1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20 
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27 
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29 
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34 
__reverse_ulong(unsigned char * str)35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 	unsigned long tmp = 0;
38 	int shift = 24, idx = 0;
39 
40 #if BITS_PER_LONG == 64
41 	shift = 56;
42 #endif
43 	while (shift >= 0) {
44 		tmp |= (unsigned long)str[idx++] << shift;
45 		shift -= BITS_PER_BYTE;
46 	}
47 	return tmp;
48 }
49 
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
__reverse_ffs(unsigned long word)54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 	int num = 0;
57 
58 #if BITS_PER_LONG == 64
59 	if ((word & 0xffffffff00000000UL) == 0)
60 		num += 32;
61 	else
62 		word >>= 32;
63 #endif
64 	if ((word & 0xffff0000) == 0)
65 		num += 16;
66 	else
67 		word >>= 16;
68 
69 	if ((word & 0xff00) == 0)
70 		num += 8;
71 	else
72 		word >>= 8;
73 
74 	if ((word & 0xf0) == 0)
75 		num += 4;
76 	else
77 		word >>= 4;
78 
79 	if ((word & 0xc) == 0)
80 		num += 2;
81 	else
82 		word >>= 2;
83 
84 	if ((word & 0x2) == 0)
85 		num += 1;
86 	return num;
87 }
88 
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
__find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 			unsigned long size, unsigned long offset)
100 {
101 	const unsigned long *p = addr + BIT_WORD(offset);
102 	unsigned long result = size;
103 	unsigned long tmp;
104 
105 	if (offset >= size)
106 		return size;
107 
108 	size -= (offset & ~(BITS_PER_LONG - 1));
109 	offset %= BITS_PER_LONG;
110 
111 	while (1) {
112 		if (*p == 0)
113 			goto pass;
114 
115 		tmp = __reverse_ulong((unsigned char *)p);
116 
117 		tmp &= ~0UL >> offset;
118 		if (size < BITS_PER_LONG)
119 			tmp &= (~0UL << (BITS_PER_LONG - size));
120 		if (tmp)
121 			goto found;
122 pass:
123 		if (size <= BITS_PER_LONG)
124 			break;
125 		size -= BITS_PER_LONG;
126 		offset = 0;
127 		p++;
128 	}
129 	return result;
130 found:
131 	return result - size + __reverse_ffs(tmp);
132 }
133 
__find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 			unsigned long size, unsigned long offset)
136 {
137 	const unsigned long *p = addr + BIT_WORD(offset);
138 	unsigned long result = size;
139 	unsigned long tmp;
140 
141 	if (offset >= size)
142 		return size;
143 
144 	size -= (offset & ~(BITS_PER_LONG - 1));
145 	offset %= BITS_PER_LONG;
146 
147 	while (1) {
148 		if (*p == ~0UL)
149 			goto pass;
150 
151 		tmp = __reverse_ulong((unsigned char *)p);
152 
153 		if (offset)
154 			tmp |= ~0UL << (BITS_PER_LONG - offset);
155 		if (size < BITS_PER_LONG)
156 			tmp |= ~0UL >> size;
157 		if (tmp != ~0UL)
158 			goto found;
159 pass:
160 		if (size <= BITS_PER_LONG)
161 			break;
162 		size -= BITS_PER_LONG;
163 		offset = 0;
164 		p++;
165 	}
166 	return result;
167 found:
168 	return result - size + __reverse_ffz(tmp);
169 }
170 
f2fs_need_SSR(struct f2fs_sb_info * sbi)171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176 
177 	if (f2fs_lfs_mode(sbi))
178 		return false;
179 	if (sbi->gc_mode == GC_URGENT_HIGH)
180 		return true;
181 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 		return true;
183 
184 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187 
f2fs_abort_atomic_write(struct inode * inode,bool clean)188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 	struct f2fs_inode_info *fi = F2FS_I(inode);
191 
192 	if (!f2fs_is_atomic_file(inode))
193 		return;
194 
195 	if (clean)
196 		truncate_inode_pages_final(inode->i_mapping);
197 	clear_inode_flag(fi->cow_inode, FI_COW_FILE);
198 	iput(fi->cow_inode);
199 	fi->cow_inode = NULL;
200 	release_atomic_write_cnt(inode);
201 	clear_inode_flag(inode, FI_ATOMIC_FILE);
202 	stat_dec_atomic_inode(inode);
203 }
204 
__replace_atomic_write_block(struct inode * inode,pgoff_t index,block_t new_addr,block_t * old_addr,bool recover)205 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
206 			block_t new_addr, block_t *old_addr, bool recover)
207 {
208 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
209 	struct dnode_of_data dn;
210 	struct node_info ni;
211 	int err;
212 
213 retry:
214 	set_new_dnode(&dn, inode, NULL, NULL, 0);
215 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE_RA);
216 	if (err) {
217 		if (err == -ENOMEM) {
218 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
219 			goto retry;
220 		}
221 		return err;
222 	}
223 
224 	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
225 	if (err) {
226 		f2fs_put_dnode(&dn);
227 		return err;
228 	}
229 
230 	if (recover) {
231 		/* dn.data_blkaddr is always valid */
232 		if (!__is_valid_data_blkaddr(new_addr)) {
233 			if (new_addr == NULL_ADDR)
234 				dec_valid_block_count(sbi, inode, 1);
235 			f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
236 			f2fs_update_data_blkaddr(&dn, new_addr);
237 		} else {
238 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
239 				new_addr, ni.version, true, true);
240 		}
241 	} else {
242 		blkcnt_t count = 1;
243 
244 		*old_addr = dn.data_blkaddr;
245 		f2fs_truncate_data_blocks_range(&dn, 1);
246 		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
247 		inc_valid_block_count(sbi, inode, &count);
248 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
249 					ni.version, true, false);
250 	}
251 
252 	f2fs_put_dnode(&dn);
253 	return 0;
254 }
255 
__complete_revoke_list(struct inode * inode,struct list_head * head,bool revoke)256 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
257 					bool revoke)
258 {
259 	struct revoke_entry *cur, *tmp;
260 
261 	list_for_each_entry_safe(cur, tmp, head, list) {
262 		if (revoke)
263 			__replace_atomic_write_block(inode, cur->index,
264 						cur->old_addr, NULL, true);
265 		list_del(&cur->list);
266 		kmem_cache_free(revoke_entry_slab, cur);
267 	}
268 }
269 
__f2fs_commit_atomic_write(struct inode * inode)270 static int __f2fs_commit_atomic_write(struct inode *inode)
271 {
272 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
273 	struct f2fs_inode_info *fi = F2FS_I(inode);
274 	struct inode *cow_inode = fi->cow_inode;
275 	struct revoke_entry *new;
276 	struct list_head revoke_list;
277 	block_t blkaddr;
278 	struct dnode_of_data dn;
279 	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
280 	pgoff_t off = 0, blen, index;
281 	int ret = 0, i;
282 
283 	INIT_LIST_HEAD(&revoke_list);
284 
285 	while (len) {
286 		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
287 
288 		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
289 		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
290 		if (ret && ret != -ENOENT) {
291 			goto out;
292 		} else if (ret == -ENOENT) {
293 			ret = 0;
294 			if (dn.max_level == 0)
295 				goto out;
296 			goto next;
297 		}
298 
299 		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
300 				len);
301 		index = off;
302 		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
303 			blkaddr = f2fs_data_blkaddr(&dn);
304 
305 			if (!__is_valid_data_blkaddr(blkaddr)) {
306 				continue;
307 			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
308 					DATA_GENERIC_ENHANCE)) {
309 				f2fs_put_dnode(&dn);
310 				ret = -EFSCORRUPTED;
311 				f2fs_handle_error(sbi,
312 						ERROR_INVALID_BLKADDR);
313 				goto out;
314 			}
315 
316 			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
317 							true, NULL);
318 
319 			ret = __replace_atomic_write_block(inode, index, blkaddr,
320 							&new->old_addr, false);
321 			if (ret) {
322 				f2fs_put_dnode(&dn);
323 				kmem_cache_free(revoke_entry_slab, new);
324 				goto out;
325 			}
326 
327 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
328 			new->index = index;
329 			list_add_tail(&new->list, &revoke_list);
330 		}
331 		f2fs_put_dnode(&dn);
332 next:
333 		off += blen;
334 		len -= blen;
335 	}
336 
337 out:
338 	if (ret)
339 		sbi->revoked_atomic_block += fi->atomic_write_cnt;
340 	else
341 		sbi->committed_atomic_block += fi->atomic_write_cnt;
342 
343 	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
344 
345 	return ret;
346 }
347 
f2fs_commit_atomic_write(struct inode * inode)348 int f2fs_commit_atomic_write(struct inode *inode)
349 {
350 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
351 	struct f2fs_inode_info *fi = F2FS_I(inode);
352 	int err;
353 
354 	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
355 	if (err)
356 		return err;
357 
358 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
359 	f2fs_lock_op(sbi);
360 
361 	err = __f2fs_commit_atomic_write(inode);
362 
363 	f2fs_unlock_op(sbi);
364 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
365 
366 	return err;
367 }
368 
369 /*
370  * This function balances dirty node and dentry pages.
371  * In addition, it controls garbage collection.
372  */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)373 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
374 {
375 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
376 		f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
377 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
378 	}
379 
380 	/* balance_fs_bg is able to be pending */
381 	if (need && excess_cached_nats(sbi))
382 		f2fs_balance_fs_bg(sbi, false);
383 
384 	if (!f2fs_is_checkpoint_ready(sbi))
385 		return;
386 
387 	/*
388 	 * We should do GC or end up with checkpoint, if there are so many dirty
389 	 * dir/node pages without enough free segments.
390 	 */
391 	if (has_not_enough_free_secs(sbi, 0, 0)) {
392 		if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
393 					sbi->gc_thread->f2fs_gc_task) {
394 			DEFINE_WAIT(wait);
395 
396 			prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
397 						TASK_UNINTERRUPTIBLE);
398 			wake_up(&sbi->gc_thread->gc_wait_queue_head);
399 			io_schedule();
400 			finish_wait(&sbi->gc_thread->fggc_wq, &wait);
401 		} else {
402 			struct f2fs_gc_control gc_control = {
403 				.victim_segno = NULL_SEGNO,
404 				.init_gc_type = BG_GC,
405 				.no_bg_gc = true,
406 				.should_migrate_blocks = false,
407 				.err_gc_skipped = false,
408 				.nr_free_secs = 1 };
409 			f2fs_down_write(&sbi->gc_lock);
410 			f2fs_gc(sbi, &gc_control);
411 		}
412 	}
413 }
414 
excess_dirty_threshold(struct f2fs_sb_info * sbi)415 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
416 {
417 	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
418 	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
419 	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
420 	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
421 	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
422 	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
423 	unsigned int threshold = sbi->blocks_per_seg * factor *
424 					DEFAULT_DIRTY_THRESHOLD;
425 	unsigned int global_threshold = threshold * 3 / 2;
426 
427 	if (dents >= threshold || qdata >= threshold ||
428 		nodes >= threshold || meta >= threshold ||
429 		imeta >= threshold)
430 		return true;
431 	return dents + qdata + nodes + meta + imeta >  global_threshold;
432 }
433 
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi,bool from_bg)434 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
435 {
436 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
437 		return;
438 
439 	/* try to shrink extent cache when there is no enough memory */
440 	if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
441 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
442 
443 	/* check the # of cached NAT entries */
444 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
445 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
446 
447 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
448 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
449 	else
450 		f2fs_build_free_nids(sbi, false, false);
451 
452 	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
453 		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
454 		goto do_sync;
455 
456 	/* there is background inflight IO or foreground operation recently */
457 	if (is_inflight_io(sbi, REQ_TIME) ||
458 		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
459 		return;
460 
461 	/* exceed periodical checkpoint timeout threshold */
462 	if (f2fs_time_over(sbi, CP_TIME))
463 		goto do_sync;
464 
465 	/* checkpoint is the only way to shrink partial cached entries */
466 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
467 		f2fs_available_free_memory(sbi, INO_ENTRIES))
468 		return;
469 
470 do_sync:
471 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
472 		struct blk_plug plug;
473 
474 		mutex_lock(&sbi->flush_lock);
475 
476 		blk_start_plug(&plug);
477 		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
478 		blk_finish_plug(&plug);
479 
480 		mutex_unlock(&sbi->flush_lock);
481 	}
482 	f2fs_sync_fs(sbi->sb, 1);
483 	stat_inc_bg_cp_count(sbi->stat_info);
484 }
485 
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)486 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
487 				struct block_device *bdev)
488 {
489 	int ret = blkdev_issue_flush(bdev);
490 
491 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
492 				test_opt(sbi, FLUSH_MERGE), ret);
493 	return ret;
494 }
495 
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)496 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
497 {
498 	int ret = 0;
499 	int i;
500 
501 	if (!f2fs_is_multi_device(sbi))
502 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
503 
504 	for (i = 0; i < sbi->s_ndevs; i++) {
505 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
506 			continue;
507 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
508 		if (ret)
509 			break;
510 	}
511 	return ret;
512 }
513 
issue_flush_thread(void * data)514 static int issue_flush_thread(void *data)
515 {
516 	struct f2fs_sb_info *sbi = data;
517 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
518 	wait_queue_head_t *q = &fcc->flush_wait_queue;
519 repeat:
520 	if (kthread_should_stop())
521 		return 0;
522 
523 	if (!llist_empty(&fcc->issue_list)) {
524 		struct flush_cmd *cmd, *next;
525 		int ret;
526 
527 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
528 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
529 
530 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
531 
532 		ret = submit_flush_wait(sbi, cmd->ino);
533 		atomic_inc(&fcc->issued_flush);
534 
535 		llist_for_each_entry_safe(cmd, next,
536 					  fcc->dispatch_list, llnode) {
537 			cmd->ret = ret;
538 			complete(&cmd->wait);
539 		}
540 		fcc->dispatch_list = NULL;
541 	}
542 
543 	wait_event_interruptible(*q,
544 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
545 	goto repeat;
546 }
547 
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)548 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
549 {
550 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
551 	struct flush_cmd cmd;
552 	int ret;
553 
554 	if (test_opt(sbi, NOBARRIER))
555 		return 0;
556 
557 	if (!test_opt(sbi, FLUSH_MERGE)) {
558 		atomic_inc(&fcc->queued_flush);
559 		ret = submit_flush_wait(sbi, ino);
560 		atomic_dec(&fcc->queued_flush);
561 		atomic_inc(&fcc->issued_flush);
562 		return ret;
563 	}
564 
565 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
566 	    f2fs_is_multi_device(sbi)) {
567 		ret = submit_flush_wait(sbi, ino);
568 		atomic_dec(&fcc->queued_flush);
569 
570 		atomic_inc(&fcc->issued_flush);
571 		return ret;
572 	}
573 
574 	cmd.ino = ino;
575 	init_completion(&cmd.wait);
576 
577 	llist_add(&cmd.llnode, &fcc->issue_list);
578 
579 	/*
580 	 * update issue_list before we wake up issue_flush thread, this
581 	 * smp_mb() pairs with another barrier in ___wait_event(), see
582 	 * more details in comments of waitqueue_active().
583 	 */
584 	smp_mb();
585 
586 	if (waitqueue_active(&fcc->flush_wait_queue))
587 		wake_up(&fcc->flush_wait_queue);
588 
589 	if (fcc->f2fs_issue_flush) {
590 		wait_for_completion(&cmd.wait);
591 		atomic_dec(&fcc->queued_flush);
592 	} else {
593 		struct llist_node *list;
594 
595 		list = llist_del_all(&fcc->issue_list);
596 		if (!list) {
597 			wait_for_completion(&cmd.wait);
598 			atomic_dec(&fcc->queued_flush);
599 		} else {
600 			struct flush_cmd *tmp, *next;
601 
602 			ret = submit_flush_wait(sbi, ino);
603 
604 			llist_for_each_entry_safe(tmp, next, list, llnode) {
605 				if (tmp == &cmd) {
606 					cmd.ret = ret;
607 					atomic_dec(&fcc->queued_flush);
608 					continue;
609 				}
610 				tmp->ret = ret;
611 				complete(&tmp->wait);
612 			}
613 		}
614 	}
615 
616 	return cmd.ret;
617 }
618 
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)619 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
620 {
621 	dev_t dev = sbi->sb->s_bdev->bd_dev;
622 	struct flush_cmd_control *fcc;
623 	int err = 0;
624 
625 	if (SM_I(sbi)->fcc_info) {
626 		fcc = SM_I(sbi)->fcc_info;
627 		if (fcc->f2fs_issue_flush)
628 			return err;
629 		goto init_thread;
630 	}
631 
632 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
633 	if (!fcc)
634 		return -ENOMEM;
635 	atomic_set(&fcc->issued_flush, 0);
636 	atomic_set(&fcc->queued_flush, 0);
637 	init_waitqueue_head(&fcc->flush_wait_queue);
638 	init_llist_head(&fcc->issue_list);
639 	SM_I(sbi)->fcc_info = fcc;
640 	if (!test_opt(sbi, FLUSH_MERGE))
641 		return err;
642 
643 init_thread:
644 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
645 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
646 	if (IS_ERR(fcc->f2fs_issue_flush)) {
647 		err = PTR_ERR(fcc->f2fs_issue_flush);
648 		kfree(fcc);
649 		SM_I(sbi)->fcc_info = NULL;
650 		return err;
651 	}
652 
653 	return err;
654 }
655 
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)656 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
657 {
658 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
659 
660 	if (fcc && fcc->f2fs_issue_flush) {
661 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
662 
663 		fcc->f2fs_issue_flush = NULL;
664 		kthread_stop(flush_thread);
665 	}
666 	if (free) {
667 		kfree(fcc);
668 		SM_I(sbi)->fcc_info = NULL;
669 	}
670 }
671 
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)672 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
673 {
674 	int ret = 0, i;
675 
676 	if (!f2fs_is_multi_device(sbi))
677 		return 0;
678 
679 	if (test_opt(sbi, NOBARRIER))
680 		return 0;
681 
682 	for (i = 1; i < sbi->s_ndevs; i++) {
683 		int count = DEFAULT_RETRY_IO_COUNT;
684 
685 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
686 			continue;
687 
688 		do {
689 			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
690 			if (ret)
691 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
692 		} while (ret && --count);
693 
694 		if (ret) {
695 			f2fs_stop_checkpoint(sbi, false,
696 					STOP_CP_REASON_FLUSH_FAIL);
697 			break;
698 		}
699 
700 		spin_lock(&sbi->dev_lock);
701 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
702 		spin_unlock(&sbi->dev_lock);
703 	}
704 
705 	return ret;
706 }
707 
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)708 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
709 		enum dirty_type dirty_type)
710 {
711 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
712 
713 	/* need not be added */
714 	if (IS_CURSEG(sbi, segno))
715 		return;
716 
717 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
718 		dirty_i->nr_dirty[dirty_type]++;
719 
720 	if (dirty_type == DIRTY) {
721 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
722 		enum dirty_type t = sentry->type;
723 
724 		if (unlikely(t >= DIRTY)) {
725 			f2fs_bug_on(sbi, 1);
726 			return;
727 		}
728 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
729 			dirty_i->nr_dirty[t]++;
730 
731 		if (__is_large_section(sbi)) {
732 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
733 			block_t valid_blocks =
734 				get_valid_blocks(sbi, segno, true);
735 
736 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
737 					valid_blocks == CAP_BLKS_PER_SEC(sbi)));
738 
739 			if (!IS_CURSEC(sbi, secno))
740 				set_bit(secno, dirty_i->dirty_secmap);
741 		}
742 	}
743 }
744 
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)745 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
746 		enum dirty_type dirty_type)
747 {
748 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
749 	block_t valid_blocks;
750 
751 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
752 		dirty_i->nr_dirty[dirty_type]--;
753 
754 	if (dirty_type == DIRTY) {
755 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
756 		enum dirty_type t = sentry->type;
757 
758 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
759 			dirty_i->nr_dirty[t]--;
760 
761 		valid_blocks = get_valid_blocks(sbi, segno, true);
762 		if (valid_blocks == 0) {
763 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
764 						dirty_i->victim_secmap);
765 #ifdef CONFIG_F2FS_CHECK_FS
766 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
767 #endif
768 		}
769 		if (__is_large_section(sbi)) {
770 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
771 
772 			if (!valid_blocks ||
773 					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
774 				clear_bit(secno, dirty_i->dirty_secmap);
775 				return;
776 			}
777 
778 			if (!IS_CURSEC(sbi, secno))
779 				set_bit(secno, dirty_i->dirty_secmap);
780 		}
781 	}
782 }
783 
784 /*
785  * Should not occur error such as -ENOMEM.
786  * Adding dirty entry into seglist is not critical operation.
787  * If a given segment is one of current working segments, it won't be added.
788  */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)789 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
790 {
791 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
792 	unsigned short valid_blocks, ckpt_valid_blocks;
793 	unsigned int usable_blocks;
794 
795 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
796 		return;
797 
798 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
799 	mutex_lock(&dirty_i->seglist_lock);
800 
801 	valid_blocks = get_valid_blocks(sbi, segno, false);
802 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
803 
804 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
805 		ckpt_valid_blocks == usable_blocks)) {
806 		__locate_dirty_segment(sbi, segno, PRE);
807 		__remove_dirty_segment(sbi, segno, DIRTY);
808 	} else if (valid_blocks < usable_blocks) {
809 		__locate_dirty_segment(sbi, segno, DIRTY);
810 	} else {
811 		/* Recovery routine with SSR needs this */
812 		__remove_dirty_segment(sbi, segno, DIRTY);
813 	}
814 
815 	mutex_unlock(&dirty_i->seglist_lock);
816 }
817 
818 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
f2fs_dirty_to_prefree(struct f2fs_sb_info * sbi)819 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
820 {
821 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
822 	unsigned int segno;
823 
824 	mutex_lock(&dirty_i->seglist_lock);
825 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
826 		if (get_valid_blocks(sbi, segno, false))
827 			continue;
828 		if (IS_CURSEG(sbi, segno))
829 			continue;
830 		__locate_dirty_segment(sbi, segno, PRE);
831 		__remove_dirty_segment(sbi, segno, DIRTY);
832 	}
833 	mutex_unlock(&dirty_i->seglist_lock);
834 }
835 
f2fs_get_unusable_blocks(struct f2fs_sb_info * sbi)836 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
837 {
838 	int ovp_hole_segs =
839 		(overprovision_segments(sbi) - reserved_segments(sbi));
840 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
841 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
842 	block_t holes[2] = {0, 0};	/* DATA and NODE */
843 	block_t unusable;
844 	struct seg_entry *se;
845 	unsigned int segno;
846 
847 	mutex_lock(&dirty_i->seglist_lock);
848 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
849 		se = get_seg_entry(sbi, segno);
850 		if (IS_NODESEG(se->type))
851 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
852 							se->valid_blocks;
853 		else
854 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
855 							se->valid_blocks;
856 	}
857 	mutex_unlock(&dirty_i->seglist_lock);
858 
859 	unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
860 	if (unusable > ovp_holes)
861 		return unusable - ovp_holes;
862 	return 0;
863 }
864 
f2fs_disable_cp_again(struct f2fs_sb_info * sbi,block_t unusable)865 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
866 {
867 	int ovp_hole_segs =
868 		(overprovision_segments(sbi) - reserved_segments(sbi));
869 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
870 		return -EAGAIN;
871 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
872 		dirty_segments(sbi) > ovp_hole_segs)
873 		return -EAGAIN;
874 	return 0;
875 }
876 
877 /* This is only used by SBI_CP_DISABLED */
get_free_segment(struct f2fs_sb_info * sbi)878 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
879 {
880 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
881 	unsigned int segno = 0;
882 
883 	mutex_lock(&dirty_i->seglist_lock);
884 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
885 		if (get_valid_blocks(sbi, segno, false))
886 			continue;
887 		if (get_ckpt_valid_blocks(sbi, segno, false))
888 			continue;
889 		mutex_unlock(&dirty_i->seglist_lock);
890 		return segno;
891 	}
892 	mutex_unlock(&dirty_i->seglist_lock);
893 	return NULL_SEGNO;
894 }
895 
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)896 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
897 		struct block_device *bdev, block_t lstart,
898 		block_t start, block_t len)
899 {
900 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
901 	struct list_head *pend_list;
902 	struct discard_cmd *dc;
903 
904 	f2fs_bug_on(sbi, !len);
905 
906 	pend_list = &dcc->pend_list[plist_idx(len)];
907 
908 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
909 	INIT_LIST_HEAD(&dc->list);
910 	dc->bdev = bdev;
911 	dc->lstart = lstart;
912 	dc->start = start;
913 	dc->len = len;
914 	dc->ref = 0;
915 	dc->state = D_PREP;
916 	dc->queued = 0;
917 	dc->error = 0;
918 	init_completion(&dc->wait);
919 	list_add_tail(&dc->list, pend_list);
920 	spin_lock_init(&dc->lock);
921 	dc->bio_ref = 0;
922 	atomic_inc(&dcc->discard_cmd_cnt);
923 	dcc->undiscard_blks += len;
924 
925 	return dc;
926 }
927 
__attach_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node * parent,struct rb_node ** p,bool leftmost)928 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
929 				struct block_device *bdev, block_t lstart,
930 				block_t start, block_t len,
931 				struct rb_node *parent, struct rb_node **p,
932 				bool leftmost)
933 {
934 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
935 	struct discard_cmd *dc;
936 
937 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
938 
939 	rb_link_node(&dc->rb_node, parent, p);
940 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
941 
942 	return dc;
943 }
944 
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)945 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
946 							struct discard_cmd *dc)
947 {
948 	if (dc->state == D_DONE)
949 		atomic_sub(dc->queued, &dcc->queued_discard);
950 
951 	list_del(&dc->list);
952 	rb_erase_cached(&dc->rb_node, &dcc->root);
953 	dcc->undiscard_blks -= dc->len;
954 
955 	kmem_cache_free(discard_cmd_slab, dc);
956 
957 	atomic_dec(&dcc->discard_cmd_cnt);
958 }
959 
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)960 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
961 							struct discard_cmd *dc)
962 {
963 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
964 	unsigned long flags;
965 
966 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
967 
968 	spin_lock_irqsave(&dc->lock, flags);
969 	if (dc->bio_ref) {
970 		spin_unlock_irqrestore(&dc->lock, flags);
971 		return;
972 	}
973 	spin_unlock_irqrestore(&dc->lock, flags);
974 
975 	f2fs_bug_on(sbi, dc->ref);
976 
977 	if (dc->error == -EOPNOTSUPP)
978 		dc->error = 0;
979 
980 	if (dc->error)
981 		printk_ratelimited(
982 			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
983 			KERN_INFO, sbi->sb->s_id,
984 			dc->lstart, dc->start, dc->len, dc->error);
985 	__detach_discard_cmd(dcc, dc);
986 }
987 
f2fs_submit_discard_endio(struct bio * bio)988 static void f2fs_submit_discard_endio(struct bio *bio)
989 {
990 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
991 	unsigned long flags;
992 
993 	spin_lock_irqsave(&dc->lock, flags);
994 	if (!dc->error)
995 		dc->error = blk_status_to_errno(bio->bi_status);
996 	dc->bio_ref--;
997 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
998 		dc->state = D_DONE;
999 		complete_all(&dc->wait);
1000 	}
1001 	spin_unlock_irqrestore(&dc->lock, flags);
1002 	bio_put(bio);
1003 }
1004 
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)1005 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1006 				block_t start, block_t end)
1007 {
1008 #ifdef CONFIG_F2FS_CHECK_FS
1009 	struct seg_entry *sentry;
1010 	unsigned int segno;
1011 	block_t blk = start;
1012 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1013 	unsigned long *map;
1014 
1015 	while (blk < end) {
1016 		segno = GET_SEGNO(sbi, blk);
1017 		sentry = get_seg_entry(sbi, segno);
1018 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1019 
1020 		if (end < START_BLOCK(sbi, segno + 1))
1021 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1022 		else
1023 			size = max_blocks;
1024 		map = (unsigned long *)(sentry->cur_valid_map);
1025 		offset = __find_rev_next_bit(map, size, offset);
1026 		f2fs_bug_on(sbi, offset != size);
1027 		blk = START_BLOCK(sbi, segno + 1);
1028 	}
1029 #endif
1030 }
1031 
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int discard_type,unsigned int granularity)1032 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1033 				struct discard_policy *dpolicy,
1034 				int discard_type, unsigned int granularity)
1035 {
1036 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1037 
1038 	/* common policy */
1039 	dpolicy->type = discard_type;
1040 	dpolicy->sync = true;
1041 	dpolicy->ordered = false;
1042 	dpolicy->granularity = granularity;
1043 
1044 	dpolicy->max_requests = dcc->max_discard_request;
1045 	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1046 	dpolicy->timeout = false;
1047 
1048 	if (discard_type == DPOLICY_BG) {
1049 		dpolicy->min_interval = dcc->min_discard_issue_time;
1050 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1051 		dpolicy->max_interval = dcc->max_discard_issue_time;
1052 		dpolicy->io_aware = true;
1053 		dpolicy->sync = false;
1054 		dpolicy->ordered = true;
1055 		if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1056 			dpolicy->granularity = 1;
1057 			if (atomic_read(&dcc->discard_cmd_cnt))
1058 				dpolicy->max_interval =
1059 					dcc->min_discard_issue_time;
1060 		}
1061 	} else if (discard_type == DPOLICY_FORCE) {
1062 		dpolicy->min_interval = dcc->min_discard_issue_time;
1063 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1064 		dpolicy->max_interval = dcc->max_discard_issue_time;
1065 		dpolicy->io_aware = false;
1066 	} else if (discard_type == DPOLICY_FSTRIM) {
1067 		dpolicy->io_aware = false;
1068 	} else if (discard_type == DPOLICY_UMOUNT) {
1069 		dpolicy->io_aware = false;
1070 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1071 		dpolicy->granularity = 1;
1072 		dpolicy->timeout = true;
1073 	}
1074 }
1075 
1076 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1077 				struct block_device *bdev, block_t lstart,
1078 				block_t start, block_t len);
1079 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,struct discard_cmd * dc,unsigned int * issued)1080 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1081 						struct discard_policy *dpolicy,
1082 						struct discard_cmd *dc,
1083 						unsigned int *issued)
1084 {
1085 	struct block_device *bdev = dc->bdev;
1086 	unsigned int max_discard_blocks =
1087 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1088 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1089 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1090 					&(dcc->fstrim_list) : &(dcc->wait_list);
1091 	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1092 	block_t lstart, start, len, total_len;
1093 	int err = 0;
1094 
1095 	if (dc->state != D_PREP)
1096 		return 0;
1097 
1098 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1099 		return 0;
1100 
1101 	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1102 
1103 	lstart = dc->lstart;
1104 	start = dc->start;
1105 	len = dc->len;
1106 	total_len = len;
1107 
1108 	dc->len = 0;
1109 
1110 	while (total_len && *issued < dpolicy->max_requests && !err) {
1111 		struct bio *bio = NULL;
1112 		unsigned long flags;
1113 		bool last = true;
1114 
1115 		if (len > max_discard_blocks) {
1116 			len = max_discard_blocks;
1117 			last = false;
1118 		}
1119 
1120 		(*issued)++;
1121 		if (*issued == dpolicy->max_requests)
1122 			last = true;
1123 
1124 		dc->len += len;
1125 
1126 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1127 			f2fs_show_injection_info(sbi, FAULT_DISCARD);
1128 			err = -EIO;
1129 			goto submit;
1130 		}
1131 		err = __blkdev_issue_discard(bdev,
1132 					SECTOR_FROM_BLOCK(start),
1133 					SECTOR_FROM_BLOCK(len),
1134 					GFP_NOFS, &bio);
1135 submit:
1136 		if (err) {
1137 			spin_lock_irqsave(&dc->lock, flags);
1138 			if (dc->state == D_PARTIAL)
1139 				dc->state = D_SUBMIT;
1140 			spin_unlock_irqrestore(&dc->lock, flags);
1141 
1142 			break;
1143 		}
1144 
1145 		f2fs_bug_on(sbi, !bio);
1146 
1147 		/*
1148 		 * should keep before submission to avoid D_DONE
1149 		 * right away
1150 		 */
1151 		spin_lock_irqsave(&dc->lock, flags);
1152 		if (last)
1153 			dc->state = D_SUBMIT;
1154 		else
1155 			dc->state = D_PARTIAL;
1156 		dc->bio_ref++;
1157 		spin_unlock_irqrestore(&dc->lock, flags);
1158 
1159 		atomic_inc(&dcc->queued_discard);
1160 		dc->queued++;
1161 		list_move_tail(&dc->list, wait_list);
1162 
1163 		/* sanity check on discard range */
1164 		__check_sit_bitmap(sbi, lstart, lstart + len);
1165 
1166 		bio->bi_private = dc;
1167 		bio->bi_end_io = f2fs_submit_discard_endio;
1168 		bio->bi_opf |= flag;
1169 		submit_bio(bio);
1170 
1171 		atomic_inc(&dcc->issued_discard);
1172 
1173 		f2fs_update_iostat(sbi, NULL, FS_DISCARD, len * F2FS_BLKSIZE);
1174 
1175 		lstart += len;
1176 		start += len;
1177 		total_len -= len;
1178 		len = total_len;
1179 	}
1180 
1181 	if (!err && len) {
1182 		dcc->undiscard_blks -= len;
1183 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1184 	}
1185 	return err;
1186 }
1187 
__insert_discard_tree(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node ** insert_p,struct rb_node * insert_parent)1188 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1189 				struct block_device *bdev, block_t lstart,
1190 				block_t start, block_t len,
1191 				struct rb_node **insert_p,
1192 				struct rb_node *insert_parent)
1193 {
1194 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1195 	struct rb_node **p;
1196 	struct rb_node *parent = NULL;
1197 	bool leftmost = true;
1198 
1199 	if (insert_p && insert_parent) {
1200 		parent = insert_parent;
1201 		p = insert_p;
1202 		goto do_insert;
1203 	}
1204 
1205 	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1206 							lstart, &leftmost);
1207 do_insert:
1208 	__attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1209 								p, leftmost);
1210 }
1211 
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1212 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1213 						struct discard_cmd *dc)
1214 {
1215 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1216 }
1217 
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1218 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1219 				struct discard_cmd *dc, block_t blkaddr)
1220 {
1221 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1222 	struct discard_info di = dc->di;
1223 	bool modified = false;
1224 
1225 	if (dc->state == D_DONE || dc->len == 1) {
1226 		__remove_discard_cmd(sbi, dc);
1227 		return;
1228 	}
1229 
1230 	dcc->undiscard_blks -= di.len;
1231 
1232 	if (blkaddr > di.lstart) {
1233 		dc->len = blkaddr - dc->lstart;
1234 		dcc->undiscard_blks += dc->len;
1235 		__relocate_discard_cmd(dcc, dc);
1236 		modified = true;
1237 	}
1238 
1239 	if (blkaddr < di.lstart + di.len - 1) {
1240 		if (modified) {
1241 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1242 					di.start + blkaddr + 1 - di.lstart,
1243 					di.lstart + di.len - 1 - blkaddr,
1244 					NULL, NULL);
1245 		} else {
1246 			dc->lstart++;
1247 			dc->len--;
1248 			dc->start++;
1249 			dcc->undiscard_blks += dc->len;
1250 			__relocate_discard_cmd(dcc, dc);
1251 		}
1252 	}
1253 }
1254 
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1255 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1256 				struct block_device *bdev, block_t lstart,
1257 				block_t start, block_t len)
1258 {
1259 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1260 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1261 	struct discard_cmd *dc;
1262 	struct discard_info di = {0};
1263 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1264 	unsigned int max_discard_blocks =
1265 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1266 	block_t end = lstart + len;
1267 
1268 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1269 					NULL, lstart,
1270 					(struct rb_entry **)&prev_dc,
1271 					(struct rb_entry **)&next_dc,
1272 					&insert_p, &insert_parent, true, NULL);
1273 	if (dc)
1274 		prev_dc = dc;
1275 
1276 	if (!prev_dc) {
1277 		di.lstart = lstart;
1278 		di.len = next_dc ? next_dc->lstart - lstart : len;
1279 		di.len = min(di.len, len);
1280 		di.start = start;
1281 	}
1282 
1283 	while (1) {
1284 		struct rb_node *node;
1285 		bool merged = false;
1286 		struct discard_cmd *tdc = NULL;
1287 
1288 		if (prev_dc) {
1289 			di.lstart = prev_dc->lstart + prev_dc->len;
1290 			if (di.lstart < lstart)
1291 				di.lstart = lstart;
1292 			if (di.lstart >= end)
1293 				break;
1294 
1295 			if (!next_dc || next_dc->lstart > end)
1296 				di.len = end - di.lstart;
1297 			else
1298 				di.len = next_dc->lstart - di.lstart;
1299 			di.start = start + di.lstart - lstart;
1300 		}
1301 
1302 		if (!di.len)
1303 			goto next;
1304 
1305 		if (prev_dc && prev_dc->state == D_PREP &&
1306 			prev_dc->bdev == bdev &&
1307 			__is_discard_back_mergeable(&di, &prev_dc->di,
1308 							max_discard_blocks)) {
1309 			prev_dc->di.len += di.len;
1310 			dcc->undiscard_blks += di.len;
1311 			__relocate_discard_cmd(dcc, prev_dc);
1312 			di = prev_dc->di;
1313 			tdc = prev_dc;
1314 			merged = true;
1315 		}
1316 
1317 		if (next_dc && next_dc->state == D_PREP &&
1318 			next_dc->bdev == bdev &&
1319 			__is_discard_front_mergeable(&di, &next_dc->di,
1320 							max_discard_blocks)) {
1321 			next_dc->di.lstart = di.lstart;
1322 			next_dc->di.len += di.len;
1323 			next_dc->di.start = di.start;
1324 			dcc->undiscard_blks += di.len;
1325 			__relocate_discard_cmd(dcc, next_dc);
1326 			if (tdc)
1327 				__remove_discard_cmd(sbi, tdc);
1328 			merged = true;
1329 		}
1330 
1331 		if (!merged) {
1332 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1333 							di.len, NULL, NULL);
1334 		}
1335  next:
1336 		prev_dc = next_dc;
1337 		if (!prev_dc)
1338 			break;
1339 
1340 		node = rb_next(&prev_dc->rb_node);
1341 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1342 	}
1343 }
1344 
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1345 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1346 		struct block_device *bdev, block_t blkstart, block_t blklen)
1347 {
1348 	block_t lblkstart = blkstart;
1349 
1350 	if (!f2fs_bdev_support_discard(bdev))
1351 		return 0;
1352 
1353 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1354 
1355 	if (f2fs_is_multi_device(sbi)) {
1356 		int devi = f2fs_target_device_index(sbi, blkstart);
1357 
1358 		blkstart -= FDEV(devi).start_blk;
1359 	}
1360 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1361 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1362 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1363 	return 0;
1364 }
1365 
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1366 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1367 					struct discard_policy *dpolicy)
1368 {
1369 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1370 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1371 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1372 	struct discard_cmd *dc;
1373 	struct blk_plug plug;
1374 	unsigned int pos = dcc->next_pos;
1375 	unsigned int issued = 0;
1376 	bool io_interrupted = false;
1377 
1378 	mutex_lock(&dcc->cmd_lock);
1379 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1380 					NULL, pos,
1381 					(struct rb_entry **)&prev_dc,
1382 					(struct rb_entry **)&next_dc,
1383 					&insert_p, &insert_parent, true, NULL);
1384 	if (!dc)
1385 		dc = next_dc;
1386 
1387 	blk_start_plug(&plug);
1388 
1389 	while (dc) {
1390 		struct rb_node *node;
1391 		int err = 0;
1392 
1393 		if (dc->state != D_PREP)
1394 			goto next;
1395 
1396 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1397 			io_interrupted = true;
1398 			break;
1399 		}
1400 
1401 		dcc->next_pos = dc->lstart + dc->len;
1402 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1403 
1404 		if (issued >= dpolicy->max_requests)
1405 			break;
1406 next:
1407 		node = rb_next(&dc->rb_node);
1408 		if (err)
1409 			__remove_discard_cmd(sbi, dc);
1410 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1411 	}
1412 
1413 	blk_finish_plug(&plug);
1414 
1415 	if (!dc)
1416 		dcc->next_pos = 0;
1417 
1418 	mutex_unlock(&dcc->cmd_lock);
1419 
1420 	if (!issued && io_interrupted)
1421 		issued = -1;
1422 
1423 	return issued;
1424 }
1425 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1426 					struct discard_policy *dpolicy);
1427 
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1428 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1429 					struct discard_policy *dpolicy)
1430 {
1431 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1432 	struct list_head *pend_list;
1433 	struct discard_cmd *dc, *tmp;
1434 	struct blk_plug plug;
1435 	int i, issued;
1436 	bool io_interrupted = false;
1437 
1438 	if (dpolicy->timeout)
1439 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1440 
1441 retry:
1442 	issued = 0;
1443 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1444 		if (dpolicy->timeout &&
1445 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1446 			break;
1447 
1448 		if (i + 1 < dpolicy->granularity)
1449 			break;
1450 
1451 		if (i + 1 < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1452 			return __issue_discard_cmd_orderly(sbi, dpolicy);
1453 
1454 		pend_list = &dcc->pend_list[i];
1455 
1456 		mutex_lock(&dcc->cmd_lock);
1457 		if (list_empty(pend_list))
1458 			goto next;
1459 		if (unlikely(dcc->rbtree_check))
1460 			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1461 							&dcc->root, false));
1462 		blk_start_plug(&plug);
1463 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1464 			f2fs_bug_on(sbi, dc->state != D_PREP);
1465 
1466 			if (dpolicy->timeout &&
1467 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1468 				break;
1469 
1470 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1471 						!is_idle(sbi, DISCARD_TIME)) {
1472 				io_interrupted = true;
1473 				break;
1474 			}
1475 
1476 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1477 
1478 			if (issued >= dpolicy->max_requests)
1479 				break;
1480 		}
1481 		blk_finish_plug(&plug);
1482 next:
1483 		mutex_unlock(&dcc->cmd_lock);
1484 
1485 		if (issued >= dpolicy->max_requests || io_interrupted)
1486 			break;
1487 	}
1488 
1489 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1490 		__wait_all_discard_cmd(sbi, dpolicy);
1491 		goto retry;
1492 	}
1493 
1494 	if (!issued && io_interrupted)
1495 		issued = -1;
1496 
1497 	return issued;
1498 }
1499 
__drop_discard_cmd(struct f2fs_sb_info * sbi)1500 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1501 {
1502 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1503 	struct list_head *pend_list;
1504 	struct discard_cmd *dc, *tmp;
1505 	int i;
1506 	bool dropped = false;
1507 
1508 	mutex_lock(&dcc->cmd_lock);
1509 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1510 		pend_list = &dcc->pend_list[i];
1511 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1512 			f2fs_bug_on(sbi, dc->state != D_PREP);
1513 			__remove_discard_cmd(sbi, dc);
1514 			dropped = true;
1515 		}
1516 	}
1517 	mutex_unlock(&dcc->cmd_lock);
1518 
1519 	return dropped;
1520 }
1521 
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1522 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1523 {
1524 	__drop_discard_cmd(sbi);
1525 }
1526 
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1527 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1528 							struct discard_cmd *dc)
1529 {
1530 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1531 	unsigned int len = 0;
1532 
1533 	wait_for_completion_io(&dc->wait);
1534 	mutex_lock(&dcc->cmd_lock);
1535 	f2fs_bug_on(sbi, dc->state != D_DONE);
1536 	dc->ref--;
1537 	if (!dc->ref) {
1538 		if (!dc->error)
1539 			len = dc->len;
1540 		__remove_discard_cmd(sbi, dc);
1541 	}
1542 	mutex_unlock(&dcc->cmd_lock);
1543 
1544 	return len;
1545 }
1546 
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1547 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1548 						struct discard_policy *dpolicy,
1549 						block_t start, block_t end)
1550 {
1551 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1552 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1553 					&(dcc->fstrim_list) : &(dcc->wait_list);
1554 	struct discard_cmd *dc = NULL, *iter, *tmp;
1555 	unsigned int trimmed = 0;
1556 
1557 next:
1558 	dc = NULL;
1559 
1560 	mutex_lock(&dcc->cmd_lock);
1561 	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1562 		if (iter->lstart + iter->len <= start || end <= iter->lstart)
1563 			continue;
1564 		if (iter->len < dpolicy->granularity)
1565 			continue;
1566 		if (iter->state == D_DONE && !iter->ref) {
1567 			wait_for_completion_io(&iter->wait);
1568 			if (!iter->error)
1569 				trimmed += iter->len;
1570 			__remove_discard_cmd(sbi, iter);
1571 		} else {
1572 			iter->ref++;
1573 			dc = iter;
1574 			break;
1575 		}
1576 	}
1577 	mutex_unlock(&dcc->cmd_lock);
1578 
1579 	if (dc) {
1580 		trimmed += __wait_one_discard_bio(sbi, dc);
1581 		goto next;
1582 	}
1583 
1584 	return trimmed;
1585 }
1586 
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1587 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1588 						struct discard_policy *dpolicy)
1589 {
1590 	struct discard_policy dp;
1591 	unsigned int discard_blks;
1592 
1593 	if (dpolicy)
1594 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1595 
1596 	/* wait all */
1597 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1598 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1599 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1600 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1601 
1602 	return discard_blks;
1603 }
1604 
1605 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1606 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1607 {
1608 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1609 	struct discard_cmd *dc;
1610 	bool need_wait = false;
1611 
1612 	mutex_lock(&dcc->cmd_lock);
1613 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1614 							NULL, blkaddr);
1615 	if (dc) {
1616 		if (dc->state == D_PREP) {
1617 			__punch_discard_cmd(sbi, dc, blkaddr);
1618 		} else {
1619 			dc->ref++;
1620 			need_wait = true;
1621 		}
1622 	}
1623 	mutex_unlock(&dcc->cmd_lock);
1624 
1625 	if (need_wait)
1626 		__wait_one_discard_bio(sbi, dc);
1627 }
1628 
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1629 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1630 {
1631 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1632 
1633 	if (dcc && dcc->f2fs_issue_discard) {
1634 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1635 
1636 		dcc->f2fs_issue_discard = NULL;
1637 		kthread_stop(discard_thread);
1638 	}
1639 }
1640 
1641 /* This comes from f2fs_put_super */
f2fs_issue_discard_timeout(struct f2fs_sb_info * sbi)1642 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1643 {
1644 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1645 	struct discard_policy dpolicy;
1646 	bool dropped;
1647 
1648 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1649 					dcc->discard_granularity);
1650 	__issue_discard_cmd(sbi, &dpolicy);
1651 	dropped = __drop_discard_cmd(sbi);
1652 
1653 	/* just to make sure there is no pending discard commands */
1654 	__wait_all_discard_cmd(sbi, NULL);
1655 
1656 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1657 	return dropped;
1658 }
1659 
issue_discard_thread(void * data)1660 static int issue_discard_thread(void *data)
1661 {
1662 	struct f2fs_sb_info *sbi = data;
1663 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1664 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1665 	struct discard_policy dpolicy;
1666 	unsigned int wait_ms = dcc->min_discard_issue_time;
1667 	int issued;
1668 
1669 	set_freezable();
1670 
1671 	do {
1672 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1673 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1674 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1675 		else
1676 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1677 						dcc->discard_granularity);
1678 
1679 		if (!atomic_read(&dcc->discard_cmd_cnt))
1680 		       wait_ms = dpolicy.max_interval;
1681 
1682 		wait_event_interruptible_timeout(*q,
1683 				kthread_should_stop() || freezing(current) ||
1684 				dcc->discard_wake,
1685 				msecs_to_jiffies(wait_ms));
1686 
1687 		if (dcc->discard_wake)
1688 			dcc->discard_wake = 0;
1689 
1690 		/* clean up pending candidates before going to sleep */
1691 		if (atomic_read(&dcc->queued_discard))
1692 			__wait_all_discard_cmd(sbi, NULL);
1693 
1694 		if (try_to_freeze())
1695 			continue;
1696 		if (f2fs_readonly(sbi->sb))
1697 			continue;
1698 		if (kthread_should_stop())
1699 			return 0;
1700 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1701 			wait_ms = dpolicy.max_interval;
1702 			continue;
1703 		}
1704 		if (!atomic_read(&dcc->discard_cmd_cnt))
1705 			continue;
1706 
1707 		sb_start_intwrite(sbi->sb);
1708 
1709 		issued = __issue_discard_cmd(sbi, &dpolicy);
1710 		if (issued > 0) {
1711 			__wait_all_discard_cmd(sbi, &dpolicy);
1712 			wait_ms = dpolicy.min_interval;
1713 		} else if (issued == -1) {
1714 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1715 			if (!wait_ms)
1716 				wait_ms = dpolicy.mid_interval;
1717 		} else {
1718 			wait_ms = dpolicy.max_interval;
1719 		}
1720 
1721 		sb_end_intwrite(sbi->sb);
1722 
1723 	} while (!kthread_should_stop());
1724 	return 0;
1725 }
1726 
1727 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1728 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1729 		struct block_device *bdev, block_t blkstart, block_t blklen)
1730 {
1731 	sector_t sector, nr_sects;
1732 	block_t lblkstart = blkstart;
1733 	int devi = 0;
1734 
1735 	if (f2fs_is_multi_device(sbi)) {
1736 		devi = f2fs_target_device_index(sbi, blkstart);
1737 		if (blkstart < FDEV(devi).start_blk ||
1738 		    blkstart > FDEV(devi).end_blk) {
1739 			f2fs_err(sbi, "Invalid block %x", blkstart);
1740 			return -EIO;
1741 		}
1742 		blkstart -= FDEV(devi).start_blk;
1743 	}
1744 
1745 	/* For sequential zones, reset the zone write pointer */
1746 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1747 		sector = SECTOR_FROM_BLOCK(blkstart);
1748 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1749 
1750 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1751 				nr_sects != bdev_zone_sectors(bdev)) {
1752 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1753 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1754 				 blkstart, blklen);
1755 			return -EIO;
1756 		}
1757 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1758 		return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1759 					sector, nr_sects, GFP_NOFS);
1760 	}
1761 
1762 	/* For conventional zones, use regular discard if supported */
1763 	return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1764 }
1765 #endif
1766 
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1767 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1768 		struct block_device *bdev, block_t blkstart, block_t blklen)
1769 {
1770 #ifdef CONFIG_BLK_DEV_ZONED
1771 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1772 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1773 #endif
1774 	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1775 }
1776 
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)1777 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1778 				block_t blkstart, block_t blklen)
1779 {
1780 	sector_t start = blkstart, len = 0;
1781 	struct block_device *bdev;
1782 	struct seg_entry *se;
1783 	unsigned int offset;
1784 	block_t i;
1785 	int err = 0;
1786 
1787 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1788 
1789 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1790 		if (i != start) {
1791 			struct block_device *bdev2 =
1792 				f2fs_target_device(sbi, i, NULL);
1793 
1794 			if (bdev2 != bdev) {
1795 				err = __issue_discard_async(sbi, bdev,
1796 						start, len);
1797 				if (err)
1798 					return err;
1799 				bdev = bdev2;
1800 				start = i;
1801 				len = 0;
1802 			}
1803 		}
1804 
1805 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1806 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1807 
1808 		if (f2fs_block_unit_discard(sbi) &&
1809 				!f2fs_test_and_set_bit(offset, se->discard_map))
1810 			sbi->discard_blks--;
1811 	}
1812 
1813 	if (len)
1814 		err = __issue_discard_async(sbi, bdev, start, len);
1815 	return err;
1816 }
1817 
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)1818 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1819 							bool check_only)
1820 {
1821 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1822 	int max_blocks = sbi->blocks_per_seg;
1823 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1824 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1825 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1826 	unsigned long *discard_map = (unsigned long *)se->discard_map;
1827 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1828 	unsigned int start = 0, end = -1;
1829 	bool force = (cpc->reason & CP_DISCARD);
1830 	struct discard_entry *de = NULL;
1831 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1832 	int i;
1833 
1834 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1835 			!f2fs_block_unit_discard(sbi))
1836 		return false;
1837 
1838 	if (!force) {
1839 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1840 			SM_I(sbi)->dcc_info->nr_discards >=
1841 				SM_I(sbi)->dcc_info->max_discards)
1842 			return false;
1843 	}
1844 
1845 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1846 	for (i = 0; i < entries; i++)
1847 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1848 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1849 
1850 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1851 				SM_I(sbi)->dcc_info->max_discards) {
1852 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1853 		if (start >= max_blocks)
1854 			break;
1855 
1856 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1857 		if (force && start && end != max_blocks
1858 					&& (end - start) < cpc->trim_minlen)
1859 			continue;
1860 
1861 		if (check_only)
1862 			return true;
1863 
1864 		if (!de) {
1865 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1866 						GFP_F2FS_ZERO, true, NULL);
1867 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1868 			list_add_tail(&de->list, head);
1869 		}
1870 
1871 		for (i = start; i < end; i++)
1872 			__set_bit_le(i, (void *)de->discard_map);
1873 
1874 		SM_I(sbi)->dcc_info->nr_discards += end - start;
1875 	}
1876 	return false;
1877 }
1878 
release_discard_addr(struct discard_entry * entry)1879 static void release_discard_addr(struct discard_entry *entry)
1880 {
1881 	list_del(&entry->list);
1882 	kmem_cache_free(discard_entry_slab, entry);
1883 }
1884 
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)1885 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1886 {
1887 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1888 	struct discard_entry *entry, *this;
1889 
1890 	/* drop caches */
1891 	list_for_each_entry_safe(entry, this, head, list)
1892 		release_discard_addr(entry);
1893 }
1894 
1895 /*
1896  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1897  */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)1898 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1899 {
1900 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1901 	unsigned int segno;
1902 
1903 	mutex_lock(&dirty_i->seglist_lock);
1904 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1905 		__set_test_and_free(sbi, segno, false);
1906 	mutex_unlock(&dirty_i->seglist_lock);
1907 }
1908 
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)1909 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1910 						struct cp_control *cpc)
1911 {
1912 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1913 	struct list_head *head = &dcc->entry_list;
1914 	struct discard_entry *entry, *this;
1915 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1916 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1917 	unsigned int start = 0, end = -1;
1918 	unsigned int secno, start_segno;
1919 	bool force = (cpc->reason & CP_DISCARD);
1920 	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
1921 						DISCARD_UNIT_SECTION;
1922 
1923 	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
1924 		section_alignment = true;
1925 
1926 	mutex_lock(&dirty_i->seglist_lock);
1927 
1928 	while (1) {
1929 		int i;
1930 
1931 		if (section_alignment && end != -1)
1932 			end--;
1933 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1934 		if (start >= MAIN_SEGS(sbi))
1935 			break;
1936 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1937 								start + 1);
1938 
1939 		if (section_alignment) {
1940 			start = rounddown(start, sbi->segs_per_sec);
1941 			end = roundup(end, sbi->segs_per_sec);
1942 		}
1943 
1944 		for (i = start; i < end; i++) {
1945 			if (test_and_clear_bit(i, prefree_map))
1946 				dirty_i->nr_dirty[PRE]--;
1947 		}
1948 
1949 		if (!f2fs_realtime_discard_enable(sbi))
1950 			continue;
1951 
1952 		if (force && start >= cpc->trim_start &&
1953 					(end - 1) <= cpc->trim_end)
1954 				continue;
1955 
1956 		if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
1957 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1958 				(end - start) << sbi->log_blocks_per_seg);
1959 			continue;
1960 		}
1961 next:
1962 		secno = GET_SEC_FROM_SEG(sbi, start);
1963 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
1964 		if (!IS_CURSEC(sbi, secno) &&
1965 			!get_valid_blocks(sbi, start, true))
1966 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1967 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
1968 
1969 		start = start_segno + sbi->segs_per_sec;
1970 		if (start < end)
1971 			goto next;
1972 		else
1973 			end = start - 1;
1974 	}
1975 	mutex_unlock(&dirty_i->seglist_lock);
1976 
1977 	if (!f2fs_block_unit_discard(sbi))
1978 		goto wakeup;
1979 
1980 	/* send small discards */
1981 	list_for_each_entry_safe(entry, this, head, list) {
1982 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1983 		bool is_valid = test_bit_le(0, entry->discard_map);
1984 
1985 find_next:
1986 		if (is_valid) {
1987 			next_pos = find_next_zero_bit_le(entry->discard_map,
1988 					sbi->blocks_per_seg, cur_pos);
1989 			len = next_pos - cur_pos;
1990 
1991 			if (f2fs_sb_has_blkzoned(sbi) ||
1992 			    (force && len < cpc->trim_minlen))
1993 				goto skip;
1994 
1995 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1996 									len);
1997 			total_len += len;
1998 		} else {
1999 			next_pos = find_next_bit_le(entry->discard_map,
2000 					sbi->blocks_per_seg, cur_pos);
2001 		}
2002 skip:
2003 		cur_pos = next_pos;
2004 		is_valid = !is_valid;
2005 
2006 		if (cur_pos < sbi->blocks_per_seg)
2007 			goto find_next;
2008 
2009 		release_discard_addr(entry);
2010 		dcc->nr_discards -= total_len;
2011 	}
2012 
2013 wakeup:
2014 	wake_up_discard_thread(sbi, false);
2015 }
2016 
f2fs_start_discard_thread(struct f2fs_sb_info * sbi)2017 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2018 {
2019 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2020 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2021 	int err = 0;
2022 
2023 	if (!f2fs_realtime_discard_enable(sbi))
2024 		return 0;
2025 
2026 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2027 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2028 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2029 		err = PTR_ERR(dcc->f2fs_issue_discard);
2030 		dcc->f2fs_issue_discard = NULL;
2031 	}
2032 
2033 	return err;
2034 }
2035 
create_discard_cmd_control(struct f2fs_sb_info * sbi)2036 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2037 {
2038 	struct discard_cmd_control *dcc;
2039 	int err = 0, i;
2040 
2041 	if (SM_I(sbi)->dcc_info) {
2042 		dcc = SM_I(sbi)->dcc_info;
2043 		goto init_thread;
2044 	}
2045 
2046 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2047 	if (!dcc)
2048 		return -ENOMEM;
2049 
2050 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2051 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2052 		dcc->discard_granularity = sbi->blocks_per_seg;
2053 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2054 		dcc->discard_granularity = BLKS_PER_SEC(sbi);
2055 
2056 	INIT_LIST_HEAD(&dcc->entry_list);
2057 	for (i = 0; i < MAX_PLIST_NUM; i++)
2058 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2059 	INIT_LIST_HEAD(&dcc->wait_list);
2060 	INIT_LIST_HEAD(&dcc->fstrim_list);
2061 	mutex_init(&dcc->cmd_lock);
2062 	atomic_set(&dcc->issued_discard, 0);
2063 	atomic_set(&dcc->queued_discard, 0);
2064 	atomic_set(&dcc->discard_cmd_cnt, 0);
2065 	dcc->nr_discards = 0;
2066 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2067 	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2068 	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2069 	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2070 	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2071 	dcc->undiscard_blks = 0;
2072 	dcc->next_pos = 0;
2073 	dcc->root = RB_ROOT_CACHED;
2074 	dcc->rbtree_check = false;
2075 
2076 	init_waitqueue_head(&dcc->discard_wait_queue);
2077 	SM_I(sbi)->dcc_info = dcc;
2078 init_thread:
2079 	err = f2fs_start_discard_thread(sbi);
2080 	if (err) {
2081 		kfree(dcc);
2082 		SM_I(sbi)->dcc_info = NULL;
2083 	}
2084 
2085 	return err;
2086 }
2087 
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)2088 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2089 {
2090 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2091 
2092 	if (!dcc)
2093 		return;
2094 
2095 	f2fs_stop_discard_thread(sbi);
2096 
2097 	/*
2098 	 * Recovery can cache discard commands, so in error path of
2099 	 * fill_super(), it needs to give a chance to handle them.
2100 	 */
2101 	if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2102 		f2fs_issue_discard_timeout(sbi);
2103 
2104 	kfree(dcc);
2105 	SM_I(sbi)->dcc_info = NULL;
2106 }
2107 
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)2108 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2109 {
2110 	struct sit_info *sit_i = SIT_I(sbi);
2111 
2112 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2113 		sit_i->dirty_sentries++;
2114 		return false;
2115 	}
2116 
2117 	return true;
2118 }
2119 
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2120 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2121 					unsigned int segno, int modified)
2122 {
2123 	struct seg_entry *se = get_seg_entry(sbi, segno);
2124 
2125 	se->type = type;
2126 	if (modified)
2127 		__mark_sit_entry_dirty(sbi, segno);
2128 }
2129 
get_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr)2130 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2131 								block_t blkaddr)
2132 {
2133 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2134 
2135 	if (segno == NULL_SEGNO)
2136 		return 0;
2137 	return get_seg_entry(sbi, segno)->mtime;
2138 }
2139 
update_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned long long old_mtime)2140 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2141 						unsigned long long old_mtime)
2142 {
2143 	struct seg_entry *se;
2144 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2145 	unsigned long long ctime = get_mtime(sbi, false);
2146 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2147 
2148 	if (segno == NULL_SEGNO)
2149 		return;
2150 
2151 	se = get_seg_entry(sbi, segno);
2152 
2153 	if (!se->mtime)
2154 		se->mtime = mtime;
2155 	else
2156 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2157 						se->valid_blocks + 1);
2158 
2159 	if (ctime > SIT_I(sbi)->max_mtime)
2160 		SIT_I(sbi)->max_mtime = ctime;
2161 }
2162 
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2163 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2164 {
2165 	struct seg_entry *se;
2166 	unsigned int segno, offset;
2167 	long int new_vblocks;
2168 	bool exist;
2169 #ifdef CONFIG_F2FS_CHECK_FS
2170 	bool mir_exist;
2171 #endif
2172 
2173 	segno = GET_SEGNO(sbi, blkaddr);
2174 
2175 	se = get_seg_entry(sbi, segno);
2176 	new_vblocks = se->valid_blocks + del;
2177 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2178 
2179 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2180 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2181 
2182 	se->valid_blocks = new_vblocks;
2183 
2184 	/* Update valid block bitmap */
2185 	if (del > 0) {
2186 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2187 #ifdef CONFIG_F2FS_CHECK_FS
2188 		mir_exist = f2fs_test_and_set_bit(offset,
2189 						se->cur_valid_map_mir);
2190 		if (unlikely(exist != mir_exist)) {
2191 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2192 				 blkaddr, exist);
2193 			f2fs_bug_on(sbi, 1);
2194 		}
2195 #endif
2196 		if (unlikely(exist)) {
2197 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2198 				 blkaddr);
2199 			f2fs_bug_on(sbi, 1);
2200 			se->valid_blocks--;
2201 			del = 0;
2202 		}
2203 
2204 		if (f2fs_block_unit_discard(sbi) &&
2205 				!f2fs_test_and_set_bit(offset, se->discard_map))
2206 			sbi->discard_blks--;
2207 
2208 		/*
2209 		 * SSR should never reuse block which is checkpointed
2210 		 * or newly invalidated.
2211 		 */
2212 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2213 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2214 				se->ckpt_valid_blocks++;
2215 		}
2216 	} else {
2217 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2218 #ifdef CONFIG_F2FS_CHECK_FS
2219 		mir_exist = f2fs_test_and_clear_bit(offset,
2220 						se->cur_valid_map_mir);
2221 		if (unlikely(exist != mir_exist)) {
2222 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2223 				 blkaddr, exist);
2224 			f2fs_bug_on(sbi, 1);
2225 		}
2226 #endif
2227 		if (unlikely(!exist)) {
2228 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2229 				 blkaddr);
2230 			f2fs_bug_on(sbi, 1);
2231 			se->valid_blocks++;
2232 			del = 0;
2233 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2234 			/*
2235 			 * If checkpoints are off, we must not reuse data that
2236 			 * was used in the previous checkpoint. If it was used
2237 			 * before, we must track that to know how much space we
2238 			 * really have.
2239 			 */
2240 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2241 				spin_lock(&sbi->stat_lock);
2242 				sbi->unusable_block_count++;
2243 				spin_unlock(&sbi->stat_lock);
2244 			}
2245 		}
2246 
2247 		if (f2fs_block_unit_discard(sbi) &&
2248 			f2fs_test_and_clear_bit(offset, se->discard_map))
2249 			sbi->discard_blks++;
2250 	}
2251 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2252 		se->ckpt_valid_blocks += del;
2253 
2254 	__mark_sit_entry_dirty(sbi, segno);
2255 
2256 	/* update total number of valid blocks to be written in ckpt area */
2257 	SIT_I(sbi)->written_valid_blocks += del;
2258 
2259 	if (__is_large_section(sbi))
2260 		get_sec_entry(sbi, segno)->valid_blocks += del;
2261 }
2262 
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr)2263 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2264 {
2265 	unsigned int segno = GET_SEGNO(sbi, addr);
2266 	struct sit_info *sit_i = SIT_I(sbi);
2267 
2268 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2269 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2270 		return;
2271 
2272 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2273 	f2fs_invalidate_compress_page(sbi, addr);
2274 
2275 	/* add it into sit main buffer */
2276 	down_write(&sit_i->sentry_lock);
2277 
2278 	update_segment_mtime(sbi, addr, 0);
2279 	update_sit_entry(sbi, addr, -1);
2280 
2281 	/* add it into dirty seglist */
2282 	locate_dirty_segment(sbi, segno);
2283 
2284 	up_write(&sit_i->sentry_lock);
2285 }
2286 
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2287 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2288 {
2289 	struct sit_info *sit_i = SIT_I(sbi);
2290 	unsigned int segno, offset;
2291 	struct seg_entry *se;
2292 	bool is_cp = false;
2293 
2294 	if (!__is_valid_data_blkaddr(blkaddr))
2295 		return true;
2296 
2297 	down_read(&sit_i->sentry_lock);
2298 
2299 	segno = GET_SEGNO(sbi, blkaddr);
2300 	se = get_seg_entry(sbi, segno);
2301 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2302 
2303 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2304 		is_cp = true;
2305 
2306 	up_read(&sit_i->sentry_lock);
2307 
2308 	return is_cp;
2309 }
2310 
2311 /*
2312  * This function should be resided under the curseg_mutex lock
2313  */
__add_sum_entry(struct f2fs_sb_info * sbi,int type,struct f2fs_summary * sum)2314 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2315 					struct f2fs_summary *sum)
2316 {
2317 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2318 	void *addr = curseg->sum_blk;
2319 
2320 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2321 	memcpy(addr, sum, sizeof(struct f2fs_summary));
2322 }
2323 
2324 /*
2325  * Calculate the number of current summary pages for writing
2326  */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2327 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2328 {
2329 	int valid_sum_count = 0;
2330 	int i, sum_in_page;
2331 
2332 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2333 		if (sbi->ckpt->alloc_type[i] == SSR)
2334 			valid_sum_count += sbi->blocks_per_seg;
2335 		else {
2336 			if (for_ra)
2337 				valid_sum_count += le16_to_cpu(
2338 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2339 			else
2340 				valid_sum_count += curseg_blkoff(sbi, i);
2341 		}
2342 	}
2343 
2344 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2345 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2346 	if (valid_sum_count <= sum_in_page)
2347 		return 1;
2348 	else if ((valid_sum_count - sum_in_page) <=
2349 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2350 		return 2;
2351 	return 3;
2352 }
2353 
2354 /*
2355  * Caller should put this summary page
2356  */
f2fs_get_sum_page(struct f2fs_sb_info * sbi,unsigned int segno)2357 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2358 {
2359 	if (unlikely(f2fs_cp_error(sbi)))
2360 		return ERR_PTR(-EIO);
2361 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2362 }
2363 
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2364 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2365 					void *src, block_t blk_addr)
2366 {
2367 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2368 
2369 	memcpy(page_address(page), src, PAGE_SIZE);
2370 	set_page_dirty(page);
2371 	f2fs_put_page(page, 1);
2372 }
2373 
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2374 static void write_sum_page(struct f2fs_sb_info *sbi,
2375 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2376 {
2377 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2378 }
2379 
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2380 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2381 						int type, block_t blk_addr)
2382 {
2383 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2384 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2385 	struct f2fs_summary_block *src = curseg->sum_blk;
2386 	struct f2fs_summary_block *dst;
2387 
2388 	dst = (struct f2fs_summary_block *)page_address(page);
2389 	memset(dst, 0, PAGE_SIZE);
2390 
2391 	mutex_lock(&curseg->curseg_mutex);
2392 
2393 	down_read(&curseg->journal_rwsem);
2394 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2395 	up_read(&curseg->journal_rwsem);
2396 
2397 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2398 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2399 
2400 	mutex_unlock(&curseg->curseg_mutex);
2401 
2402 	set_page_dirty(page);
2403 	f2fs_put_page(page, 1);
2404 }
2405 
is_next_segment_free(struct f2fs_sb_info * sbi,struct curseg_info * curseg,int type)2406 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2407 				struct curseg_info *curseg, int type)
2408 {
2409 	unsigned int segno = curseg->segno + 1;
2410 	struct free_segmap_info *free_i = FREE_I(sbi);
2411 
2412 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2413 		return !test_bit(segno, free_i->free_segmap);
2414 	return 0;
2415 }
2416 
2417 /*
2418  * Find a new segment from the free segments bitmap to right order
2419  * This function should be returned with success, otherwise BUG
2420  */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,int dir)2421 static void get_new_segment(struct f2fs_sb_info *sbi,
2422 			unsigned int *newseg, bool new_sec, int dir)
2423 {
2424 	struct free_segmap_info *free_i = FREE_I(sbi);
2425 	unsigned int segno, secno, zoneno;
2426 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2427 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2428 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2429 	unsigned int left_start = hint;
2430 	bool init = true;
2431 	int go_left = 0;
2432 	int i;
2433 
2434 	spin_lock(&free_i->segmap_lock);
2435 
2436 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2437 		segno = find_next_zero_bit(free_i->free_segmap,
2438 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2439 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2440 			goto got_it;
2441 	}
2442 find_other_zone:
2443 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2444 	if (secno >= MAIN_SECS(sbi)) {
2445 		if (dir == ALLOC_RIGHT) {
2446 			secno = find_first_zero_bit(free_i->free_secmap,
2447 							MAIN_SECS(sbi));
2448 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2449 		} else {
2450 			go_left = 1;
2451 			left_start = hint - 1;
2452 		}
2453 	}
2454 	if (go_left == 0)
2455 		goto skip_left;
2456 
2457 	while (test_bit(left_start, free_i->free_secmap)) {
2458 		if (left_start > 0) {
2459 			left_start--;
2460 			continue;
2461 		}
2462 		left_start = find_first_zero_bit(free_i->free_secmap,
2463 							MAIN_SECS(sbi));
2464 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2465 		break;
2466 	}
2467 	secno = left_start;
2468 skip_left:
2469 	segno = GET_SEG_FROM_SEC(sbi, secno);
2470 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2471 
2472 	/* give up on finding another zone */
2473 	if (!init)
2474 		goto got_it;
2475 	if (sbi->secs_per_zone == 1)
2476 		goto got_it;
2477 	if (zoneno == old_zoneno)
2478 		goto got_it;
2479 	if (dir == ALLOC_LEFT) {
2480 		if (!go_left && zoneno + 1 >= total_zones)
2481 			goto got_it;
2482 		if (go_left && zoneno == 0)
2483 			goto got_it;
2484 	}
2485 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2486 		if (CURSEG_I(sbi, i)->zone == zoneno)
2487 			break;
2488 
2489 	if (i < NR_CURSEG_TYPE) {
2490 		/* zone is in user, try another */
2491 		if (go_left)
2492 			hint = zoneno * sbi->secs_per_zone - 1;
2493 		else if (zoneno + 1 >= total_zones)
2494 			hint = 0;
2495 		else
2496 			hint = (zoneno + 1) * sbi->secs_per_zone;
2497 		init = false;
2498 		goto find_other_zone;
2499 	}
2500 got_it:
2501 	/* set it as dirty segment in free segmap */
2502 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2503 	__set_inuse(sbi, segno);
2504 	*newseg = segno;
2505 	spin_unlock(&free_i->segmap_lock);
2506 }
2507 
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2508 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2509 {
2510 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2511 	struct summary_footer *sum_footer;
2512 	unsigned short seg_type = curseg->seg_type;
2513 
2514 	curseg->inited = true;
2515 	curseg->segno = curseg->next_segno;
2516 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2517 	curseg->next_blkoff = 0;
2518 	curseg->next_segno = NULL_SEGNO;
2519 
2520 	sum_footer = &(curseg->sum_blk->footer);
2521 	memset(sum_footer, 0, sizeof(struct summary_footer));
2522 
2523 	sanity_check_seg_type(sbi, seg_type);
2524 
2525 	if (IS_DATASEG(seg_type))
2526 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2527 	if (IS_NODESEG(seg_type))
2528 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2529 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2530 }
2531 
__get_next_segno(struct f2fs_sb_info * sbi,int type)2532 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2533 {
2534 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2535 	unsigned short seg_type = curseg->seg_type;
2536 
2537 	sanity_check_seg_type(sbi, seg_type);
2538 	if (f2fs_need_rand_seg(sbi))
2539 		return prandom_u32_max(MAIN_SECS(sbi) * sbi->segs_per_sec);
2540 
2541 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2542 	if (__is_large_section(sbi))
2543 		return curseg->segno;
2544 
2545 	/* inmem log may not locate on any segment after mount */
2546 	if (!curseg->inited)
2547 		return 0;
2548 
2549 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2550 		return 0;
2551 
2552 	if (test_opt(sbi, NOHEAP) &&
2553 		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2554 		return 0;
2555 
2556 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2557 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2558 
2559 	/* find segments from 0 to reuse freed segments */
2560 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2561 		return 0;
2562 
2563 	return curseg->segno;
2564 }
2565 
2566 /*
2567  * Allocate a current working segment.
2568  * This function always allocates a free segment in LFS manner.
2569  */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2570 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2571 {
2572 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2573 	unsigned short seg_type = curseg->seg_type;
2574 	unsigned int segno = curseg->segno;
2575 	int dir = ALLOC_LEFT;
2576 
2577 	if (curseg->inited)
2578 		write_sum_page(sbi, curseg->sum_blk,
2579 				GET_SUM_BLOCK(sbi, segno));
2580 	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2581 		dir = ALLOC_RIGHT;
2582 
2583 	if (test_opt(sbi, NOHEAP))
2584 		dir = ALLOC_RIGHT;
2585 
2586 	segno = __get_next_segno(sbi, type);
2587 	get_new_segment(sbi, &segno, new_sec, dir);
2588 	curseg->next_segno = segno;
2589 	reset_curseg(sbi, type, 1);
2590 	curseg->alloc_type = LFS;
2591 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2592 		curseg->fragment_remained_chunk =
2593 				prandom_u32_max(sbi->max_fragment_chunk) + 1;
2594 }
2595 
__next_free_blkoff(struct f2fs_sb_info * sbi,int segno,block_t start)2596 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2597 					int segno, block_t start)
2598 {
2599 	struct seg_entry *se = get_seg_entry(sbi, segno);
2600 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2601 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2602 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2603 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2604 	int i;
2605 
2606 	for (i = 0; i < entries; i++)
2607 		target_map[i] = ckpt_map[i] | cur_map[i];
2608 
2609 	return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2610 }
2611 
2612 /*
2613  * If a segment is written by LFS manner, next block offset is just obtained
2614  * by increasing the current block offset. However, if a segment is written by
2615  * SSR manner, next block offset obtained by calling __next_free_blkoff
2616  */
__refresh_next_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg)2617 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2618 				struct curseg_info *seg)
2619 {
2620 	if (seg->alloc_type == SSR) {
2621 		seg->next_blkoff =
2622 			__next_free_blkoff(sbi, seg->segno,
2623 						seg->next_blkoff + 1);
2624 	} else {
2625 		seg->next_blkoff++;
2626 		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
2627 			/* To allocate block chunks in different sizes, use random number */
2628 			if (--seg->fragment_remained_chunk <= 0) {
2629 				seg->fragment_remained_chunk =
2630 				   prandom_u32_max(sbi->max_fragment_chunk) + 1;
2631 				seg->next_blkoff +=
2632 				   prandom_u32_max(sbi->max_fragment_hole) + 1;
2633 			}
2634 		}
2635 	}
2636 }
2637 
f2fs_segment_has_free_slot(struct f2fs_sb_info * sbi,int segno)2638 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2639 {
2640 	return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2641 }
2642 
2643 /*
2644  * This function always allocates a used segment(from dirty seglist) by SSR
2645  * manner, so it should recover the existing segment information of valid blocks
2646  */
change_curseg(struct f2fs_sb_info * sbi,int type,bool flush)2647 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2648 {
2649 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2650 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2651 	unsigned int new_segno = curseg->next_segno;
2652 	struct f2fs_summary_block *sum_node;
2653 	struct page *sum_page;
2654 
2655 	if (flush)
2656 		write_sum_page(sbi, curseg->sum_blk,
2657 					GET_SUM_BLOCK(sbi, curseg->segno));
2658 
2659 	__set_test_and_inuse(sbi, new_segno);
2660 
2661 	mutex_lock(&dirty_i->seglist_lock);
2662 	__remove_dirty_segment(sbi, new_segno, PRE);
2663 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2664 	mutex_unlock(&dirty_i->seglist_lock);
2665 
2666 	reset_curseg(sbi, type, 1);
2667 	curseg->alloc_type = SSR;
2668 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2669 
2670 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2671 	if (IS_ERR(sum_page)) {
2672 		/* GC won't be able to use stale summary pages by cp_error */
2673 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2674 		return;
2675 	}
2676 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2677 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2678 	f2fs_put_page(sum_page, 1);
2679 }
2680 
2681 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2682 				int alloc_mode, unsigned long long age);
2683 
get_atssr_segment(struct f2fs_sb_info * sbi,int type,int target_type,int alloc_mode,unsigned long long age)2684 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2685 					int target_type, int alloc_mode,
2686 					unsigned long long age)
2687 {
2688 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2689 
2690 	curseg->seg_type = target_type;
2691 
2692 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2693 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2694 
2695 		curseg->seg_type = se->type;
2696 		change_curseg(sbi, type, true);
2697 	} else {
2698 		/* allocate cold segment by default */
2699 		curseg->seg_type = CURSEG_COLD_DATA;
2700 		new_curseg(sbi, type, true);
2701 	}
2702 	stat_inc_seg_type(sbi, curseg);
2703 }
2704 
__f2fs_init_atgc_curseg(struct f2fs_sb_info * sbi)2705 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2706 {
2707 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2708 
2709 	if (!sbi->am.atgc_enabled)
2710 		return;
2711 
2712 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2713 
2714 	mutex_lock(&curseg->curseg_mutex);
2715 	down_write(&SIT_I(sbi)->sentry_lock);
2716 
2717 	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2718 
2719 	up_write(&SIT_I(sbi)->sentry_lock);
2720 	mutex_unlock(&curseg->curseg_mutex);
2721 
2722 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2723 
2724 }
f2fs_init_inmem_curseg(struct f2fs_sb_info * sbi)2725 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2726 {
2727 	__f2fs_init_atgc_curseg(sbi);
2728 }
2729 
__f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi,int type)2730 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2731 {
2732 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2733 
2734 	mutex_lock(&curseg->curseg_mutex);
2735 	if (!curseg->inited)
2736 		goto out;
2737 
2738 	if (get_valid_blocks(sbi, curseg->segno, false)) {
2739 		write_sum_page(sbi, curseg->sum_blk,
2740 				GET_SUM_BLOCK(sbi, curseg->segno));
2741 	} else {
2742 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2743 		__set_test_and_free(sbi, curseg->segno, true);
2744 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2745 	}
2746 out:
2747 	mutex_unlock(&curseg->curseg_mutex);
2748 }
2749 
f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi)2750 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2751 {
2752 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2753 
2754 	if (sbi->am.atgc_enabled)
2755 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2756 }
2757 
__f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi,int type)2758 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2759 {
2760 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2761 
2762 	mutex_lock(&curseg->curseg_mutex);
2763 	if (!curseg->inited)
2764 		goto out;
2765 	if (get_valid_blocks(sbi, curseg->segno, false))
2766 		goto out;
2767 
2768 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2769 	__set_test_and_inuse(sbi, curseg->segno);
2770 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2771 out:
2772 	mutex_unlock(&curseg->curseg_mutex);
2773 }
2774 
f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi)2775 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2776 {
2777 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2778 
2779 	if (sbi->am.atgc_enabled)
2780 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2781 }
2782 
get_ssr_segment(struct f2fs_sb_info * sbi,int type,int alloc_mode,unsigned long long age)2783 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2784 				int alloc_mode, unsigned long long age)
2785 {
2786 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2787 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2788 	unsigned segno = NULL_SEGNO;
2789 	unsigned short seg_type = curseg->seg_type;
2790 	int i, cnt;
2791 	bool reversed = false;
2792 
2793 	sanity_check_seg_type(sbi, seg_type);
2794 
2795 	/* f2fs_need_SSR() already forces to do this */
2796 	if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2797 		curseg->next_segno = segno;
2798 		return 1;
2799 	}
2800 
2801 	/* For node segments, let's do SSR more intensively */
2802 	if (IS_NODESEG(seg_type)) {
2803 		if (seg_type >= CURSEG_WARM_NODE) {
2804 			reversed = true;
2805 			i = CURSEG_COLD_NODE;
2806 		} else {
2807 			i = CURSEG_HOT_NODE;
2808 		}
2809 		cnt = NR_CURSEG_NODE_TYPE;
2810 	} else {
2811 		if (seg_type >= CURSEG_WARM_DATA) {
2812 			reversed = true;
2813 			i = CURSEG_COLD_DATA;
2814 		} else {
2815 			i = CURSEG_HOT_DATA;
2816 		}
2817 		cnt = NR_CURSEG_DATA_TYPE;
2818 	}
2819 
2820 	for (; cnt-- > 0; reversed ? i-- : i++) {
2821 		if (i == seg_type)
2822 			continue;
2823 		if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2824 			curseg->next_segno = segno;
2825 			return 1;
2826 		}
2827 	}
2828 
2829 	/* find valid_blocks=0 in dirty list */
2830 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2831 		segno = get_free_segment(sbi);
2832 		if (segno != NULL_SEGNO) {
2833 			curseg->next_segno = segno;
2834 			return 1;
2835 		}
2836 	}
2837 	return 0;
2838 }
2839 
2840 /*
2841  * flush out current segment and replace it with new segment
2842  * This function should be returned with success, otherwise BUG
2843  */
allocate_segment_by_default(struct f2fs_sb_info * sbi,int type,bool force)2844 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2845 						int type, bool force)
2846 {
2847 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2848 
2849 	if (force)
2850 		new_curseg(sbi, type, true);
2851 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2852 					curseg->seg_type == CURSEG_WARM_NODE)
2853 		new_curseg(sbi, type, false);
2854 	else if (curseg->alloc_type == LFS &&
2855 			is_next_segment_free(sbi, curseg, type) &&
2856 			likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2857 		new_curseg(sbi, type, false);
2858 	else if (f2fs_need_SSR(sbi) &&
2859 			get_ssr_segment(sbi, type, SSR, 0))
2860 		change_curseg(sbi, type, true);
2861 	else
2862 		new_curseg(sbi, type, false);
2863 
2864 	stat_inc_seg_type(sbi, curseg);
2865 }
2866 
f2fs_allocate_segment_for_resize(struct f2fs_sb_info * sbi,int type,unsigned int start,unsigned int end)2867 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2868 					unsigned int start, unsigned int end)
2869 {
2870 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2871 	unsigned int segno;
2872 
2873 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2874 	mutex_lock(&curseg->curseg_mutex);
2875 	down_write(&SIT_I(sbi)->sentry_lock);
2876 
2877 	segno = CURSEG_I(sbi, type)->segno;
2878 	if (segno < start || segno > end)
2879 		goto unlock;
2880 
2881 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2882 		change_curseg(sbi, type, true);
2883 	else
2884 		new_curseg(sbi, type, true);
2885 
2886 	stat_inc_seg_type(sbi, curseg);
2887 
2888 	locate_dirty_segment(sbi, segno);
2889 unlock:
2890 	up_write(&SIT_I(sbi)->sentry_lock);
2891 
2892 	if (segno != curseg->segno)
2893 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2894 			    type, segno, curseg->segno);
2895 
2896 	mutex_unlock(&curseg->curseg_mutex);
2897 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2898 }
2899 
__allocate_new_segment(struct f2fs_sb_info * sbi,int type,bool new_sec,bool force)2900 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2901 						bool new_sec, bool force)
2902 {
2903 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2904 	unsigned int old_segno;
2905 
2906 	if (!curseg->inited)
2907 		goto alloc;
2908 
2909 	if (force || curseg->next_blkoff ||
2910 		get_valid_blocks(sbi, curseg->segno, new_sec))
2911 		goto alloc;
2912 
2913 	if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2914 		return;
2915 alloc:
2916 	old_segno = curseg->segno;
2917 	SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2918 	locate_dirty_segment(sbi, old_segno);
2919 }
2920 
__allocate_new_section(struct f2fs_sb_info * sbi,int type,bool force)2921 static void __allocate_new_section(struct f2fs_sb_info *sbi,
2922 						int type, bool force)
2923 {
2924 	__allocate_new_segment(sbi, type, true, force);
2925 }
2926 
f2fs_allocate_new_section(struct f2fs_sb_info * sbi,int type,bool force)2927 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2928 {
2929 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2930 	down_write(&SIT_I(sbi)->sentry_lock);
2931 	__allocate_new_section(sbi, type, force);
2932 	up_write(&SIT_I(sbi)->sentry_lock);
2933 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2934 }
2935 
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi)2936 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2937 {
2938 	int i;
2939 
2940 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2941 	down_write(&SIT_I(sbi)->sentry_lock);
2942 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2943 		__allocate_new_segment(sbi, i, false, false);
2944 	up_write(&SIT_I(sbi)->sentry_lock);
2945 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2946 }
2947 
2948 static const struct segment_allocation default_salloc_ops = {
2949 	.allocate_segment = allocate_segment_by_default,
2950 };
2951 
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)2952 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2953 						struct cp_control *cpc)
2954 {
2955 	__u64 trim_start = cpc->trim_start;
2956 	bool has_candidate = false;
2957 
2958 	down_write(&SIT_I(sbi)->sentry_lock);
2959 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2960 		if (add_discard_addrs(sbi, cpc, true)) {
2961 			has_candidate = true;
2962 			break;
2963 		}
2964 	}
2965 	up_write(&SIT_I(sbi)->sentry_lock);
2966 
2967 	cpc->trim_start = trim_start;
2968 	return has_candidate;
2969 }
2970 
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)2971 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2972 					struct discard_policy *dpolicy,
2973 					unsigned int start, unsigned int end)
2974 {
2975 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2976 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2977 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
2978 	struct discard_cmd *dc;
2979 	struct blk_plug plug;
2980 	int issued;
2981 	unsigned int trimmed = 0;
2982 
2983 next:
2984 	issued = 0;
2985 
2986 	mutex_lock(&dcc->cmd_lock);
2987 	if (unlikely(dcc->rbtree_check))
2988 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2989 							&dcc->root, false));
2990 
2991 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2992 					NULL, start,
2993 					(struct rb_entry **)&prev_dc,
2994 					(struct rb_entry **)&next_dc,
2995 					&insert_p, &insert_parent, true, NULL);
2996 	if (!dc)
2997 		dc = next_dc;
2998 
2999 	blk_start_plug(&plug);
3000 
3001 	while (dc && dc->lstart <= end) {
3002 		struct rb_node *node;
3003 		int err = 0;
3004 
3005 		if (dc->len < dpolicy->granularity)
3006 			goto skip;
3007 
3008 		if (dc->state != D_PREP) {
3009 			list_move_tail(&dc->list, &dcc->fstrim_list);
3010 			goto skip;
3011 		}
3012 
3013 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3014 
3015 		if (issued >= dpolicy->max_requests) {
3016 			start = dc->lstart + dc->len;
3017 
3018 			if (err)
3019 				__remove_discard_cmd(sbi, dc);
3020 
3021 			blk_finish_plug(&plug);
3022 			mutex_unlock(&dcc->cmd_lock);
3023 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3024 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3025 			goto next;
3026 		}
3027 skip:
3028 		node = rb_next(&dc->rb_node);
3029 		if (err)
3030 			__remove_discard_cmd(sbi, dc);
3031 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3032 
3033 		if (fatal_signal_pending(current))
3034 			break;
3035 	}
3036 
3037 	blk_finish_plug(&plug);
3038 	mutex_unlock(&dcc->cmd_lock);
3039 
3040 	return trimmed;
3041 }
3042 
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)3043 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3044 {
3045 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3046 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3047 	unsigned int start_segno, end_segno;
3048 	block_t start_block, end_block;
3049 	struct cp_control cpc;
3050 	struct discard_policy dpolicy;
3051 	unsigned long long trimmed = 0;
3052 	int err = 0;
3053 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3054 
3055 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3056 		return -EINVAL;
3057 
3058 	if (end < MAIN_BLKADDR(sbi))
3059 		goto out;
3060 
3061 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3062 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3063 		return -EFSCORRUPTED;
3064 	}
3065 
3066 	/* start/end segment number in main_area */
3067 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3068 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3069 						GET_SEGNO(sbi, end);
3070 	if (need_align) {
3071 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
3072 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3073 	}
3074 
3075 	cpc.reason = CP_DISCARD;
3076 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3077 	cpc.trim_start = start_segno;
3078 	cpc.trim_end = end_segno;
3079 
3080 	if (sbi->discard_blks == 0)
3081 		goto out;
3082 
3083 	f2fs_down_write(&sbi->gc_lock);
3084 	err = f2fs_write_checkpoint(sbi, &cpc);
3085 	f2fs_up_write(&sbi->gc_lock);
3086 	if (err)
3087 		goto out;
3088 
3089 	/*
3090 	 * We filed discard candidates, but actually we don't need to wait for
3091 	 * all of them, since they'll be issued in idle time along with runtime
3092 	 * discard option. User configuration looks like using runtime discard
3093 	 * or periodic fstrim instead of it.
3094 	 */
3095 	if (f2fs_realtime_discard_enable(sbi))
3096 		goto out;
3097 
3098 	start_block = START_BLOCK(sbi, start_segno);
3099 	end_block = START_BLOCK(sbi, end_segno + 1);
3100 
3101 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3102 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3103 					start_block, end_block);
3104 
3105 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3106 					start_block, end_block);
3107 out:
3108 	if (!err)
3109 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3110 	return err;
3111 }
3112 
__has_curseg_space(struct f2fs_sb_info * sbi,struct curseg_info * curseg)3113 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3114 					struct curseg_info *curseg)
3115 {
3116 	return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3117 							curseg->segno);
3118 }
3119 
f2fs_rw_hint_to_seg_type(enum rw_hint hint)3120 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3121 {
3122 	switch (hint) {
3123 	case WRITE_LIFE_SHORT:
3124 		return CURSEG_HOT_DATA;
3125 	case WRITE_LIFE_EXTREME:
3126 		return CURSEG_COLD_DATA;
3127 	default:
3128 		return CURSEG_WARM_DATA;
3129 	}
3130 }
3131 
__get_segment_type_2(struct f2fs_io_info * fio)3132 static int __get_segment_type_2(struct f2fs_io_info *fio)
3133 {
3134 	if (fio->type == DATA)
3135 		return CURSEG_HOT_DATA;
3136 	else
3137 		return CURSEG_HOT_NODE;
3138 }
3139 
__get_segment_type_4(struct f2fs_io_info * fio)3140 static int __get_segment_type_4(struct f2fs_io_info *fio)
3141 {
3142 	if (fio->type == DATA) {
3143 		struct inode *inode = fio->page->mapping->host;
3144 
3145 		if (S_ISDIR(inode->i_mode))
3146 			return CURSEG_HOT_DATA;
3147 		else
3148 			return CURSEG_COLD_DATA;
3149 	} else {
3150 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3151 			return CURSEG_WARM_NODE;
3152 		else
3153 			return CURSEG_COLD_NODE;
3154 	}
3155 }
3156 
__get_segment_type_6(struct f2fs_io_info * fio)3157 static int __get_segment_type_6(struct f2fs_io_info *fio)
3158 {
3159 	if (fio->type == DATA) {
3160 		struct inode *inode = fio->page->mapping->host;
3161 
3162 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3163 			return CURSEG_COLD_DATA_PINNED;
3164 
3165 		if (page_private_gcing(fio->page)) {
3166 			if (fio->sbi->am.atgc_enabled &&
3167 				(fio->io_type == FS_DATA_IO) &&
3168 				(fio->sbi->gc_mode != GC_URGENT_HIGH))
3169 				return CURSEG_ALL_DATA_ATGC;
3170 			else
3171 				return CURSEG_COLD_DATA;
3172 		}
3173 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3174 			return CURSEG_COLD_DATA;
3175 		if (file_is_hot(inode) ||
3176 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3177 				f2fs_is_cow_file(inode))
3178 			return CURSEG_HOT_DATA;
3179 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3180 	} else {
3181 		if (IS_DNODE(fio->page))
3182 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3183 						CURSEG_HOT_NODE;
3184 		return CURSEG_COLD_NODE;
3185 	}
3186 }
3187 
__get_segment_type(struct f2fs_io_info * fio)3188 static int __get_segment_type(struct f2fs_io_info *fio)
3189 {
3190 	int type = 0;
3191 
3192 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3193 	case 2:
3194 		type = __get_segment_type_2(fio);
3195 		break;
3196 	case 4:
3197 		type = __get_segment_type_4(fio);
3198 		break;
3199 	case 6:
3200 		type = __get_segment_type_6(fio);
3201 		break;
3202 	default:
3203 		f2fs_bug_on(fio->sbi, true);
3204 	}
3205 
3206 	if (IS_HOT(type))
3207 		fio->temp = HOT;
3208 	else if (IS_WARM(type))
3209 		fio->temp = WARM;
3210 	else
3211 		fio->temp = COLD;
3212 	return type;
3213 }
3214 
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct page * page,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio)3215 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3216 		block_t old_blkaddr, block_t *new_blkaddr,
3217 		struct f2fs_summary *sum, int type,
3218 		struct f2fs_io_info *fio)
3219 {
3220 	struct sit_info *sit_i = SIT_I(sbi);
3221 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3222 	unsigned long long old_mtime;
3223 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3224 	struct seg_entry *se = NULL;
3225 
3226 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3227 
3228 	mutex_lock(&curseg->curseg_mutex);
3229 	down_write(&sit_i->sentry_lock);
3230 
3231 	if (from_gc) {
3232 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3233 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3234 		sanity_check_seg_type(sbi, se->type);
3235 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3236 	}
3237 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3238 
3239 	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3240 
3241 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3242 
3243 	/*
3244 	 * __add_sum_entry should be resided under the curseg_mutex
3245 	 * because, this function updates a summary entry in the
3246 	 * current summary block.
3247 	 */
3248 	__add_sum_entry(sbi, type, sum);
3249 
3250 	__refresh_next_blkoff(sbi, curseg);
3251 
3252 	stat_inc_block_count(sbi, curseg);
3253 
3254 	if (from_gc) {
3255 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3256 	} else {
3257 		update_segment_mtime(sbi, old_blkaddr, 0);
3258 		old_mtime = 0;
3259 	}
3260 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3261 
3262 	/*
3263 	 * SIT information should be updated before segment allocation,
3264 	 * since SSR needs latest valid block information.
3265 	 */
3266 	update_sit_entry(sbi, *new_blkaddr, 1);
3267 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3268 		update_sit_entry(sbi, old_blkaddr, -1);
3269 
3270 	if (!__has_curseg_space(sbi, curseg)) {
3271 		if (from_gc)
3272 			get_atssr_segment(sbi, type, se->type,
3273 						AT_SSR, se->mtime);
3274 		else
3275 			sit_i->s_ops->allocate_segment(sbi, type, false);
3276 	}
3277 	/*
3278 	 * segment dirty status should be updated after segment allocation,
3279 	 * so we just need to update status only one time after previous
3280 	 * segment being closed.
3281 	 */
3282 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3283 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3284 
3285 	up_write(&sit_i->sentry_lock);
3286 
3287 	if (page && IS_NODESEG(type)) {
3288 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3289 
3290 		f2fs_inode_chksum_set(sbi, page);
3291 	}
3292 
3293 	if (fio) {
3294 		struct f2fs_bio_info *io;
3295 
3296 		if (F2FS_IO_ALIGNED(sbi))
3297 			fio->retry = false;
3298 
3299 		INIT_LIST_HEAD(&fio->list);
3300 		fio->in_list = true;
3301 		io = sbi->write_io[fio->type] + fio->temp;
3302 		spin_lock(&io->io_lock);
3303 		list_add_tail(&fio->list, &io->io_list);
3304 		spin_unlock(&io->io_lock);
3305 	}
3306 
3307 	mutex_unlock(&curseg->curseg_mutex);
3308 
3309 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3310 }
3311 
f2fs_update_device_state(struct f2fs_sb_info * sbi,nid_t ino,block_t blkaddr,unsigned int blkcnt)3312 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3313 					block_t blkaddr, unsigned int blkcnt)
3314 {
3315 	if (!f2fs_is_multi_device(sbi))
3316 		return;
3317 
3318 	while (1) {
3319 		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3320 		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3321 
3322 		/* update device state for fsync */
3323 		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3324 
3325 		/* update device state for checkpoint */
3326 		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3327 			spin_lock(&sbi->dev_lock);
3328 			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3329 			spin_unlock(&sbi->dev_lock);
3330 		}
3331 
3332 		if (blkcnt <= blks)
3333 			break;
3334 		blkcnt -= blks;
3335 		blkaddr += blks;
3336 	}
3337 }
3338 
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)3339 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3340 {
3341 	int type = __get_segment_type(fio);
3342 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3343 
3344 	if (keep_order)
3345 		f2fs_down_read(&fio->sbi->io_order_lock);
3346 reallocate:
3347 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3348 			&fio->new_blkaddr, sum, type, fio);
3349 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3350 		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3351 					fio->old_blkaddr, fio->old_blkaddr);
3352 		f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3353 	}
3354 
3355 	/* writeout dirty page into bdev */
3356 	f2fs_submit_page_write(fio);
3357 	if (fio->retry) {
3358 		fio->old_blkaddr = fio->new_blkaddr;
3359 		goto reallocate;
3360 	}
3361 
3362 	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3363 
3364 	if (keep_order)
3365 		f2fs_up_read(&fio->sbi->io_order_lock);
3366 }
3367 
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct page * page,enum iostat_type io_type)3368 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3369 					enum iostat_type io_type)
3370 {
3371 	struct f2fs_io_info fio = {
3372 		.sbi = sbi,
3373 		.type = META,
3374 		.temp = HOT,
3375 		.op = REQ_OP_WRITE,
3376 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3377 		.old_blkaddr = page->index,
3378 		.new_blkaddr = page->index,
3379 		.page = page,
3380 		.encrypted_page = NULL,
3381 		.in_list = false,
3382 	};
3383 
3384 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3385 		fio.op_flags &= ~REQ_META;
3386 
3387 	set_page_writeback(page);
3388 	ClearPageError(page);
3389 	f2fs_submit_page_write(&fio);
3390 
3391 	stat_inc_meta_count(sbi, page->index);
3392 	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3393 }
3394 
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)3395 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3396 {
3397 	struct f2fs_summary sum;
3398 
3399 	set_summary(&sum, nid, 0, 0);
3400 	do_write_page(&sum, fio);
3401 
3402 	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3403 }
3404 
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)3405 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3406 					struct f2fs_io_info *fio)
3407 {
3408 	struct f2fs_sb_info *sbi = fio->sbi;
3409 	struct f2fs_summary sum;
3410 
3411 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3412 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3413 	do_write_page(&sum, fio);
3414 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3415 
3416 	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3417 }
3418 
f2fs_inplace_write_data(struct f2fs_io_info * fio)3419 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3420 {
3421 	int err;
3422 	struct f2fs_sb_info *sbi = fio->sbi;
3423 	unsigned int segno;
3424 
3425 	fio->new_blkaddr = fio->old_blkaddr;
3426 	/* i/o temperature is needed for passing down write hints */
3427 	__get_segment_type(fio);
3428 
3429 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3430 
3431 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3432 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3433 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3434 			  __func__, segno);
3435 		err = -EFSCORRUPTED;
3436 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3437 		goto drop_bio;
3438 	}
3439 
3440 	if (f2fs_cp_error(sbi)) {
3441 		err = -EIO;
3442 		goto drop_bio;
3443 	}
3444 
3445 	if (fio->post_read)
3446 		invalidate_mapping_pages(META_MAPPING(sbi),
3447 				fio->new_blkaddr, fio->new_blkaddr);
3448 
3449 	stat_inc_inplace_blocks(fio->sbi);
3450 
3451 	if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3452 		err = f2fs_merge_page_bio(fio);
3453 	else
3454 		err = f2fs_submit_page_bio(fio);
3455 	if (!err) {
3456 		f2fs_update_device_state(fio->sbi, fio->ino,
3457 						fio->new_blkaddr, 1);
3458 		f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3459 						fio->io_type, F2FS_BLKSIZE);
3460 	}
3461 
3462 	return err;
3463 drop_bio:
3464 	if (fio->bio && *(fio->bio)) {
3465 		struct bio *bio = *(fio->bio);
3466 
3467 		bio->bi_status = BLK_STS_IOERR;
3468 		bio_endio(bio);
3469 		*(fio->bio) = NULL;
3470 	}
3471 	return err;
3472 }
3473 
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)3474 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3475 						unsigned int segno)
3476 {
3477 	int i;
3478 
3479 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3480 		if (CURSEG_I(sbi, i)->segno == segno)
3481 			break;
3482 	}
3483 	return i;
3484 }
3485 
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr,bool from_gc)3486 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3487 				block_t old_blkaddr, block_t new_blkaddr,
3488 				bool recover_curseg, bool recover_newaddr,
3489 				bool from_gc)
3490 {
3491 	struct sit_info *sit_i = SIT_I(sbi);
3492 	struct curseg_info *curseg;
3493 	unsigned int segno, old_cursegno;
3494 	struct seg_entry *se;
3495 	int type;
3496 	unsigned short old_blkoff;
3497 	unsigned char old_alloc_type;
3498 
3499 	segno = GET_SEGNO(sbi, new_blkaddr);
3500 	se = get_seg_entry(sbi, segno);
3501 	type = se->type;
3502 
3503 	f2fs_down_write(&SM_I(sbi)->curseg_lock);
3504 
3505 	if (!recover_curseg) {
3506 		/* for recovery flow */
3507 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3508 			if (old_blkaddr == NULL_ADDR)
3509 				type = CURSEG_COLD_DATA;
3510 			else
3511 				type = CURSEG_WARM_DATA;
3512 		}
3513 	} else {
3514 		if (IS_CURSEG(sbi, segno)) {
3515 			/* se->type is volatile as SSR allocation */
3516 			type = __f2fs_get_curseg(sbi, segno);
3517 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3518 		} else {
3519 			type = CURSEG_WARM_DATA;
3520 		}
3521 	}
3522 
3523 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3524 	curseg = CURSEG_I(sbi, type);
3525 
3526 	mutex_lock(&curseg->curseg_mutex);
3527 	down_write(&sit_i->sentry_lock);
3528 
3529 	old_cursegno = curseg->segno;
3530 	old_blkoff = curseg->next_blkoff;
3531 	old_alloc_type = curseg->alloc_type;
3532 
3533 	/* change the current segment */
3534 	if (segno != curseg->segno) {
3535 		curseg->next_segno = segno;
3536 		change_curseg(sbi, type, true);
3537 	}
3538 
3539 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3540 	__add_sum_entry(sbi, type, sum);
3541 
3542 	if (!recover_curseg || recover_newaddr) {
3543 		if (!from_gc)
3544 			update_segment_mtime(sbi, new_blkaddr, 0);
3545 		update_sit_entry(sbi, new_blkaddr, 1);
3546 	}
3547 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3548 		invalidate_mapping_pages(META_MAPPING(sbi),
3549 					old_blkaddr, old_blkaddr);
3550 		f2fs_invalidate_compress_page(sbi, old_blkaddr);
3551 		if (!from_gc)
3552 			update_segment_mtime(sbi, old_blkaddr, 0);
3553 		update_sit_entry(sbi, old_blkaddr, -1);
3554 	}
3555 
3556 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3557 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3558 
3559 	locate_dirty_segment(sbi, old_cursegno);
3560 
3561 	if (recover_curseg) {
3562 		if (old_cursegno != curseg->segno) {
3563 			curseg->next_segno = old_cursegno;
3564 			change_curseg(sbi, type, true);
3565 		}
3566 		curseg->next_blkoff = old_blkoff;
3567 		curseg->alloc_type = old_alloc_type;
3568 	}
3569 
3570 	up_write(&sit_i->sentry_lock);
3571 	mutex_unlock(&curseg->curseg_mutex);
3572 	f2fs_up_write(&SM_I(sbi)->curseg_lock);
3573 }
3574 
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)3575 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3576 				block_t old_addr, block_t new_addr,
3577 				unsigned char version, bool recover_curseg,
3578 				bool recover_newaddr)
3579 {
3580 	struct f2fs_summary sum;
3581 
3582 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3583 
3584 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3585 					recover_curseg, recover_newaddr, false);
3586 
3587 	f2fs_update_data_blkaddr(dn, new_addr);
3588 }
3589 
f2fs_wait_on_page_writeback(struct page * page,enum page_type type,bool ordered,bool locked)3590 void f2fs_wait_on_page_writeback(struct page *page,
3591 				enum page_type type, bool ordered, bool locked)
3592 {
3593 	if (PageWriteback(page)) {
3594 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3595 
3596 		/* submit cached LFS IO */
3597 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3598 		/* sbumit cached IPU IO */
3599 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3600 		if (ordered) {
3601 			wait_on_page_writeback(page);
3602 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3603 		} else {
3604 			wait_for_stable_page(page);
3605 		}
3606 	}
3607 }
3608 
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)3609 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3610 {
3611 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3612 	struct page *cpage;
3613 
3614 	if (!f2fs_post_read_required(inode))
3615 		return;
3616 
3617 	if (!__is_valid_data_blkaddr(blkaddr))
3618 		return;
3619 
3620 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3621 	if (cpage) {
3622 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3623 		f2fs_put_page(cpage, 1);
3624 	}
3625 }
3626 
f2fs_wait_on_block_writeback_range(struct inode * inode,block_t blkaddr,block_t len)3627 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3628 								block_t len)
3629 {
3630 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3631 	block_t i;
3632 
3633 	if (!f2fs_post_read_required(inode))
3634 		return;
3635 
3636 	for (i = 0; i < len; i++)
3637 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3638 
3639 	invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
3640 }
3641 
read_compacted_summaries(struct f2fs_sb_info * sbi)3642 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3643 {
3644 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3645 	struct curseg_info *seg_i;
3646 	unsigned char *kaddr;
3647 	struct page *page;
3648 	block_t start;
3649 	int i, j, offset;
3650 
3651 	start = start_sum_block(sbi);
3652 
3653 	page = f2fs_get_meta_page(sbi, start++);
3654 	if (IS_ERR(page))
3655 		return PTR_ERR(page);
3656 	kaddr = (unsigned char *)page_address(page);
3657 
3658 	/* Step 1: restore nat cache */
3659 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3660 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3661 
3662 	/* Step 2: restore sit cache */
3663 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3664 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3665 	offset = 2 * SUM_JOURNAL_SIZE;
3666 
3667 	/* Step 3: restore summary entries */
3668 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3669 		unsigned short blk_off;
3670 		unsigned int segno;
3671 
3672 		seg_i = CURSEG_I(sbi, i);
3673 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3674 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3675 		seg_i->next_segno = segno;
3676 		reset_curseg(sbi, i, 0);
3677 		seg_i->alloc_type = ckpt->alloc_type[i];
3678 		seg_i->next_blkoff = blk_off;
3679 
3680 		if (seg_i->alloc_type == SSR)
3681 			blk_off = sbi->blocks_per_seg;
3682 
3683 		for (j = 0; j < blk_off; j++) {
3684 			struct f2fs_summary *s;
3685 
3686 			s = (struct f2fs_summary *)(kaddr + offset);
3687 			seg_i->sum_blk->entries[j] = *s;
3688 			offset += SUMMARY_SIZE;
3689 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3690 						SUM_FOOTER_SIZE)
3691 				continue;
3692 
3693 			f2fs_put_page(page, 1);
3694 			page = NULL;
3695 
3696 			page = f2fs_get_meta_page(sbi, start++);
3697 			if (IS_ERR(page))
3698 				return PTR_ERR(page);
3699 			kaddr = (unsigned char *)page_address(page);
3700 			offset = 0;
3701 		}
3702 	}
3703 	f2fs_put_page(page, 1);
3704 	return 0;
3705 }
3706 
read_normal_summaries(struct f2fs_sb_info * sbi,int type)3707 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3708 {
3709 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3710 	struct f2fs_summary_block *sum;
3711 	struct curseg_info *curseg;
3712 	struct page *new;
3713 	unsigned short blk_off;
3714 	unsigned int segno = 0;
3715 	block_t blk_addr = 0;
3716 	int err = 0;
3717 
3718 	/* get segment number and block addr */
3719 	if (IS_DATASEG(type)) {
3720 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3721 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3722 							CURSEG_HOT_DATA]);
3723 		if (__exist_node_summaries(sbi))
3724 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3725 		else
3726 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3727 	} else {
3728 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3729 							CURSEG_HOT_NODE]);
3730 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3731 							CURSEG_HOT_NODE]);
3732 		if (__exist_node_summaries(sbi))
3733 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3734 							type - CURSEG_HOT_NODE);
3735 		else
3736 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3737 	}
3738 
3739 	new = f2fs_get_meta_page(sbi, blk_addr);
3740 	if (IS_ERR(new))
3741 		return PTR_ERR(new);
3742 	sum = (struct f2fs_summary_block *)page_address(new);
3743 
3744 	if (IS_NODESEG(type)) {
3745 		if (__exist_node_summaries(sbi)) {
3746 			struct f2fs_summary *ns = &sum->entries[0];
3747 			int i;
3748 
3749 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3750 				ns->version = 0;
3751 				ns->ofs_in_node = 0;
3752 			}
3753 		} else {
3754 			err = f2fs_restore_node_summary(sbi, segno, sum);
3755 			if (err)
3756 				goto out;
3757 		}
3758 	}
3759 
3760 	/* set uncompleted segment to curseg */
3761 	curseg = CURSEG_I(sbi, type);
3762 	mutex_lock(&curseg->curseg_mutex);
3763 
3764 	/* update journal info */
3765 	down_write(&curseg->journal_rwsem);
3766 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3767 	up_write(&curseg->journal_rwsem);
3768 
3769 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3770 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3771 	curseg->next_segno = segno;
3772 	reset_curseg(sbi, type, 0);
3773 	curseg->alloc_type = ckpt->alloc_type[type];
3774 	curseg->next_blkoff = blk_off;
3775 	mutex_unlock(&curseg->curseg_mutex);
3776 out:
3777 	f2fs_put_page(new, 1);
3778 	return err;
3779 }
3780 
restore_curseg_summaries(struct f2fs_sb_info * sbi)3781 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3782 {
3783 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3784 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3785 	int type = CURSEG_HOT_DATA;
3786 	int err;
3787 
3788 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3789 		int npages = f2fs_npages_for_summary_flush(sbi, true);
3790 
3791 		if (npages >= 2)
3792 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3793 							META_CP, true);
3794 
3795 		/* restore for compacted data summary */
3796 		err = read_compacted_summaries(sbi);
3797 		if (err)
3798 			return err;
3799 		type = CURSEG_HOT_NODE;
3800 	}
3801 
3802 	if (__exist_node_summaries(sbi))
3803 		f2fs_ra_meta_pages(sbi,
3804 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3805 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3806 
3807 	for (; type <= CURSEG_COLD_NODE; type++) {
3808 		err = read_normal_summaries(sbi, type);
3809 		if (err)
3810 			return err;
3811 	}
3812 
3813 	/* sanity check for summary blocks */
3814 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3815 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3816 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3817 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3818 		return -EINVAL;
3819 	}
3820 
3821 	return 0;
3822 }
3823 
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)3824 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3825 {
3826 	struct page *page;
3827 	unsigned char *kaddr;
3828 	struct f2fs_summary *summary;
3829 	struct curseg_info *seg_i;
3830 	int written_size = 0;
3831 	int i, j;
3832 
3833 	page = f2fs_grab_meta_page(sbi, blkaddr++);
3834 	kaddr = (unsigned char *)page_address(page);
3835 	memset(kaddr, 0, PAGE_SIZE);
3836 
3837 	/* Step 1: write nat cache */
3838 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3839 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3840 	written_size += SUM_JOURNAL_SIZE;
3841 
3842 	/* Step 2: write sit cache */
3843 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3844 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3845 	written_size += SUM_JOURNAL_SIZE;
3846 
3847 	/* Step 3: write summary entries */
3848 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3849 		unsigned short blkoff;
3850 
3851 		seg_i = CURSEG_I(sbi, i);
3852 		if (sbi->ckpt->alloc_type[i] == SSR)
3853 			blkoff = sbi->blocks_per_seg;
3854 		else
3855 			blkoff = curseg_blkoff(sbi, i);
3856 
3857 		for (j = 0; j < blkoff; j++) {
3858 			if (!page) {
3859 				page = f2fs_grab_meta_page(sbi, blkaddr++);
3860 				kaddr = (unsigned char *)page_address(page);
3861 				memset(kaddr, 0, PAGE_SIZE);
3862 				written_size = 0;
3863 			}
3864 			summary = (struct f2fs_summary *)(kaddr + written_size);
3865 			*summary = seg_i->sum_blk->entries[j];
3866 			written_size += SUMMARY_SIZE;
3867 
3868 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3869 							SUM_FOOTER_SIZE)
3870 				continue;
3871 
3872 			set_page_dirty(page);
3873 			f2fs_put_page(page, 1);
3874 			page = NULL;
3875 		}
3876 	}
3877 	if (page) {
3878 		set_page_dirty(page);
3879 		f2fs_put_page(page, 1);
3880 	}
3881 }
3882 
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3883 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3884 					block_t blkaddr, int type)
3885 {
3886 	int i, end;
3887 
3888 	if (IS_DATASEG(type))
3889 		end = type + NR_CURSEG_DATA_TYPE;
3890 	else
3891 		end = type + NR_CURSEG_NODE_TYPE;
3892 
3893 	for (i = type; i < end; i++)
3894 		write_current_sum_page(sbi, i, blkaddr + (i - type));
3895 }
3896 
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)3897 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3898 {
3899 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3900 		write_compacted_summaries(sbi, start_blk);
3901 	else
3902 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3903 }
3904 
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)3905 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3906 {
3907 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3908 }
3909 
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)3910 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3911 					unsigned int val, int alloc)
3912 {
3913 	int i;
3914 
3915 	if (type == NAT_JOURNAL) {
3916 		for (i = 0; i < nats_in_cursum(journal); i++) {
3917 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3918 				return i;
3919 		}
3920 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3921 			return update_nats_in_cursum(journal, 1);
3922 	} else if (type == SIT_JOURNAL) {
3923 		for (i = 0; i < sits_in_cursum(journal); i++)
3924 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3925 				return i;
3926 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3927 			return update_sits_in_cursum(journal, 1);
3928 	}
3929 	return -1;
3930 }
3931 
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno)3932 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3933 					unsigned int segno)
3934 {
3935 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3936 }
3937 
get_next_sit_page(struct f2fs_sb_info * sbi,unsigned int start)3938 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3939 					unsigned int start)
3940 {
3941 	struct sit_info *sit_i = SIT_I(sbi);
3942 	struct page *page;
3943 	pgoff_t src_off, dst_off;
3944 
3945 	src_off = current_sit_addr(sbi, start);
3946 	dst_off = next_sit_addr(sbi, src_off);
3947 
3948 	page = f2fs_grab_meta_page(sbi, dst_off);
3949 	seg_info_to_sit_page(sbi, page, start);
3950 
3951 	set_page_dirty(page);
3952 	set_to_next_sit(sit_i, start);
3953 
3954 	return page;
3955 }
3956 
grab_sit_entry_set(void)3957 static struct sit_entry_set *grab_sit_entry_set(void)
3958 {
3959 	struct sit_entry_set *ses =
3960 			f2fs_kmem_cache_alloc(sit_entry_set_slab,
3961 						GFP_NOFS, true, NULL);
3962 
3963 	ses->entry_cnt = 0;
3964 	INIT_LIST_HEAD(&ses->set_list);
3965 	return ses;
3966 }
3967 
release_sit_entry_set(struct sit_entry_set * ses)3968 static void release_sit_entry_set(struct sit_entry_set *ses)
3969 {
3970 	list_del(&ses->set_list);
3971 	kmem_cache_free(sit_entry_set_slab, ses);
3972 }
3973 
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)3974 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3975 						struct list_head *head)
3976 {
3977 	struct sit_entry_set *next = ses;
3978 
3979 	if (list_is_last(&ses->set_list, head))
3980 		return;
3981 
3982 	list_for_each_entry_continue(next, head, set_list)
3983 		if (ses->entry_cnt <= next->entry_cnt) {
3984 			list_move_tail(&ses->set_list, &next->set_list);
3985 			return;
3986 		}
3987 
3988 	list_move_tail(&ses->set_list, head);
3989 }
3990 
add_sit_entry(unsigned int segno,struct list_head * head)3991 static void add_sit_entry(unsigned int segno, struct list_head *head)
3992 {
3993 	struct sit_entry_set *ses;
3994 	unsigned int start_segno = START_SEGNO(segno);
3995 
3996 	list_for_each_entry(ses, head, set_list) {
3997 		if (ses->start_segno == start_segno) {
3998 			ses->entry_cnt++;
3999 			adjust_sit_entry_set(ses, head);
4000 			return;
4001 		}
4002 	}
4003 
4004 	ses = grab_sit_entry_set();
4005 
4006 	ses->start_segno = start_segno;
4007 	ses->entry_cnt++;
4008 	list_add(&ses->set_list, head);
4009 }
4010 
add_sits_in_set(struct f2fs_sb_info * sbi)4011 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4012 {
4013 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4014 	struct list_head *set_list = &sm_info->sit_entry_set;
4015 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4016 	unsigned int segno;
4017 
4018 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4019 		add_sit_entry(segno, set_list);
4020 }
4021 
remove_sits_in_journal(struct f2fs_sb_info * sbi)4022 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4023 {
4024 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4025 	struct f2fs_journal *journal = curseg->journal;
4026 	int i;
4027 
4028 	down_write(&curseg->journal_rwsem);
4029 	for (i = 0; i < sits_in_cursum(journal); i++) {
4030 		unsigned int segno;
4031 		bool dirtied;
4032 
4033 		segno = le32_to_cpu(segno_in_journal(journal, i));
4034 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4035 
4036 		if (!dirtied)
4037 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4038 	}
4039 	update_sits_in_cursum(journal, -i);
4040 	up_write(&curseg->journal_rwsem);
4041 }
4042 
4043 /*
4044  * CP calls this function, which flushes SIT entries including sit_journal,
4045  * and moves prefree segs to free segs.
4046  */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)4047 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4048 {
4049 	struct sit_info *sit_i = SIT_I(sbi);
4050 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4051 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4052 	struct f2fs_journal *journal = curseg->journal;
4053 	struct sit_entry_set *ses, *tmp;
4054 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4055 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4056 	struct seg_entry *se;
4057 
4058 	down_write(&sit_i->sentry_lock);
4059 
4060 	if (!sit_i->dirty_sentries)
4061 		goto out;
4062 
4063 	/*
4064 	 * add and account sit entries of dirty bitmap in sit entry
4065 	 * set temporarily
4066 	 */
4067 	add_sits_in_set(sbi);
4068 
4069 	/*
4070 	 * if there are no enough space in journal to store dirty sit
4071 	 * entries, remove all entries from journal and add and account
4072 	 * them in sit entry set.
4073 	 */
4074 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4075 								!to_journal)
4076 		remove_sits_in_journal(sbi);
4077 
4078 	/*
4079 	 * there are two steps to flush sit entries:
4080 	 * #1, flush sit entries to journal in current cold data summary block.
4081 	 * #2, flush sit entries to sit page.
4082 	 */
4083 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4084 		struct page *page = NULL;
4085 		struct f2fs_sit_block *raw_sit = NULL;
4086 		unsigned int start_segno = ses->start_segno;
4087 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4088 						(unsigned long)MAIN_SEGS(sbi));
4089 		unsigned int segno = start_segno;
4090 
4091 		if (to_journal &&
4092 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4093 			to_journal = false;
4094 
4095 		if (to_journal) {
4096 			down_write(&curseg->journal_rwsem);
4097 		} else {
4098 			page = get_next_sit_page(sbi, start_segno);
4099 			raw_sit = page_address(page);
4100 		}
4101 
4102 		/* flush dirty sit entries in region of current sit set */
4103 		for_each_set_bit_from(segno, bitmap, end) {
4104 			int offset, sit_offset;
4105 
4106 			se = get_seg_entry(sbi, segno);
4107 #ifdef CONFIG_F2FS_CHECK_FS
4108 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4109 						SIT_VBLOCK_MAP_SIZE))
4110 				f2fs_bug_on(sbi, 1);
4111 #endif
4112 
4113 			/* add discard candidates */
4114 			if (!(cpc->reason & CP_DISCARD)) {
4115 				cpc->trim_start = segno;
4116 				add_discard_addrs(sbi, cpc, false);
4117 			}
4118 
4119 			if (to_journal) {
4120 				offset = f2fs_lookup_journal_in_cursum(journal,
4121 							SIT_JOURNAL, segno, 1);
4122 				f2fs_bug_on(sbi, offset < 0);
4123 				segno_in_journal(journal, offset) =
4124 							cpu_to_le32(segno);
4125 				seg_info_to_raw_sit(se,
4126 					&sit_in_journal(journal, offset));
4127 				check_block_count(sbi, segno,
4128 					&sit_in_journal(journal, offset));
4129 			} else {
4130 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4131 				seg_info_to_raw_sit(se,
4132 						&raw_sit->entries[sit_offset]);
4133 				check_block_count(sbi, segno,
4134 						&raw_sit->entries[sit_offset]);
4135 			}
4136 
4137 			__clear_bit(segno, bitmap);
4138 			sit_i->dirty_sentries--;
4139 			ses->entry_cnt--;
4140 		}
4141 
4142 		if (to_journal)
4143 			up_write(&curseg->journal_rwsem);
4144 		else
4145 			f2fs_put_page(page, 1);
4146 
4147 		f2fs_bug_on(sbi, ses->entry_cnt);
4148 		release_sit_entry_set(ses);
4149 	}
4150 
4151 	f2fs_bug_on(sbi, !list_empty(head));
4152 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4153 out:
4154 	if (cpc->reason & CP_DISCARD) {
4155 		__u64 trim_start = cpc->trim_start;
4156 
4157 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4158 			add_discard_addrs(sbi, cpc, false);
4159 
4160 		cpc->trim_start = trim_start;
4161 	}
4162 	up_write(&sit_i->sentry_lock);
4163 
4164 	set_prefree_as_free_segments(sbi);
4165 }
4166 
build_sit_info(struct f2fs_sb_info * sbi)4167 static int build_sit_info(struct f2fs_sb_info *sbi)
4168 {
4169 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4170 	struct sit_info *sit_i;
4171 	unsigned int sit_segs, start;
4172 	char *src_bitmap, *bitmap;
4173 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4174 	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4175 
4176 	/* allocate memory for SIT information */
4177 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4178 	if (!sit_i)
4179 		return -ENOMEM;
4180 
4181 	SM_I(sbi)->sit_info = sit_i;
4182 
4183 	sit_i->sentries =
4184 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4185 					      MAIN_SEGS(sbi)),
4186 			      GFP_KERNEL);
4187 	if (!sit_i->sentries)
4188 		return -ENOMEM;
4189 
4190 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4191 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4192 								GFP_KERNEL);
4193 	if (!sit_i->dirty_sentries_bitmap)
4194 		return -ENOMEM;
4195 
4196 #ifdef CONFIG_F2FS_CHECK_FS
4197 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4198 #else
4199 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4200 #endif
4201 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4202 	if (!sit_i->bitmap)
4203 		return -ENOMEM;
4204 
4205 	bitmap = sit_i->bitmap;
4206 
4207 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4208 		sit_i->sentries[start].cur_valid_map = bitmap;
4209 		bitmap += SIT_VBLOCK_MAP_SIZE;
4210 
4211 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4212 		bitmap += SIT_VBLOCK_MAP_SIZE;
4213 
4214 #ifdef CONFIG_F2FS_CHECK_FS
4215 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4216 		bitmap += SIT_VBLOCK_MAP_SIZE;
4217 #endif
4218 
4219 		if (discard_map) {
4220 			sit_i->sentries[start].discard_map = bitmap;
4221 			bitmap += SIT_VBLOCK_MAP_SIZE;
4222 		}
4223 	}
4224 
4225 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4226 	if (!sit_i->tmp_map)
4227 		return -ENOMEM;
4228 
4229 	if (__is_large_section(sbi)) {
4230 		sit_i->sec_entries =
4231 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4232 						      MAIN_SECS(sbi)),
4233 				      GFP_KERNEL);
4234 		if (!sit_i->sec_entries)
4235 			return -ENOMEM;
4236 	}
4237 
4238 	/* get information related with SIT */
4239 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4240 
4241 	/* setup SIT bitmap from ckeckpoint pack */
4242 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4243 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4244 
4245 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4246 	if (!sit_i->sit_bitmap)
4247 		return -ENOMEM;
4248 
4249 #ifdef CONFIG_F2FS_CHECK_FS
4250 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4251 					sit_bitmap_size, GFP_KERNEL);
4252 	if (!sit_i->sit_bitmap_mir)
4253 		return -ENOMEM;
4254 
4255 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4256 					main_bitmap_size, GFP_KERNEL);
4257 	if (!sit_i->invalid_segmap)
4258 		return -ENOMEM;
4259 #endif
4260 
4261 	/* init SIT information */
4262 	sit_i->s_ops = &default_salloc_ops;
4263 
4264 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4265 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4266 	sit_i->written_valid_blocks = 0;
4267 	sit_i->bitmap_size = sit_bitmap_size;
4268 	sit_i->dirty_sentries = 0;
4269 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4270 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4271 	sit_i->mounted_time = ktime_get_boottime_seconds();
4272 	init_rwsem(&sit_i->sentry_lock);
4273 	return 0;
4274 }
4275 
build_free_segmap(struct f2fs_sb_info * sbi)4276 static int build_free_segmap(struct f2fs_sb_info *sbi)
4277 {
4278 	struct free_segmap_info *free_i;
4279 	unsigned int bitmap_size, sec_bitmap_size;
4280 
4281 	/* allocate memory for free segmap information */
4282 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4283 	if (!free_i)
4284 		return -ENOMEM;
4285 
4286 	SM_I(sbi)->free_info = free_i;
4287 
4288 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4289 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4290 	if (!free_i->free_segmap)
4291 		return -ENOMEM;
4292 
4293 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4294 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4295 	if (!free_i->free_secmap)
4296 		return -ENOMEM;
4297 
4298 	/* set all segments as dirty temporarily */
4299 	memset(free_i->free_segmap, 0xff, bitmap_size);
4300 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4301 
4302 	/* init free segmap information */
4303 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4304 	free_i->free_segments = 0;
4305 	free_i->free_sections = 0;
4306 	spin_lock_init(&free_i->segmap_lock);
4307 	return 0;
4308 }
4309 
build_curseg(struct f2fs_sb_info * sbi)4310 static int build_curseg(struct f2fs_sb_info *sbi)
4311 {
4312 	struct curseg_info *array;
4313 	int i;
4314 
4315 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4316 					sizeof(*array)), GFP_KERNEL);
4317 	if (!array)
4318 		return -ENOMEM;
4319 
4320 	SM_I(sbi)->curseg_array = array;
4321 
4322 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4323 		mutex_init(&array[i].curseg_mutex);
4324 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4325 		if (!array[i].sum_blk)
4326 			return -ENOMEM;
4327 		init_rwsem(&array[i].journal_rwsem);
4328 		array[i].journal = f2fs_kzalloc(sbi,
4329 				sizeof(struct f2fs_journal), GFP_KERNEL);
4330 		if (!array[i].journal)
4331 			return -ENOMEM;
4332 		if (i < NR_PERSISTENT_LOG)
4333 			array[i].seg_type = CURSEG_HOT_DATA + i;
4334 		else if (i == CURSEG_COLD_DATA_PINNED)
4335 			array[i].seg_type = CURSEG_COLD_DATA;
4336 		else if (i == CURSEG_ALL_DATA_ATGC)
4337 			array[i].seg_type = CURSEG_COLD_DATA;
4338 		array[i].segno = NULL_SEGNO;
4339 		array[i].next_blkoff = 0;
4340 		array[i].inited = false;
4341 	}
4342 	return restore_curseg_summaries(sbi);
4343 }
4344 
build_sit_entries(struct f2fs_sb_info * sbi)4345 static int build_sit_entries(struct f2fs_sb_info *sbi)
4346 {
4347 	struct sit_info *sit_i = SIT_I(sbi);
4348 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4349 	struct f2fs_journal *journal = curseg->journal;
4350 	struct seg_entry *se;
4351 	struct f2fs_sit_entry sit;
4352 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4353 	unsigned int i, start, end;
4354 	unsigned int readed, start_blk = 0;
4355 	int err = 0;
4356 	block_t sit_valid_blocks[2] = {0, 0};
4357 
4358 	do {
4359 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4360 							META_SIT, true);
4361 
4362 		start = start_blk * sit_i->sents_per_block;
4363 		end = (start_blk + readed) * sit_i->sents_per_block;
4364 
4365 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4366 			struct f2fs_sit_block *sit_blk;
4367 			struct page *page;
4368 
4369 			se = &sit_i->sentries[start];
4370 			page = get_current_sit_page(sbi, start);
4371 			if (IS_ERR(page))
4372 				return PTR_ERR(page);
4373 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4374 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4375 			f2fs_put_page(page, 1);
4376 
4377 			err = check_block_count(sbi, start, &sit);
4378 			if (err)
4379 				return err;
4380 			seg_info_from_raw_sit(se, &sit);
4381 
4382 			if (se->type >= NR_PERSISTENT_LOG) {
4383 				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4384 							se->type, start);
4385 				f2fs_handle_error(sbi,
4386 						ERROR_INCONSISTENT_SUM_TYPE);
4387 				return -EFSCORRUPTED;
4388 			}
4389 
4390 			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4391 
4392 			if (f2fs_block_unit_discard(sbi)) {
4393 				/* build discard map only one time */
4394 				if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4395 					memset(se->discard_map, 0xff,
4396 						SIT_VBLOCK_MAP_SIZE);
4397 				} else {
4398 					memcpy(se->discard_map,
4399 						se->cur_valid_map,
4400 						SIT_VBLOCK_MAP_SIZE);
4401 					sbi->discard_blks +=
4402 						sbi->blocks_per_seg -
4403 						se->valid_blocks;
4404 				}
4405 			}
4406 
4407 			if (__is_large_section(sbi))
4408 				get_sec_entry(sbi, start)->valid_blocks +=
4409 							se->valid_blocks;
4410 		}
4411 		start_blk += readed;
4412 	} while (start_blk < sit_blk_cnt);
4413 
4414 	down_read(&curseg->journal_rwsem);
4415 	for (i = 0; i < sits_in_cursum(journal); i++) {
4416 		unsigned int old_valid_blocks;
4417 
4418 		start = le32_to_cpu(segno_in_journal(journal, i));
4419 		if (start >= MAIN_SEGS(sbi)) {
4420 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4421 				 start);
4422 			err = -EFSCORRUPTED;
4423 			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4424 			break;
4425 		}
4426 
4427 		se = &sit_i->sentries[start];
4428 		sit = sit_in_journal(journal, i);
4429 
4430 		old_valid_blocks = se->valid_blocks;
4431 
4432 		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4433 
4434 		err = check_block_count(sbi, start, &sit);
4435 		if (err)
4436 			break;
4437 		seg_info_from_raw_sit(se, &sit);
4438 
4439 		if (se->type >= NR_PERSISTENT_LOG) {
4440 			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4441 							se->type, start);
4442 			err = -EFSCORRUPTED;
4443 			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4444 			break;
4445 		}
4446 
4447 		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4448 
4449 		if (f2fs_block_unit_discard(sbi)) {
4450 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4451 				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4452 			} else {
4453 				memcpy(se->discard_map, se->cur_valid_map,
4454 							SIT_VBLOCK_MAP_SIZE);
4455 				sbi->discard_blks += old_valid_blocks;
4456 				sbi->discard_blks -= se->valid_blocks;
4457 			}
4458 		}
4459 
4460 		if (__is_large_section(sbi)) {
4461 			get_sec_entry(sbi, start)->valid_blocks +=
4462 							se->valid_blocks;
4463 			get_sec_entry(sbi, start)->valid_blocks -=
4464 							old_valid_blocks;
4465 		}
4466 	}
4467 	up_read(&curseg->journal_rwsem);
4468 
4469 	if (err)
4470 		return err;
4471 
4472 	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4473 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4474 			 sit_valid_blocks[NODE], valid_node_count(sbi));
4475 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4476 		return -EFSCORRUPTED;
4477 	}
4478 
4479 	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4480 				valid_user_blocks(sbi)) {
4481 		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4482 			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4483 			 valid_user_blocks(sbi));
4484 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4485 		return -EFSCORRUPTED;
4486 	}
4487 
4488 	return 0;
4489 }
4490 
init_free_segmap(struct f2fs_sb_info * sbi)4491 static void init_free_segmap(struct f2fs_sb_info *sbi)
4492 {
4493 	unsigned int start;
4494 	int type;
4495 	struct seg_entry *sentry;
4496 
4497 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4498 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4499 			continue;
4500 		sentry = get_seg_entry(sbi, start);
4501 		if (!sentry->valid_blocks)
4502 			__set_free(sbi, start);
4503 		else
4504 			SIT_I(sbi)->written_valid_blocks +=
4505 						sentry->valid_blocks;
4506 	}
4507 
4508 	/* set use the current segments */
4509 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4510 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4511 
4512 		__set_test_and_inuse(sbi, curseg_t->segno);
4513 	}
4514 }
4515 
init_dirty_segmap(struct f2fs_sb_info * sbi)4516 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4517 {
4518 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4519 	struct free_segmap_info *free_i = FREE_I(sbi);
4520 	unsigned int segno = 0, offset = 0, secno;
4521 	block_t valid_blocks, usable_blks_in_seg;
4522 
4523 	while (1) {
4524 		/* find dirty segment based on free segmap */
4525 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4526 		if (segno >= MAIN_SEGS(sbi))
4527 			break;
4528 		offset = segno + 1;
4529 		valid_blocks = get_valid_blocks(sbi, segno, false);
4530 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4531 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4532 			continue;
4533 		if (valid_blocks > usable_blks_in_seg) {
4534 			f2fs_bug_on(sbi, 1);
4535 			continue;
4536 		}
4537 		mutex_lock(&dirty_i->seglist_lock);
4538 		__locate_dirty_segment(sbi, segno, DIRTY);
4539 		mutex_unlock(&dirty_i->seglist_lock);
4540 	}
4541 
4542 	if (!__is_large_section(sbi))
4543 		return;
4544 
4545 	mutex_lock(&dirty_i->seglist_lock);
4546 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4547 		valid_blocks = get_valid_blocks(sbi, segno, true);
4548 		secno = GET_SEC_FROM_SEG(sbi, segno);
4549 
4550 		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4551 			continue;
4552 		if (IS_CURSEC(sbi, secno))
4553 			continue;
4554 		set_bit(secno, dirty_i->dirty_secmap);
4555 	}
4556 	mutex_unlock(&dirty_i->seglist_lock);
4557 }
4558 
init_victim_secmap(struct f2fs_sb_info * sbi)4559 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4560 {
4561 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4562 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4563 
4564 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4565 	if (!dirty_i->victim_secmap)
4566 		return -ENOMEM;
4567 
4568 	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4569 	if (!dirty_i->pinned_secmap)
4570 		return -ENOMEM;
4571 
4572 	dirty_i->pinned_secmap_cnt = 0;
4573 	dirty_i->enable_pin_section = true;
4574 	return 0;
4575 }
4576 
build_dirty_segmap(struct f2fs_sb_info * sbi)4577 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4578 {
4579 	struct dirty_seglist_info *dirty_i;
4580 	unsigned int bitmap_size, i;
4581 
4582 	/* allocate memory for dirty segments list information */
4583 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4584 								GFP_KERNEL);
4585 	if (!dirty_i)
4586 		return -ENOMEM;
4587 
4588 	SM_I(sbi)->dirty_info = dirty_i;
4589 	mutex_init(&dirty_i->seglist_lock);
4590 
4591 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4592 
4593 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4594 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4595 								GFP_KERNEL);
4596 		if (!dirty_i->dirty_segmap[i])
4597 			return -ENOMEM;
4598 	}
4599 
4600 	if (__is_large_section(sbi)) {
4601 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4602 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4603 						bitmap_size, GFP_KERNEL);
4604 		if (!dirty_i->dirty_secmap)
4605 			return -ENOMEM;
4606 	}
4607 
4608 	init_dirty_segmap(sbi);
4609 	return init_victim_secmap(sbi);
4610 }
4611 
sanity_check_curseg(struct f2fs_sb_info * sbi)4612 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4613 {
4614 	int i;
4615 
4616 	/*
4617 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4618 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4619 	 */
4620 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4621 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4622 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4623 		unsigned int blkofs = curseg->next_blkoff;
4624 
4625 		if (f2fs_sb_has_readonly(sbi) &&
4626 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4627 			continue;
4628 
4629 		sanity_check_seg_type(sbi, curseg->seg_type);
4630 
4631 		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4632 			f2fs_err(sbi,
4633 				 "Current segment has invalid alloc_type:%d",
4634 				 curseg->alloc_type);
4635 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4636 			return -EFSCORRUPTED;
4637 		}
4638 
4639 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4640 			goto out;
4641 
4642 		if (curseg->alloc_type == SSR)
4643 			continue;
4644 
4645 		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4646 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4647 				continue;
4648 out:
4649 			f2fs_err(sbi,
4650 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4651 				 i, curseg->segno, curseg->alloc_type,
4652 				 curseg->next_blkoff, blkofs);
4653 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4654 			return -EFSCORRUPTED;
4655 		}
4656 	}
4657 	return 0;
4658 }
4659 
4660 #ifdef CONFIG_BLK_DEV_ZONED
4661 
check_zone_write_pointer(struct f2fs_sb_info * sbi,struct f2fs_dev_info * fdev,struct blk_zone * zone)4662 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4663 				    struct f2fs_dev_info *fdev,
4664 				    struct blk_zone *zone)
4665 {
4666 	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4667 	block_t zone_block, wp_block, last_valid_block;
4668 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4669 	int i, s, b, ret;
4670 	struct seg_entry *se;
4671 
4672 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4673 		return 0;
4674 
4675 	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4676 	wp_segno = GET_SEGNO(sbi, wp_block);
4677 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4678 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4679 	zone_segno = GET_SEGNO(sbi, zone_block);
4680 	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4681 
4682 	if (zone_segno >= MAIN_SEGS(sbi))
4683 		return 0;
4684 
4685 	/*
4686 	 * Skip check of zones cursegs point to, since
4687 	 * fix_curseg_write_pointer() checks them.
4688 	 */
4689 	for (i = 0; i < NO_CHECK_TYPE; i++)
4690 		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4691 						   CURSEG_I(sbi, i)->segno))
4692 			return 0;
4693 
4694 	/*
4695 	 * Get last valid block of the zone.
4696 	 */
4697 	last_valid_block = zone_block - 1;
4698 	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4699 		segno = zone_segno + s;
4700 		se = get_seg_entry(sbi, segno);
4701 		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4702 			if (f2fs_test_bit(b, se->cur_valid_map)) {
4703 				last_valid_block = START_BLOCK(sbi, segno) + b;
4704 				break;
4705 			}
4706 		if (last_valid_block >= zone_block)
4707 			break;
4708 	}
4709 
4710 	/*
4711 	 * If last valid block is beyond the write pointer, report the
4712 	 * inconsistency. This inconsistency does not cause write error
4713 	 * because the zone will not be selected for write operation until
4714 	 * it get discarded. Just report it.
4715 	 */
4716 	if (last_valid_block >= wp_block) {
4717 		f2fs_notice(sbi, "Valid block beyond write pointer: "
4718 			    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4719 			    GET_SEGNO(sbi, last_valid_block),
4720 			    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4721 			    wp_segno, wp_blkoff);
4722 		return 0;
4723 	}
4724 
4725 	/*
4726 	 * If there is no valid block in the zone and if write pointer is
4727 	 * not at zone start, reset the write pointer.
4728 	 */
4729 	if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4730 		f2fs_notice(sbi,
4731 			    "Zone without valid block has non-zero write "
4732 			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4733 			    wp_segno, wp_blkoff);
4734 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4735 					zone->len >> log_sectors_per_block);
4736 		if (ret) {
4737 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4738 				 fdev->path, ret);
4739 			return ret;
4740 		}
4741 	}
4742 
4743 	return 0;
4744 }
4745 
get_target_zoned_dev(struct f2fs_sb_info * sbi,block_t zone_blkaddr)4746 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4747 						  block_t zone_blkaddr)
4748 {
4749 	int i;
4750 
4751 	for (i = 0; i < sbi->s_ndevs; i++) {
4752 		if (!bdev_is_zoned(FDEV(i).bdev))
4753 			continue;
4754 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4755 				zone_blkaddr <= FDEV(i).end_blk))
4756 			return &FDEV(i);
4757 	}
4758 
4759 	return NULL;
4760 }
4761 
report_one_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)4762 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4763 			      void *data)
4764 {
4765 	memcpy(data, zone, sizeof(struct blk_zone));
4766 	return 0;
4767 }
4768 
fix_curseg_write_pointer(struct f2fs_sb_info * sbi,int type)4769 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4770 {
4771 	struct curseg_info *cs = CURSEG_I(sbi, type);
4772 	struct f2fs_dev_info *zbd;
4773 	struct blk_zone zone;
4774 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4775 	block_t cs_zone_block, wp_block;
4776 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4777 	sector_t zone_sector;
4778 	int err;
4779 
4780 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4781 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4782 
4783 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4784 	if (!zbd)
4785 		return 0;
4786 
4787 	/* report zone for the sector the curseg points to */
4788 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4789 		<< log_sectors_per_block;
4790 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4791 				  report_one_zone_cb, &zone);
4792 	if (err != 1) {
4793 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4794 			 zbd->path, err);
4795 		return err;
4796 	}
4797 
4798 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4799 		return 0;
4800 
4801 	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4802 	wp_segno = GET_SEGNO(sbi, wp_block);
4803 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4804 	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4805 
4806 	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4807 		wp_sector_off == 0)
4808 		return 0;
4809 
4810 	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4811 		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4812 		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4813 
4814 	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4815 		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4816 
4817 	f2fs_allocate_new_section(sbi, type, true);
4818 
4819 	/* check consistency of the zone curseg pointed to */
4820 	if (check_zone_write_pointer(sbi, zbd, &zone))
4821 		return -EIO;
4822 
4823 	/* check newly assigned zone */
4824 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4825 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4826 
4827 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4828 	if (!zbd)
4829 		return 0;
4830 
4831 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4832 		<< log_sectors_per_block;
4833 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4834 				  report_one_zone_cb, &zone);
4835 	if (err != 1) {
4836 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4837 			 zbd->path, err);
4838 		return err;
4839 	}
4840 
4841 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4842 		return 0;
4843 
4844 	if (zone.wp != zone.start) {
4845 		f2fs_notice(sbi,
4846 			    "New zone for curseg[%d] is not yet discarded. "
4847 			    "Reset the zone: curseg[0x%x,0x%x]",
4848 			    type, cs->segno, cs->next_blkoff);
4849 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4850 				zone_sector >> log_sectors_per_block,
4851 				zone.len >> log_sectors_per_block);
4852 		if (err) {
4853 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4854 				 zbd->path, err);
4855 			return err;
4856 		}
4857 	}
4858 
4859 	return 0;
4860 }
4861 
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)4862 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4863 {
4864 	int i, ret;
4865 
4866 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4867 		ret = fix_curseg_write_pointer(sbi, i);
4868 		if (ret)
4869 			return ret;
4870 	}
4871 
4872 	return 0;
4873 }
4874 
4875 struct check_zone_write_pointer_args {
4876 	struct f2fs_sb_info *sbi;
4877 	struct f2fs_dev_info *fdev;
4878 };
4879 
check_zone_write_pointer_cb(struct blk_zone * zone,unsigned int idx,void * data)4880 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4881 				      void *data)
4882 {
4883 	struct check_zone_write_pointer_args *args;
4884 
4885 	args = (struct check_zone_write_pointer_args *)data;
4886 
4887 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
4888 }
4889 
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)4890 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4891 {
4892 	int i, ret;
4893 	struct check_zone_write_pointer_args args;
4894 
4895 	for (i = 0; i < sbi->s_ndevs; i++) {
4896 		if (!bdev_is_zoned(FDEV(i).bdev))
4897 			continue;
4898 
4899 		args.sbi = sbi;
4900 		args.fdev = &FDEV(i);
4901 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4902 					  check_zone_write_pointer_cb, &args);
4903 		if (ret < 0)
4904 			return ret;
4905 	}
4906 
4907 	return 0;
4908 }
4909 
is_conv_zone(struct f2fs_sb_info * sbi,unsigned int zone_idx,unsigned int dev_idx)4910 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4911 						unsigned int dev_idx)
4912 {
4913 	if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4914 		return true;
4915 	return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4916 }
4917 
4918 /* Return the zone index in the given device */
get_zone_idx(struct f2fs_sb_info * sbi,unsigned int secno,int dev_idx)4919 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4920 					int dev_idx)
4921 {
4922 	block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4923 
4924 	return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4925 						sbi->log_blocks_per_blkz;
4926 }
4927 
4928 /*
4929  * Return the usable segments in a section based on the zone's
4930  * corresponding zone capacity. Zone is equal to a section.
4931  */
f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)4932 static inline unsigned int f2fs_usable_zone_segs_in_sec(
4933 		struct f2fs_sb_info *sbi, unsigned int segno)
4934 {
4935 	unsigned int dev_idx, zone_idx;
4936 
4937 	dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4938 	zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4939 
4940 	/* Conventional zone's capacity is always equal to zone size */
4941 	if (is_conv_zone(sbi, zone_idx, dev_idx))
4942 		return sbi->segs_per_sec;
4943 
4944 	if (!sbi->unusable_blocks_per_sec)
4945 		return sbi->segs_per_sec;
4946 
4947 	/* Get the segment count beyond zone capacity block */
4948 	return sbi->segs_per_sec - (sbi->unusable_blocks_per_sec >>
4949 						sbi->log_blocks_per_seg);
4950 }
4951 
4952 /*
4953  * Return the number of usable blocks in a segment. The number of blocks
4954  * returned is always equal to the number of blocks in a segment for
4955  * segments fully contained within a sequential zone capacity or a
4956  * conventional zone. For segments partially contained in a sequential
4957  * zone capacity, the number of usable blocks up to the zone capacity
4958  * is returned. 0 is returned in all other cases.
4959  */
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)4960 static inline unsigned int f2fs_usable_zone_blks_in_seg(
4961 			struct f2fs_sb_info *sbi, unsigned int segno)
4962 {
4963 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
4964 	unsigned int zone_idx, dev_idx, secno;
4965 
4966 	secno = GET_SEC_FROM_SEG(sbi, segno);
4967 	seg_start = START_BLOCK(sbi, segno);
4968 	dev_idx = f2fs_target_device_index(sbi, seg_start);
4969 	zone_idx = get_zone_idx(sbi, secno, dev_idx);
4970 
4971 	/*
4972 	 * Conventional zone's capacity is always equal to zone size,
4973 	 * so, blocks per segment is unchanged.
4974 	 */
4975 	if (is_conv_zone(sbi, zone_idx, dev_idx))
4976 		return sbi->blocks_per_seg;
4977 
4978 	if (!sbi->unusable_blocks_per_sec)
4979 		return sbi->blocks_per_seg;
4980 
4981 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4982 	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
4983 
4984 	/*
4985 	 * If segment starts before zone capacity and spans beyond
4986 	 * zone capacity, then usable blocks are from seg start to
4987 	 * zone capacity. If the segment starts after the zone capacity,
4988 	 * then there are no usable blocks.
4989 	 */
4990 	if (seg_start >= sec_cap_blkaddr)
4991 		return 0;
4992 	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
4993 		return sec_cap_blkaddr - seg_start;
4994 
4995 	return sbi->blocks_per_seg;
4996 }
4997 #else
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)4998 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4999 {
5000 	return 0;
5001 }
5002 
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)5003 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5004 {
5005 	return 0;
5006 }
5007 
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5008 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5009 							unsigned int segno)
5010 {
5011 	return 0;
5012 }
5013 
f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)5014 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5015 							unsigned int segno)
5016 {
5017 	return 0;
5018 }
5019 #endif
f2fs_usable_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5020 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5021 					unsigned int segno)
5022 {
5023 	if (f2fs_sb_has_blkzoned(sbi))
5024 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5025 
5026 	return sbi->blocks_per_seg;
5027 }
5028 
f2fs_usable_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)5029 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5030 					unsigned int segno)
5031 {
5032 	if (f2fs_sb_has_blkzoned(sbi))
5033 		return f2fs_usable_zone_segs_in_sec(sbi, segno);
5034 
5035 	return sbi->segs_per_sec;
5036 }
5037 
5038 /*
5039  * Update min, max modified time for cost-benefit GC algorithm
5040  */
init_min_max_mtime(struct f2fs_sb_info * sbi)5041 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5042 {
5043 	struct sit_info *sit_i = SIT_I(sbi);
5044 	unsigned int segno;
5045 
5046 	down_write(&sit_i->sentry_lock);
5047 
5048 	sit_i->min_mtime = ULLONG_MAX;
5049 
5050 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5051 		unsigned int i;
5052 		unsigned long long mtime = 0;
5053 
5054 		for (i = 0; i < sbi->segs_per_sec; i++)
5055 			mtime += get_seg_entry(sbi, segno + i)->mtime;
5056 
5057 		mtime = div_u64(mtime, sbi->segs_per_sec);
5058 
5059 		if (sit_i->min_mtime > mtime)
5060 			sit_i->min_mtime = mtime;
5061 	}
5062 	sit_i->max_mtime = get_mtime(sbi, false);
5063 	sit_i->dirty_max_mtime = 0;
5064 	up_write(&sit_i->sentry_lock);
5065 }
5066 
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)5067 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5068 {
5069 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5070 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5071 	struct f2fs_sm_info *sm_info;
5072 	int err;
5073 
5074 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5075 	if (!sm_info)
5076 		return -ENOMEM;
5077 
5078 	/* init sm info */
5079 	sbi->sm_info = sm_info;
5080 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5081 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5082 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5083 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5084 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5085 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5086 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5087 	sm_info->rec_prefree_segments = sm_info->main_segments *
5088 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5089 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5090 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5091 
5092 	if (!f2fs_lfs_mode(sbi))
5093 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5094 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5095 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5096 	sm_info->min_seq_blocks = sbi->blocks_per_seg;
5097 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5098 	sm_info->min_ssr_sections = reserved_sections(sbi);
5099 
5100 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5101 
5102 	init_f2fs_rwsem(&sm_info->curseg_lock);
5103 
5104 	if (!f2fs_readonly(sbi->sb)) {
5105 		err = f2fs_create_flush_cmd_control(sbi);
5106 		if (err)
5107 			return err;
5108 	}
5109 
5110 	err = create_discard_cmd_control(sbi);
5111 	if (err)
5112 		return err;
5113 
5114 	err = build_sit_info(sbi);
5115 	if (err)
5116 		return err;
5117 	err = build_free_segmap(sbi);
5118 	if (err)
5119 		return err;
5120 	err = build_curseg(sbi);
5121 	if (err)
5122 		return err;
5123 
5124 	/* reinit free segmap based on SIT */
5125 	err = build_sit_entries(sbi);
5126 	if (err)
5127 		return err;
5128 
5129 	init_free_segmap(sbi);
5130 	err = build_dirty_segmap(sbi);
5131 	if (err)
5132 		return err;
5133 
5134 	err = sanity_check_curseg(sbi);
5135 	if (err)
5136 		return err;
5137 
5138 	init_min_max_mtime(sbi);
5139 	return 0;
5140 }
5141 
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)5142 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5143 		enum dirty_type dirty_type)
5144 {
5145 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5146 
5147 	mutex_lock(&dirty_i->seglist_lock);
5148 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5149 	dirty_i->nr_dirty[dirty_type] = 0;
5150 	mutex_unlock(&dirty_i->seglist_lock);
5151 }
5152 
destroy_victim_secmap(struct f2fs_sb_info * sbi)5153 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5154 {
5155 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5156 
5157 	kvfree(dirty_i->pinned_secmap);
5158 	kvfree(dirty_i->victim_secmap);
5159 }
5160 
destroy_dirty_segmap(struct f2fs_sb_info * sbi)5161 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5162 {
5163 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5164 	int i;
5165 
5166 	if (!dirty_i)
5167 		return;
5168 
5169 	/* discard pre-free/dirty segments list */
5170 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5171 		discard_dirty_segmap(sbi, i);
5172 
5173 	if (__is_large_section(sbi)) {
5174 		mutex_lock(&dirty_i->seglist_lock);
5175 		kvfree(dirty_i->dirty_secmap);
5176 		mutex_unlock(&dirty_i->seglist_lock);
5177 	}
5178 
5179 	destroy_victim_secmap(sbi);
5180 	SM_I(sbi)->dirty_info = NULL;
5181 	kfree(dirty_i);
5182 }
5183 
destroy_curseg(struct f2fs_sb_info * sbi)5184 static void destroy_curseg(struct f2fs_sb_info *sbi)
5185 {
5186 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5187 	int i;
5188 
5189 	if (!array)
5190 		return;
5191 	SM_I(sbi)->curseg_array = NULL;
5192 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5193 		kfree(array[i].sum_blk);
5194 		kfree(array[i].journal);
5195 	}
5196 	kfree(array);
5197 }
5198 
destroy_free_segmap(struct f2fs_sb_info * sbi)5199 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5200 {
5201 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5202 
5203 	if (!free_i)
5204 		return;
5205 	SM_I(sbi)->free_info = NULL;
5206 	kvfree(free_i->free_segmap);
5207 	kvfree(free_i->free_secmap);
5208 	kfree(free_i);
5209 }
5210 
destroy_sit_info(struct f2fs_sb_info * sbi)5211 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5212 {
5213 	struct sit_info *sit_i = SIT_I(sbi);
5214 
5215 	if (!sit_i)
5216 		return;
5217 
5218 	if (sit_i->sentries)
5219 		kvfree(sit_i->bitmap);
5220 	kfree(sit_i->tmp_map);
5221 
5222 	kvfree(sit_i->sentries);
5223 	kvfree(sit_i->sec_entries);
5224 	kvfree(sit_i->dirty_sentries_bitmap);
5225 
5226 	SM_I(sbi)->sit_info = NULL;
5227 	kvfree(sit_i->sit_bitmap);
5228 #ifdef CONFIG_F2FS_CHECK_FS
5229 	kvfree(sit_i->sit_bitmap_mir);
5230 	kvfree(sit_i->invalid_segmap);
5231 #endif
5232 	kfree(sit_i);
5233 }
5234 
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)5235 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5236 {
5237 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5238 
5239 	if (!sm_info)
5240 		return;
5241 	f2fs_destroy_flush_cmd_control(sbi, true);
5242 	destroy_discard_cmd_control(sbi);
5243 	destroy_dirty_segmap(sbi);
5244 	destroy_curseg(sbi);
5245 	destroy_free_segmap(sbi);
5246 	destroy_sit_info(sbi);
5247 	sbi->sm_info = NULL;
5248 	kfree(sm_info);
5249 }
5250 
f2fs_create_segment_manager_caches(void)5251 int __init f2fs_create_segment_manager_caches(void)
5252 {
5253 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5254 			sizeof(struct discard_entry));
5255 	if (!discard_entry_slab)
5256 		goto fail;
5257 
5258 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5259 			sizeof(struct discard_cmd));
5260 	if (!discard_cmd_slab)
5261 		goto destroy_discard_entry;
5262 
5263 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5264 			sizeof(struct sit_entry_set));
5265 	if (!sit_entry_set_slab)
5266 		goto destroy_discard_cmd;
5267 
5268 	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5269 			sizeof(struct revoke_entry));
5270 	if (!revoke_entry_slab)
5271 		goto destroy_sit_entry_set;
5272 	return 0;
5273 
5274 destroy_sit_entry_set:
5275 	kmem_cache_destroy(sit_entry_set_slab);
5276 destroy_discard_cmd:
5277 	kmem_cache_destroy(discard_cmd_slab);
5278 destroy_discard_entry:
5279 	kmem_cache_destroy(discard_entry_slab);
5280 fail:
5281 	return -ENOMEM;
5282 }
5283 
f2fs_destroy_segment_manager_caches(void)5284 void f2fs_destroy_segment_manager_caches(void)
5285 {
5286 	kmem_cache_destroy(sit_entry_set_slab);
5287 	kmem_cache_destroy(discard_cmd_slab);
5288 	kmem_cache_destroy(discard_entry_slab);
5289 	kmem_cache_destroy(revoke_entry_slab);
5290 }
5291