sizeof(mgmt->u.action.u.sa_query)))
2385 break;
2386
2387 switch (mgmt->u.action.u.sa_query.action) {
2388 case WLAN_ACTION_SA_QUERY_REQUEST:
2389 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2390 break;
2391 ieee80211_process_sa_query_req(sdata, mgmt, len);
2392 goto handled;
2393 }
2394 break;
2395 case WLAN_CATEGORY_SELF_PROTECTED:
2396 if (len < (IEEE80211_MIN_ACTION_SIZE +
2397 sizeof(mgmt->u.action.u.self_prot.action_code)))
2398 break;
2399
2400 switch (mgmt->u.action.u.self_prot.action_code) {
2401 case WLAN_SP_MESH_PEERING_OPEN:
2402 case WLAN_SP_MESH_PEERING_CLOSE:
2403 case WLAN_SP_MESH_PEERING_CONFIRM:
2404 if (!ieee80211_vif_is_mesh(&sdata->vif))
2405 goto invalid;
2406 if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE)
2407 /* userspace handles this frame */
2408 break;
2409 goto queue;
2410 case WLAN_SP_MGK_INFORM:
2411 case WLAN_SP_MGK_ACK:
2412 if (!ieee80211_vif_is_mesh(&sdata->vif))
2413 goto invalid;
2414 break;
2415 }
2416 break;
2417 case WLAN_CATEGORY_MESH_ACTION:
2418 if (len < (IEEE80211_MIN_ACTION_SIZE +
2419 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2420 break;
2421
2422 if (!ieee80211_vif_is_mesh(&sdata->vif))
2423 break;
2424 if (mesh_action_is_path_sel(mgmt) &&
2425 (!mesh_path_sel_is_hwmp(sdata)))
2426 break;
2427 goto queue;
2428 }
2429
2430 return RX_CONTINUE;
2431
2432 invalid:
2433 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2434 /* will return in the next handlers */
2435 return RX_CONTINUE;
2436
2437 handled:
2438 if (rx->sta)
2439 rx->sta->rx_packets++;
2440 dev_kfree_skb(rx->skb);
2441 return RX_QUEUED;
2442
2443 queue:
2444 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2445 skb_queue_tail(&sdata->skb_queue, rx->skb);
2446 ieee80211_queue_work(&local->hw, &sdata->work);
2447 if (rx->sta)
2448 rx->sta->rx_packets++;
2449 return RX_QUEUED;
2450 }
2451
2452 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data * rx)2453 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2454 {
2455 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2456 int sig = 0;
2457
2458 /* skip known-bad action frames and return them in the next handler */
2459 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2460 return RX_CONTINUE;
2461
2462 /*
2463 * Getting here means the kernel doesn't know how to handle
2464 * it, but maybe userspace does ... include returned frames
2465 * so userspace can register for those to know whether ones
2466 * it transmitted were processed or returned.
2467 */
2468
2469 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2470 sig = status->signal;
2471
2472 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq, sig,
2473 rx->skb->data, rx->skb->len,
2474 GFP_ATOMIC)) {
2475 if (rx->sta)
2476 rx->sta->rx_packets++;
2477 dev_kfree_skb(rx->skb);
2478 return RX_QUEUED;
2479 }
2480
2481
2482 return RX_CONTINUE;
2483 }
2484
2485 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_return(struct ieee80211_rx_data * rx)2486 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2487 {
2488 struct ieee80211_local *local = rx->local;
2489 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2490 struct sk_buff *nskb;
2491 struct ieee80211_sub_if_data *sdata = rx->sdata;
2492 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2493
2494 if (!ieee80211_is_action(mgmt->frame_control))
2495 return RX_CONTINUE;
2496
2497 /*
2498 * For AP mode, hostapd is responsible for handling any action
2499 * frames that we didn't handle, including returning unknown
2500 * ones. For all other modes we will return them to the sender,
2501 * setting the 0x80 bit in the action category, as required by
2502 * 802.11-2012 9.24.4.
2503 * Newer versions of hostapd shall also use the management frame
2504 * registration mechanisms, but older ones still use cooked
2505 * monitor interfaces so push all frames there.
2506 */
2507 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2508 (sdata->vif.type == NL80211_IFTYPE_AP ||
2509 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2510 return RX_DROP_MONITOR;
2511
2512 if (is_multicast_ether_addr(mgmt->da))
2513 return RX_DROP_MONITOR;
2514
2515 /* do not return rejected action frames */
2516 if (mgmt->u.action.category & 0x80)
2517 return RX_DROP_UNUSABLE;
2518
2519 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2520 GFP_ATOMIC);
2521 if (nskb) {
2522 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2523
2524 nmgmt->u.action.category |= 0x80;
2525 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2526 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2527
2528 memset(nskb->cb, 0, sizeof(nskb->cb));
2529
2530 ieee80211_tx_skb(rx->sdata, nskb);
2531 }
2532 dev_kfree_skb(rx->skb);
2533 return RX_QUEUED;
2534 }
2535
2536 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt(struct ieee80211_rx_data * rx)2537 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2538 {
2539 struct ieee80211_sub_if_data *sdata = rx->sdata;
2540 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2541 __le16 stype;
2542
2543 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2544
2545 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2546 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2547 sdata->vif.type != NL80211_IFTYPE_STATION)
2548 return RX_DROP_MONITOR;
2549
2550 switch (stype) {
2551 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2552 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2553 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2554 /* process for all: mesh, mlme, ibss */
2555 break;
2556 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2557 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2558 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2559 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2560 if (is_multicast_ether_addr(mgmt->da) &&
2561 !is_broadcast_ether_addr(mgmt->da))
2562 return RX_DROP_MONITOR;
2563
2564 /* process only for station */
2565 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2566 return RX_DROP_MONITOR;
2567 break;
2568 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2569 /* process only for ibss */
2570 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2571 return RX_DROP_MONITOR;
2572 break;
2573 default:
2574 return RX_DROP_MONITOR;
2575 }
2576
2577 /* queue up frame and kick off work to process it */
2578 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2579 skb_queue_tail(&sdata->skb_queue, rx->skb);
2580 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2581 if (rx->sta)
2582 rx->sta->rx_packets++;
2583
2584 return RX_QUEUED;
2585 }
2586
2587 /* TODO: use IEEE80211_RX_FRAGMENTED */
ieee80211_rx_cooked_monitor(struct ieee80211_rx_data * rx,struct ieee80211_rate * rate)2588 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2589 struct ieee80211_rate *rate)
2590 {
2591 struct ieee80211_sub_if_data *sdata;
2592 struct ieee80211_local *local = rx->local;
2593 struct sk_buff *skb = rx->skb, *skb2;
2594 struct net_device *prev_dev = NULL;
2595 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2596 int needed_headroom;
2597
2598 /*
2599 * If cooked monitor has been processed already, then
2600 * don't do it again. If not, set the flag.
2601 */
2602 if (rx->flags & IEEE80211_RX_CMNTR)
2603 goto out_free_skb;
2604 rx->flags |= IEEE80211_RX_CMNTR;
2605
2606 /* If there are no cooked monitor interfaces, just free the SKB */
2607 if (!local->cooked_mntrs)
2608 goto out_free_skb;
2609
2610 /* room for the radiotap header based on driver features */
2611 needed_headroom = ieee80211_rx_radiotap_len(local, status);
2612
2613 if (skb_headroom(skb) < needed_headroom &&
2614 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2615 goto out_free_skb;
2616
2617 /* prepend radiotap information */
2618 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2619 false);
2620
2621 skb_set_mac_header(skb, 0);
2622 skb->ip_summed = CHECKSUM_UNNECESSARY;
2623 skb->pkt_type = PACKET_OTHERHOST;
2624 skb->protocol = htons(ETH_P_802_2);
2625
2626 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2627 if (!ieee80211_sdata_running(sdata))
2628 continue;
2629
2630 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2631 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2632 continue;
2633
2634 if (prev_dev) {
2635 skb2 = skb_clone(skb, GFP_ATOMIC);
2636 if (skb2) {
2637 skb2->dev = prev_dev;
2638 netif_receive_skb(skb2);
2639 }
2640 }
2641
2642 prev_dev = sdata->dev;
2643 sdata->dev->stats.rx_packets++;
2644 sdata->dev->stats.rx_bytes += skb->len;
2645 }
2646
2647 if (prev_dev) {
2648 skb->dev = prev_dev;
2649 netif_receive_skb(skb);
2650 return;
2651 }
2652
2653 out_free_skb:
2654 dev_kfree_skb(skb);
2655 }
2656
ieee80211_rx_handlers_result(struct ieee80211_rx_data * rx,ieee80211_rx_result res)2657 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2658 ieee80211_rx_result res)
2659 {
2660 switch (res) {
2661 case RX_DROP_MONITOR:
2662 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2663 if (rx->sta)
2664 rx->sta->rx_dropped++;
2665 /* fall through */
2666 case RX_CONTINUE: {
2667 struct ieee80211_rate *rate = NULL;
2668 struct ieee80211_supported_band *sband;
2669 struct ieee80211_rx_status *status;
2670
2671 status = IEEE80211_SKB_RXCB((rx->skb));
2672
2673 sband = rx->local->hw.wiphy->bands[status->band];
2674 if (!(status->flag & RX_FLAG_HT))
2675 rate = &sband->bitrates[status->rate_idx];
2676
2677 ieee80211_rx_cooked_monitor(rx, rate);
2678 break;
2679 }
2680 case RX_DROP_UNUSABLE:
2681 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2682 if (rx->sta)
2683 rx->sta->rx_dropped++;
2684 dev_kfree_skb(rx->skb);
2685 break;
2686 case RX_QUEUED:
2687 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2688 break;
2689 }
2690 }
2691
ieee80211_rx_handlers(struct ieee80211_rx_data * rx)2692 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
2693 {
2694 ieee80211_rx_result res = RX_DROP_MONITOR;
2695 struct sk_buff *skb;
2696
2697 #define CALL_RXH(rxh) \
2698 do { \
2699 res = rxh(rx); \
2700 if (res != RX_CONTINUE) \
2701 goto rxh_next; \
2702 } while (0);
2703
2704 spin_lock(&rx->local->rx_skb_queue.lock);
2705 if (rx->local->running_rx_handler)
2706 goto unlock;
2707
2708 rx->local->running_rx_handler = true;
2709
2710 while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
2711 spin_unlock(&rx->local->rx_skb_queue.lock);
2712
2713 /*
2714 * all the other fields are valid across frames
2715 * that belong to an aMPDU since they are on the
2716 * same TID from the same station
2717 */
2718 rx->skb = skb;
2719
2720 CALL_RXH(ieee80211_rx_h_decrypt)
2721 CALL_RXH(ieee80211_rx_h_check_more_data)
2722 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2723 CALL_RXH(ieee80211_rx_h_sta_process)
2724 CALL_RXH(ieee80211_rx_h_defragment)
2725 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2726 /* must be after MMIC verify so header is counted in MPDU mic */
2727 #ifdef CONFIG_MAC80211_MESH
2728 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2729 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2730 #endif
2731 CALL_RXH(ieee80211_rx_h_amsdu)
2732 CALL_RXH(ieee80211_rx_h_data)
2733 CALL_RXH(ieee80211_rx_h_ctrl);
2734 CALL_RXH(ieee80211_rx_h_mgmt_check)
2735 CALL_RXH(ieee80211_rx_h_action)
2736 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2737 CALL_RXH(ieee80211_rx_h_action_return)
2738 CALL_RXH(ieee80211_rx_h_mgmt)
2739
2740 rxh_next:
2741 ieee80211_rx_handlers_result(rx, res);
2742 spin_lock(&rx->local->rx_skb_queue.lock);
2743 #undef CALL_RXH
2744 }
2745
2746 rx->local->running_rx_handler = false;
2747
2748 unlock:
2749 spin_unlock(&rx->local->rx_skb_queue.lock);
2750 }
2751
ieee80211_invoke_rx_handlers(struct ieee80211_rx_data * rx)2752 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2753 {
2754 ieee80211_rx_result res = RX_DROP_MONITOR;
2755
2756 #define CALL_RXH(rxh) \
2757 do { \
2758 res = rxh(rx); \
2759 if (res != RX_CONTINUE) \
2760 goto rxh_next; \
2761 } while (0);
2762
2763 CALL_RXH(ieee80211_rx_h_passive_scan)
2764 CALL_RXH(ieee80211_rx_h_check)
2765
2766 ieee80211_rx_reorder_ampdu(rx);
2767
2768 ieee80211_rx_handlers(rx);
2769 return;
2770
2771 rxh_next:
2772 ieee80211_rx_handlers_result(rx, res);
2773
2774 #undef CALL_RXH
2775 }
2776
2777 /*
2778 * This function makes calls into the RX path, therefore
2779 * it has to be invoked under RCU read lock.
2780 */
ieee80211_release_reorder_timeout(struct sta_info * sta,int tid)2781 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2782 {
2783 struct ieee80211_rx_data rx = {
2784 .sta = sta,
2785 .sdata = sta->sdata,
2786 .local = sta->local,
2787 /* This is OK -- must be QoS data frame */
2788 .security_idx = tid,
2789 .seqno_idx = tid,
2790 .flags = 0,
2791 };
2792 struct tid_ampdu_rx *tid_agg_rx;
2793
2794 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2795 if (!tid_agg_rx)
2796 return;
2797
2798 spin_lock(&tid_agg_rx->reorder_lock);
2799 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx);
2800 spin_unlock(&tid_agg_rx->reorder_lock);
2801
2802 ieee80211_rx_handlers(&rx);
2803 }
2804
2805 /* main receive path */
2806
prepare_for_handlers(struct ieee80211_rx_data * rx,struct ieee80211_hdr * hdr)2807 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2808 struct ieee80211_hdr *hdr)
2809 {
2810 struct ieee80211_sub_if_data *sdata = rx->sdata;
2811 struct sk_buff *skb = rx->skb;
2812 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2813 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2814 int multicast = is_multicast_ether_addr(hdr->addr1);
2815
2816 switch (sdata->vif.type) {
2817 case NL80211_IFTYPE_STATION:
2818 if (!bssid && !sdata->u.mgd.use_4addr)
2819 return 0;
2820 if (!multicast &&
2821 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2822 if (!(sdata->dev->flags & IFF_PROMISC) ||
2823 sdata->u.mgd.use_4addr)
2824 return 0;
2825 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2826 }
2827 break;
2828 case NL80211_IFTYPE_ADHOC:
2829 if (!bssid)
2830 return 0;
2831 if (compare_ether_addr(sdata->vif.addr, hdr->addr2) == 0 ||
2832 compare_ether_addr(sdata->u.ibss.bssid, hdr->addr2) == 0)
2833 return 0;
2834 if (ieee80211_is_beacon(hdr->frame_control)) {
2835 return 1;
2836 }
2837 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2838 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2839 return 0;
2840 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2841 } else if (!multicast &&
2842 compare_ether_addr(sdata->vif.addr,
2843 hdr->addr1) != 0) {
2844 if (!(sdata->dev->flags & IFF_PROMISC))
2845 return 0;
2846 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2847 } else if (!rx->sta) {
2848 int rate_idx;
2849 if (status->flag & RX_FLAG_HT)
2850 rate_idx = 0; /* TODO: HT rates */
2851 else
2852 rate_idx = status->rate_idx;
2853 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
2854 BIT(rate_idx));
2855 }
2856 break;
2857 case NL80211_IFTYPE_MESH_POINT:
2858 if (!multicast &&
2859 compare_ether_addr(sdata->vif.addr,
2860 hdr->addr1) != 0) {
2861 if (!(sdata->dev->flags & IFF_PROMISC))
2862 return 0;
2863
2864 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2865 }
2866 break;
2867 case NL80211_IFTYPE_AP_VLAN:
2868 case NL80211_IFTYPE_AP:
2869 if (!bssid) {
2870 if (compare_ether_addr(sdata->vif.addr,
2871 hdr->addr1))
2872 return 0;
2873 } else if (!ieee80211_bssid_match(bssid,
2874 sdata->vif.addr)) {
2875 /*
2876 * Accept public action frames even when the
2877 * BSSID doesn't match, this is used for P2P
2878 * and location updates. Note that mac80211
2879 * itself never looks at these frames.
2880 */
2881 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2882 ieee80211_is_public_action(hdr, skb->len))
2883 return 1;
2884 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2885 !ieee80211_is_beacon(hdr->frame_control))
2886 return 0;
2887 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2888 }
2889 break;
2890 case NL80211_IFTYPE_WDS:
2891 if (bssid || !ieee80211_is_data(hdr->frame_control))
2892 return 0;
2893 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2894 return 0;
2895 break;
2896 default:
2897 /* should never get here */
2898 WARN_ON(1);
2899 break;
2900 }
2901
2902 return 1;
2903 }
2904
2905 /*
2906 * This function returns whether or not the SKB
2907 * was destined for RX processing or not, which,
2908 * if consume is true, is equivalent to whether
2909 * or not the skb was consumed.
2910 */
ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data * rx,struct sk_buff * skb,bool consume)2911 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2912 struct sk_buff *skb, bool consume)
2913 {
2914 struct ieee80211_local *local = rx->local;
2915 struct ieee80211_sub_if_data *sdata = rx->sdata;
2916 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2917 struct ieee80211_hdr *hdr = (void *)skb->data;
2918 int prepares;
2919
2920 rx->skb = skb;
2921 status->rx_flags |= IEEE80211_RX_RA_MATCH;
2922 prepares = prepare_for_handlers(rx, hdr);
2923
2924 if (!prepares)
2925 return false;
2926
2927 if (!consume) {
2928 skb = skb_copy(skb, GFP_ATOMIC);
2929 if (!skb) {
2930 if (net_ratelimit())
2931 wiphy_debug(local->hw.wiphy,
2932 "failed to copy skb for %s\n",
2933 sdata->name);
2934 return true;
2935 }
2936
2937 rx->skb = skb;
2938 }
2939
2940 ieee80211_invoke_rx_handlers(rx);
2941 return true;
2942 }
2943
2944 /*
2945 * This is the actual Rx frames handler. as it blongs to Rx path it must
2946 * be called with rcu_read_lock protection.
2947 */
__ieee80211_rx_handle_packet(struct ieee80211_hw * hw,struct sk_buff * skb)2948 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2949 struct sk_buff *skb)
2950 {
2951 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2952 struct ieee80211_local *local = hw_to_local(hw);
2953 struct ieee80211_sub_if_data *sdata;
2954 struct ieee80211_hdr *hdr;
2955 __le16 fc;
2956 struct ieee80211_rx_data rx;
2957 struct ieee80211_sub_if_data *prev;
2958 struct sta_info *sta, *tmp, *prev_sta;
2959 int err = 0;
2960
2961 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2962 memset(&rx, 0, sizeof(rx));
2963 rx.skb = skb;
2964 rx.local = local;
2965
2966 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2967 local->dot11ReceivedFragmentCount++;
2968
2969 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2970 test_bit(SCAN_SW_SCANNING, &local->scanning)))
2971 status->rx_flags |= IEEE80211_RX_IN_SCAN;
2972
2973 if (ieee80211_is_mgmt(fc)) {
2974 /* drop frame if too short for header */
2975 if (skb->len < ieee80211_hdrlen(fc))
2976 err = -ENOBUFS;
2977 else
2978 err = skb_linearize(skb);
2979 } else {
2980 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2981 }
2982
2983 if (err) {
2984 dev_kfree_skb(skb);
2985 return;
2986 }
2987
2988 hdr = (struct ieee80211_hdr *)skb->data;
2989 ieee80211_parse_qos(&rx);
2990 ieee80211_verify_alignment(&rx);
2991
2992 if (ieee80211_is_data(fc)) {
2993 prev_sta = NULL;
2994
2995 for_each_sta_info(local, hdr->addr2, sta, tmp) {
2996 if (!prev_sta) {
2997 prev_sta = sta;
2998 continue;
2999 }
3000
3001 rx.sta = prev_sta;
3002 rx.sdata = prev_sta->sdata;
3003 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3004
3005 prev_sta = sta;
3006 }
3007
3008 if (prev_sta) {
3009 rx.sta = prev_sta;
3010 rx.sdata = prev_sta->sdata;
3011
3012 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3013 return;
3014 goto out;
3015 }
3016 }
3017
3018 prev = NULL;
3019
3020 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3021 if (!ieee80211_sdata_running(sdata))
3022 continue;
3023
3024 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3025 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3026 continue;
3027
3028 /*
3029 * frame is destined for this interface, but if it's
3030 * not also for the previous one we handle that after
3031 * the loop to avoid copying the SKB once too much
3032 */
3033
3034 if (!prev) {
3035 prev = sdata;
3036 continue;
3037 }
3038
3039 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3040 rx.sdata = prev;
3041 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3042
3043 prev = sdata;
3044 }
3045
3046 if (prev) {
3047 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3048 rx.sdata = prev;
3049
3050 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3051 return;
3052 }
3053
3054 out:
3055 dev_kfree_skb(skb);
3056 }
3057
3058 /*
3059 * This is the receive path handler. It is called by a low level driver when an
3060 * 802.11 MPDU is received from the hardware.
3061 */
ieee80211_rx(struct ieee80211_hw * hw,struct sk_buff * skb)3062 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3063 {
3064 struct ieee80211_local *local = hw_to_local(hw);
3065 struct ieee80211_rate *rate = NULL;
3066 struct ieee80211_supported_band *sband;
3067 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3068
3069 WARN_ON_ONCE(softirq_count() == 0);
3070
3071 if (WARN_ON(status->band < 0 ||
3072 status->band >= IEEE80211_NUM_BANDS))
3073 goto drop;
3074
3075 sband = local->hw.wiphy->bands[status->band];
3076 if (WARN_ON(!sband))
3077 goto drop;
3078
3079 /*
3080 * If we're suspending, it is possible although not too likely
3081 * that we'd be receiving frames after having already partially
3082 * quiesced the stack. We can't process such frames then since
3083 * that might, for example, cause stations to be added or other
3084 * driver callbacks be invoked.
3085 */
3086 if (unlikely(local->quiescing || local->suspended))
3087 goto drop;
3088
3089 /*
3090 * The same happens when we're not even started,
3091 * but that's worth a warning.
3092 */
3093 if (WARN_ON(!local->started))
3094 goto drop;
3095
3096 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3097 /*
3098 * Validate the rate, unless a PLCP error means that
3099 * we probably can't have a valid rate here anyway.
3100 */
3101
3102 if (status->flag & RX_FLAG_HT) {
3103 /*
3104 * rate_idx is MCS index, which can be [0-76]
3105 * as documented on:
3106 *
3107 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3108 *
3109 * Anything else would be some sort of driver or
3110 * hardware error. The driver should catch hardware
3111 * errors.
3112 */
3113 if (WARN((status->rate_idx < 0 ||
3114 status->rate_idx > 76),
3115 "Rate marked as an HT rate but passed "
3116 "status->rate_idx is not "
3117 "an MCS index [0-76]: %d (0x%02x)\n",
3118 status->rate_idx,
3119 status->rate_idx))
3120 goto drop;
3121 } else {
3122 if (WARN_ON(status->rate_idx < 0 ||
3123 status->rate_idx >= sband->n_bitrates))
3124 goto drop;
3125 rate = &sband->bitrates[status->rate_idx];
3126 }
3127 }
3128
3129 status->rx_flags = 0;
3130
3131 /*
3132 * key references and virtual interfaces are protected using RCU
3133 * and this requires that we are in a read-side RCU section during
3134 * receive processing
3135 */
3136 rcu_read_lock();
3137
3138 /*
3139 * Frames with failed FCS/PLCP checksum are not returned,
3140 * all other frames are returned without radiotap header
3141 * if it was previously present.
3142 * Also, frames with less than 16 bytes are dropped.
3143 */
3144 skb = ieee80211_rx_monitor(local, skb, rate);
3145 if (!skb) {
3146 rcu_read_unlock();
3147 return;
3148 }
3149
3150 ieee80211_tpt_led_trig_rx(local,
3151 ((struct ieee80211_hdr *)skb->data)->frame_control,
3152 skb->len);
3153 __ieee80211_rx_handle_packet(hw, skb);
3154
3155 rcu_read_unlock();
3156
3157 return;
3158 drop:
3159 kfree_skb(skb);
3160 }
3161 EXPORT_SYMBOL(ieee80211_rx);
3162
3163 /* This is a version of the rx handler that can be called from hard irq
3164 * context. Post the skb on the queue and schedule the tasklet */
ieee80211_rx_irqsafe(struct ieee80211_hw * hw,struct sk_buff * skb)3165 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3166 {
3167 struct ieee80211_local *local = hw_to_local(hw);
3168
3169 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3170
3171 skb->pkt_type = IEEE80211_RX_MSG;
3172 skb_queue_tail(&local->skb_queue, skb);
3173 tasklet_schedule(&local->tasklet);
3174 }
3175 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
3176