1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Core IIO driver for Bosch BMA400 triaxial acceleration sensor.
4  *
5  * Copyright 2019 Dan Robertson <dan@dlrobertson.com>
6  *
7  * TODO:
8  *  - Support for power management
9  *  - Support events and interrupts
10  *  - Create channel for step count
11  *  - Create channel for sensor time
12  */
13 
14 #include <linux/bitfield.h>
15 #include <linux/bitops.h>
16 #include <linux/device.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/regmap.h>
21 #include <linux/regulator/consumer.h>
22 
23 #include <linux/iio/iio.h>
24 #include <linux/iio/buffer.h>
25 #include <linux/iio/trigger.h>
26 #include <linux/iio/trigger_consumer.h>
27 #include <linux/iio/triggered_buffer.h>
28 
29 #include "bma400.h"
30 
31 /*
32  * The G-range selection may be one of 2g, 4g, 8, or 16g. The scale may
33  * be selected with the acc_range bits of the ACC_CONFIG1 register.
34  * NB: This buffer is populated in the device init.
35  */
36 static int bma400_scales[8];
37 
38 /*
39  * See the ACC_CONFIG1 section of the datasheet.
40  * NB: This buffer is populated in the device init.
41  */
42 static int bma400_sample_freqs[14];
43 
44 static const int bma400_osr_range[] = { 0, 1, 3 };
45 
46 /* See the ACC_CONFIG0 section of the datasheet */
47 enum bma400_power_mode {
48 	POWER_MODE_SLEEP   = 0x00,
49 	POWER_MODE_LOW     = 0x01,
50 	POWER_MODE_NORMAL  = 0x02,
51 	POWER_MODE_INVALID = 0x03,
52 };
53 
54 enum bma400_scan {
55 	BMA400_ACCL_X,
56 	BMA400_ACCL_Y,
57 	BMA400_ACCL_Z,
58 	BMA400_TEMP,
59 };
60 
61 struct bma400_sample_freq {
62 	int hz;
63 	int uhz;
64 };
65 
66 struct bma400_data {
67 	struct device *dev;
68 	struct regmap *regmap;
69 	struct regulator_bulk_data regulators[BMA400_NUM_REGULATORS];
70 	struct mutex mutex; /* data register lock */
71 	struct iio_mount_matrix orientation;
72 	enum bma400_power_mode power_mode;
73 	struct bma400_sample_freq sample_freq;
74 	int oversampling_ratio;
75 	int scale;
76 	struct iio_trigger *trig;
77 	/* Correct time stamp alignment */
78 	struct {
79 		__le16 buff[3];
80 		u8 temperature;
81 		s64 ts __aligned(8);
82 	} buffer __aligned(IIO_DMA_MINALIGN);
83 	__le16 status;
84 };
85 
bma400_is_writable_reg(struct device * dev,unsigned int reg)86 static bool bma400_is_writable_reg(struct device *dev, unsigned int reg)
87 {
88 	switch (reg) {
89 	case BMA400_CHIP_ID_REG:
90 	case BMA400_ERR_REG:
91 	case BMA400_STATUS_REG:
92 	case BMA400_X_AXIS_LSB_REG:
93 	case BMA400_X_AXIS_MSB_REG:
94 	case BMA400_Y_AXIS_LSB_REG:
95 	case BMA400_Y_AXIS_MSB_REG:
96 	case BMA400_Z_AXIS_LSB_REG:
97 	case BMA400_Z_AXIS_MSB_REG:
98 	case BMA400_SENSOR_TIME0:
99 	case BMA400_SENSOR_TIME1:
100 	case BMA400_SENSOR_TIME2:
101 	case BMA400_EVENT_REG:
102 	case BMA400_INT_STAT0_REG:
103 	case BMA400_INT_STAT1_REG:
104 	case BMA400_INT_STAT2_REG:
105 	case BMA400_TEMP_DATA_REG:
106 	case BMA400_FIFO_LENGTH0_REG:
107 	case BMA400_FIFO_LENGTH1_REG:
108 	case BMA400_FIFO_DATA_REG:
109 	case BMA400_STEP_CNT0_REG:
110 	case BMA400_STEP_CNT1_REG:
111 	case BMA400_STEP_CNT3_REG:
112 	case BMA400_STEP_STAT_REG:
113 		return false;
114 	default:
115 		return true;
116 	}
117 }
118 
bma400_is_volatile_reg(struct device * dev,unsigned int reg)119 static bool bma400_is_volatile_reg(struct device *dev, unsigned int reg)
120 {
121 	switch (reg) {
122 	case BMA400_ERR_REG:
123 	case BMA400_STATUS_REG:
124 	case BMA400_X_AXIS_LSB_REG:
125 	case BMA400_X_AXIS_MSB_REG:
126 	case BMA400_Y_AXIS_LSB_REG:
127 	case BMA400_Y_AXIS_MSB_REG:
128 	case BMA400_Z_AXIS_LSB_REG:
129 	case BMA400_Z_AXIS_MSB_REG:
130 	case BMA400_SENSOR_TIME0:
131 	case BMA400_SENSOR_TIME1:
132 	case BMA400_SENSOR_TIME2:
133 	case BMA400_EVENT_REG:
134 	case BMA400_INT_STAT0_REG:
135 	case BMA400_INT_STAT1_REG:
136 	case BMA400_INT_STAT2_REG:
137 	case BMA400_TEMP_DATA_REG:
138 	case BMA400_FIFO_LENGTH0_REG:
139 	case BMA400_FIFO_LENGTH1_REG:
140 	case BMA400_FIFO_DATA_REG:
141 	case BMA400_STEP_CNT0_REG:
142 	case BMA400_STEP_CNT1_REG:
143 	case BMA400_STEP_CNT3_REG:
144 	case BMA400_STEP_STAT_REG:
145 		return true;
146 	default:
147 		return false;
148 	}
149 }
150 
151 const struct regmap_config bma400_regmap_config = {
152 	.reg_bits = 8,
153 	.val_bits = 8,
154 	.max_register = BMA400_CMD_REG,
155 	.cache_type = REGCACHE_RBTREE,
156 	.writeable_reg = bma400_is_writable_reg,
157 	.volatile_reg = bma400_is_volatile_reg,
158 };
159 EXPORT_SYMBOL_NS(bma400_regmap_config, IIO_BMA400);
160 
161 static const struct iio_mount_matrix *
bma400_accel_get_mount_matrix(const struct iio_dev * indio_dev,const struct iio_chan_spec * chan)162 bma400_accel_get_mount_matrix(const struct iio_dev *indio_dev,
163 			      const struct iio_chan_spec *chan)
164 {
165 	struct bma400_data *data = iio_priv(indio_dev);
166 
167 	return &data->orientation;
168 }
169 
170 static const struct iio_chan_spec_ext_info bma400_ext_info[] = {
171 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bma400_accel_get_mount_matrix),
172 	{ }
173 };
174 
175 #define BMA400_ACC_CHANNEL(_index, _axis) { \
176 	.type = IIO_ACCEL, \
177 	.modified = 1, \
178 	.channel2 = IIO_MOD_##_axis, \
179 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
180 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
181 		BIT(IIO_CHAN_INFO_SCALE) | \
182 		BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
183 	.info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
184 		BIT(IIO_CHAN_INFO_SCALE) | \
185 		BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
186 	.ext_info = bma400_ext_info, \
187 	.scan_index = _index,	\
188 	.scan_type = {		\
189 		.sign = 's',	\
190 		.realbits = 12,		\
191 		.storagebits = 16,	\
192 		.endianness = IIO_LE,	\
193 	},				\
194 }
195 
196 static const struct iio_chan_spec bma400_channels[] = {
197 	BMA400_ACC_CHANNEL(0, X),
198 	BMA400_ACC_CHANNEL(1, Y),
199 	BMA400_ACC_CHANNEL(2, Z),
200 	{
201 		.type = IIO_TEMP,
202 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
203 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ),
204 		.scan_index = 3,
205 		.scan_type = {
206 			.sign = 's',
207 			.realbits = 8,
208 			.storagebits = 8,
209 			.endianness = IIO_LE,
210 		},
211 	},
212 	IIO_CHAN_SOFT_TIMESTAMP(4),
213 };
214 
bma400_get_temp_reg(struct bma400_data * data,int * val,int * val2)215 static int bma400_get_temp_reg(struct bma400_data *data, int *val, int *val2)
216 {
217 	unsigned int raw_temp;
218 	int host_temp;
219 	int ret;
220 
221 	if (data->power_mode == POWER_MODE_SLEEP)
222 		return -EBUSY;
223 
224 	ret = regmap_read(data->regmap, BMA400_TEMP_DATA_REG, &raw_temp);
225 	if (ret)
226 		return ret;
227 
228 	host_temp = sign_extend32(raw_temp, 7);
229 	/*
230 	 * The formula for the TEMP_DATA register in the datasheet
231 	 * is: x * 0.5 + 23
232 	 */
233 	*val = (host_temp >> 1) + 23;
234 	*val2 = (host_temp & 0x1) * 500000;
235 	return IIO_VAL_INT_PLUS_MICRO;
236 }
237 
bma400_get_accel_reg(struct bma400_data * data,const struct iio_chan_spec * chan,int * val)238 static int bma400_get_accel_reg(struct bma400_data *data,
239 				const struct iio_chan_spec *chan,
240 				int *val)
241 {
242 	__le16 raw_accel;
243 	int lsb_reg;
244 	int ret;
245 
246 	if (data->power_mode == POWER_MODE_SLEEP)
247 		return -EBUSY;
248 
249 	switch (chan->channel2) {
250 	case IIO_MOD_X:
251 		lsb_reg = BMA400_X_AXIS_LSB_REG;
252 		break;
253 	case IIO_MOD_Y:
254 		lsb_reg = BMA400_Y_AXIS_LSB_REG;
255 		break;
256 	case IIO_MOD_Z:
257 		lsb_reg = BMA400_Z_AXIS_LSB_REG;
258 		break;
259 	default:
260 		dev_err(data->dev, "invalid axis channel modifier\n");
261 		return -EINVAL;
262 	}
263 
264 	/* bulk read two registers, with the base being the LSB register */
265 	ret = regmap_bulk_read(data->regmap, lsb_reg, &raw_accel,
266 			       sizeof(raw_accel));
267 	if (ret)
268 		return ret;
269 
270 	*val = sign_extend32(le16_to_cpu(raw_accel), 11);
271 	return IIO_VAL_INT;
272 }
273 
bma400_output_data_rate_from_raw(int raw,unsigned int * val,unsigned int * val2)274 static void bma400_output_data_rate_from_raw(int raw, unsigned int *val,
275 					     unsigned int *val2)
276 {
277 	*val = BMA400_ACC_ODR_MAX_HZ >> (BMA400_ACC_ODR_MAX_RAW - raw);
278 	if (raw > BMA400_ACC_ODR_MIN_RAW)
279 		*val2 = 0;
280 	else
281 		*val2 = 500000;
282 }
283 
bma400_get_accel_output_data_rate(struct bma400_data * data)284 static int bma400_get_accel_output_data_rate(struct bma400_data *data)
285 {
286 	unsigned int val;
287 	unsigned int odr;
288 	int ret;
289 
290 	switch (data->power_mode) {
291 	case POWER_MODE_LOW:
292 		/*
293 		 * Runs at a fixed rate in low-power mode. See section 4.3
294 		 * in the datasheet.
295 		 */
296 		bma400_output_data_rate_from_raw(BMA400_ACC_ODR_LP_RAW,
297 						 &data->sample_freq.hz,
298 						 &data->sample_freq.uhz);
299 		return 0;
300 	case POWER_MODE_NORMAL:
301 		/*
302 		 * In normal mode the ODR can be found in the ACC_CONFIG1
303 		 * register.
304 		 */
305 		ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
306 		if (ret)
307 			goto error;
308 
309 		odr = val & BMA400_ACC_ODR_MASK;
310 		if (odr < BMA400_ACC_ODR_MIN_RAW ||
311 		    odr > BMA400_ACC_ODR_MAX_RAW) {
312 			ret = -EINVAL;
313 			goto error;
314 		}
315 
316 		bma400_output_data_rate_from_raw(odr, &data->sample_freq.hz,
317 						 &data->sample_freq.uhz);
318 		return 0;
319 	case POWER_MODE_SLEEP:
320 		data->sample_freq.hz = 0;
321 		data->sample_freq.uhz = 0;
322 		return 0;
323 	default:
324 		ret = 0;
325 		goto error;
326 	}
327 error:
328 	data->sample_freq.hz = -1;
329 	data->sample_freq.uhz = -1;
330 	return ret;
331 }
332 
bma400_set_accel_output_data_rate(struct bma400_data * data,int hz,int uhz)333 static int bma400_set_accel_output_data_rate(struct bma400_data *data,
334 					     int hz, int uhz)
335 {
336 	unsigned int idx;
337 	unsigned int odr;
338 	unsigned int val;
339 	int ret;
340 
341 	if (hz >= BMA400_ACC_ODR_MIN_WHOLE_HZ) {
342 		if (uhz || hz > BMA400_ACC_ODR_MAX_HZ)
343 			return -EINVAL;
344 
345 		/* Note this works because MIN_WHOLE_HZ is odd */
346 		idx = __ffs(hz);
347 
348 		if (hz >> idx != BMA400_ACC_ODR_MIN_WHOLE_HZ)
349 			return -EINVAL;
350 
351 		idx += BMA400_ACC_ODR_MIN_RAW + 1;
352 	} else if (hz == BMA400_ACC_ODR_MIN_HZ && uhz == 500000) {
353 		idx = BMA400_ACC_ODR_MIN_RAW;
354 	} else {
355 		return -EINVAL;
356 	}
357 
358 	ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
359 	if (ret)
360 		return ret;
361 
362 	/* preserve the range and normal mode osr */
363 	odr = (~BMA400_ACC_ODR_MASK & val) | idx;
364 
365 	ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG, odr);
366 	if (ret)
367 		return ret;
368 
369 	bma400_output_data_rate_from_raw(idx, &data->sample_freq.hz,
370 					 &data->sample_freq.uhz);
371 	return 0;
372 }
373 
bma400_get_accel_oversampling_ratio(struct bma400_data * data)374 static int bma400_get_accel_oversampling_ratio(struct bma400_data *data)
375 {
376 	unsigned int val;
377 	unsigned int osr;
378 	int ret;
379 
380 	/*
381 	 * The oversampling ratio is stored in a different register
382 	 * based on the power-mode. In normal mode the OSR is stored
383 	 * in ACC_CONFIG1. In low-power mode it is stored in
384 	 * ACC_CONFIG0.
385 	 */
386 	switch (data->power_mode) {
387 	case POWER_MODE_LOW:
388 		ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG, &val);
389 		if (ret) {
390 			data->oversampling_ratio = -1;
391 			return ret;
392 		}
393 
394 		osr = (val & BMA400_LP_OSR_MASK) >> BMA400_LP_OSR_SHIFT;
395 
396 		data->oversampling_ratio = osr;
397 		return 0;
398 	case POWER_MODE_NORMAL:
399 		ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
400 		if (ret) {
401 			data->oversampling_ratio = -1;
402 			return ret;
403 		}
404 
405 		osr = (val & BMA400_NP_OSR_MASK) >> BMA400_NP_OSR_SHIFT;
406 
407 		data->oversampling_ratio = osr;
408 		return 0;
409 	case POWER_MODE_SLEEP:
410 		data->oversampling_ratio = 0;
411 		return 0;
412 	default:
413 		data->oversampling_ratio = -1;
414 		return -EINVAL;
415 	}
416 }
417 
bma400_set_accel_oversampling_ratio(struct bma400_data * data,int val)418 static int bma400_set_accel_oversampling_ratio(struct bma400_data *data,
419 					       int val)
420 {
421 	unsigned int acc_config;
422 	int ret;
423 
424 	if (val & ~BMA400_TWO_BITS_MASK)
425 		return -EINVAL;
426 
427 	/*
428 	 * The oversampling ratio is stored in a different register
429 	 * based on the power-mode.
430 	 */
431 	switch (data->power_mode) {
432 	case POWER_MODE_LOW:
433 		ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG,
434 				  &acc_config);
435 		if (ret)
436 			return ret;
437 
438 		ret = regmap_write(data->regmap, BMA400_ACC_CONFIG0_REG,
439 				   (acc_config & ~BMA400_LP_OSR_MASK) |
440 				   (val << BMA400_LP_OSR_SHIFT));
441 		if (ret) {
442 			dev_err(data->dev, "Failed to write out OSR\n");
443 			return ret;
444 		}
445 
446 		data->oversampling_ratio = val;
447 		return 0;
448 	case POWER_MODE_NORMAL:
449 		ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG,
450 				  &acc_config);
451 		if (ret)
452 			return ret;
453 
454 		ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG,
455 				   (acc_config & ~BMA400_NP_OSR_MASK) |
456 				   (val << BMA400_NP_OSR_SHIFT));
457 		if (ret) {
458 			dev_err(data->dev, "Failed to write out OSR\n");
459 			return ret;
460 		}
461 
462 		data->oversampling_ratio = val;
463 		return 0;
464 	default:
465 		return -EINVAL;
466 	}
467 	return ret;
468 }
469 
bma400_accel_scale_to_raw(struct bma400_data * data,unsigned int val)470 static int bma400_accel_scale_to_raw(struct bma400_data *data,
471 				     unsigned int val)
472 {
473 	int raw;
474 
475 	if (val == 0)
476 		return -EINVAL;
477 
478 	/* Note this works because BMA400_SCALE_MIN is odd */
479 	raw = __ffs(val);
480 
481 	if (val >> raw != BMA400_SCALE_MIN)
482 		return -EINVAL;
483 
484 	return raw;
485 }
486 
bma400_get_accel_scale(struct bma400_data * data)487 static int bma400_get_accel_scale(struct bma400_data *data)
488 {
489 	unsigned int raw_scale;
490 	unsigned int val;
491 	int ret;
492 
493 	ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
494 	if (ret)
495 		return ret;
496 
497 	raw_scale = (val & BMA400_ACC_SCALE_MASK) >> BMA400_SCALE_SHIFT;
498 	if (raw_scale > BMA400_TWO_BITS_MASK)
499 		return -EINVAL;
500 
501 	data->scale = BMA400_SCALE_MIN << raw_scale;
502 
503 	return 0;
504 }
505 
bma400_set_accel_scale(struct bma400_data * data,unsigned int val)506 static int bma400_set_accel_scale(struct bma400_data *data, unsigned int val)
507 {
508 	unsigned int acc_config;
509 	int raw;
510 	int ret;
511 
512 	ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &acc_config);
513 	if (ret)
514 		return ret;
515 
516 	raw = bma400_accel_scale_to_raw(data, val);
517 	if (raw < 0)
518 		return raw;
519 
520 	ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG,
521 			   (acc_config & ~BMA400_ACC_SCALE_MASK) |
522 			   (raw << BMA400_SCALE_SHIFT));
523 	if (ret)
524 		return ret;
525 
526 	data->scale = val;
527 	return 0;
528 }
529 
bma400_get_power_mode(struct bma400_data * data)530 static int bma400_get_power_mode(struct bma400_data *data)
531 {
532 	unsigned int val;
533 	int ret;
534 
535 	ret = regmap_read(data->regmap, BMA400_STATUS_REG, &val);
536 	if (ret) {
537 		dev_err(data->dev, "Failed to read status register\n");
538 		return ret;
539 	}
540 
541 	data->power_mode = (val >> 1) & BMA400_TWO_BITS_MASK;
542 	return 0;
543 }
544 
bma400_set_power_mode(struct bma400_data * data,enum bma400_power_mode mode)545 static int bma400_set_power_mode(struct bma400_data *data,
546 				 enum bma400_power_mode mode)
547 {
548 	unsigned int val;
549 	int ret;
550 
551 	ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG, &val);
552 	if (ret)
553 		return ret;
554 
555 	if (data->power_mode == mode)
556 		return 0;
557 
558 	if (mode == POWER_MODE_INVALID)
559 		return -EINVAL;
560 
561 	/* Preserve the low-power oversample ratio etc */
562 	ret = regmap_write(data->regmap, BMA400_ACC_CONFIG0_REG,
563 			   mode | (val & ~BMA400_TWO_BITS_MASK));
564 	if (ret) {
565 		dev_err(data->dev, "Failed to write to power-mode\n");
566 		return ret;
567 	}
568 
569 	data->power_mode = mode;
570 
571 	/*
572 	 * Update our cached osr and odr based on the new
573 	 * power-mode.
574 	 */
575 	bma400_get_accel_output_data_rate(data);
576 	bma400_get_accel_oversampling_ratio(data);
577 	return 0;
578 }
579 
bma400_init_tables(void)580 static void bma400_init_tables(void)
581 {
582 	int raw;
583 	int i;
584 
585 	for (i = 0; i + 1 < ARRAY_SIZE(bma400_sample_freqs); i += 2) {
586 		raw = (i / 2) + 5;
587 		bma400_output_data_rate_from_raw(raw, &bma400_sample_freqs[i],
588 						 &bma400_sample_freqs[i + 1]);
589 	}
590 
591 	for (i = 0; i + 1 < ARRAY_SIZE(bma400_scales); i += 2) {
592 		raw = i / 2;
593 		bma400_scales[i] = 0;
594 		bma400_scales[i + 1] = BMA400_SCALE_MIN << raw;
595 	}
596 }
597 
bma400_regulators_disable(void * data_ptr)598 static void bma400_regulators_disable(void *data_ptr)
599 {
600 	struct bma400_data *data = data_ptr;
601 
602 	regulator_bulk_disable(ARRAY_SIZE(data->regulators), data->regulators);
603 }
604 
bma400_power_disable(void * data_ptr)605 static void bma400_power_disable(void *data_ptr)
606 {
607 	struct bma400_data *data = data_ptr;
608 	int ret;
609 
610 	mutex_lock(&data->mutex);
611 	ret = bma400_set_power_mode(data, POWER_MODE_SLEEP);
612 	mutex_unlock(&data->mutex);
613 	if (ret)
614 		dev_warn(data->dev, "Failed to put device into sleep mode (%pe)\n",
615 			 ERR_PTR(ret));
616 }
617 
bma400_init(struct bma400_data * data)618 static int bma400_init(struct bma400_data *data)
619 {
620 	unsigned int val;
621 	int ret;
622 
623 	/* Try to read chip_id register. It must return 0x90. */
624 	ret = regmap_read(data->regmap, BMA400_CHIP_ID_REG, &val);
625 	if (ret) {
626 		dev_err(data->dev, "Failed to read chip id register\n");
627 		return ret;
628 	}
629 
630 	if (val != BMA400_ID_REG_VAL) {
631 		dev_err(data->dev, "Chip ID mismatch\n");
632 		return -ENODEV;
633 	}
634 
635 	data->regulators[BMA400_VDD_REGULATOR].supply = "vdd";
636 	data->regulators[BMA400_VDDIO_REGULATOR].supply = "vddio";
637 	ret = devm_regulator_bulk_get(data->dev,
638 				      ARRAY_SIZE(data->regulators),
639 				      data->regulators);
640 	if (ret) {
641 		if (ret != -EPROBE_DEFER)
642 			dev_err(data->dev,
643 				"Failed to get regulators: %d\n",
644 				ret);
645 
646 		return ret;
647 	}
648 	ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
649 				    data->regulators);
650 	if (ret) {
651 		dev_err(data->dev, "Failed to enable regulators: %d\n",
652 			ret);
653 		return ret;
654 	}
655 
656 	ret = devm_add_action_or_reset(data->dev, bma400_regulators_disable, data);
657 	if (ret)
658 		return ret;
659 
660 	ret = bma400_get_power_mode(data);
661 	if (ret) {
662 		dev_err(data->dev, "Failed to get the initial power-mode\n");
663 		return ret;
664 	}
665 
666 	if (data->power_mode != POWER_MODE_NORMAL) {
667 		ret = bma400_set_power_mode(data, POWER_MODE_NORMAL);
668 		if (ret) {
669 			dev_err(data->dev, "Failed to wake up the device\n");
670 			return ret;
671 		}
672 		/*
673 		 * TODO: The datasheet waits 1500us here in the example, but
674 		 * lists 2/ODR as the wakeup time.
675 		 */
676 		usleep_range(1500, 2000);
677 	}
678 
679 	ret = devm_add_action_or_reset(data->dev, bma400_power_disable, data);
680 	if (ret)
681 		return ret;
682 
683 	bma400_init_tables();
684 
685 	ret = bma400_get_accel_output_data_rate(data);
686 	if (ret)
687 		return ret;
688 
689 	ret = bma400_get_accel_oversampling_ratio(data);
690 	if (ret)
691 		return ret;
692 
693 	ret = bma400_get_accel_scale(data);
694 	if (ret)
695 		return ret;
696 
697 	/* Configure INT1 pin to open drain */
698 	ret = regmap_write(data->regmap, BMA400_INT_IO_CTRL_REG, 0x06);
699 	if (ret)
700 		return ret;
701 	/*
702 	 * Once the interrupt engine is supported we might use the
703 	 * data_src_reg, but for now ensure this is set to the
704 	 * variable ODR filter selectable by the sample frequency
705 	 * channel.
706 	 */
707 	return regmap_write(data->regmap, BMA400_ACC_CONFIG2_REG, 0x00);
708 }
709 
bma400_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)710 static int bma400_read_raw(struct iio_dev *indio_dev,
711 			   struct iio_chan_spec const *chan, int *val,
712 			   int *val2, long mask)
713 {
714 	struct bma400_data *data = iio_priv(indio_dev);
715 	int ret;
716 
717 	switch (mask) {
718 	case IIO_CHAN_INFO_PROCESSED:
719 		mutex_lock(&data->mutex);
720 		ret = bma400_get_temp_reg(data, val, val2);
721 		mutex_unlock(&data->mutex);
722 		return ret;
723 	case IIO_CHAN_INFO_RAW:
724 		mutex_lock(&data->mutex);
725 		ret = bma400_get_accel_reg(data, chan, val);
726 		mutex_unlock(&data->mutex);
727 		return ret;
728 	case IIO_CHAN_INFO_SAMP_FREQ:
729 		switch (chan->type) {
730 		case IIO_ACCEL:
731 			if (data->sample_freq.hz < 0)
732 				return -EINVAL;
733 
734 			*val = data->sample_freq.hz;
735 			*val2 = data->sample_freq.uhz;
736 			return IIO_VAL_INT_PLUS_MICRO;
737 		case IIO_TEMP:
738 			/*
739 			 * Runs at a fixed sampling frequency. See Section 4.4
740 			 * of the datasheet.
741 			 */
742 			*val = 6;
743 			*val2 = 250000;
744 			return IIO_VAL_INT_PLUS_MICRO;
745 		default:
746 			return -EINVAL;
747 		}
748 	case IIO_CHAN_INFO_SCALE:
749 		*val = 0;
750 		*val2 = data->scale;
751 		return IIO_VAL_INT_PLUS_MICRO;
752 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
753 		/*
754 		 * TODO: We could avoid this logic and returning -EINVAL here if
755 		 * we set both the low-power and normal mode OSR registers when
756 		 * we configure the device.
757 		 */
758 		if (data->oversampling_ratio < 0)
759 			return -EINVAL;
760 
761 		*val = data->oversampling_ratio;
762 		return IIO_VAL_INT;
763 	default:
764 		return -EINVAL;
765 	}
766 }
767 
bma400_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)768 static int bma400_read_avail(struct iio_dev *indio_dev,
769 			     struct iio_chan_spec const *chan,
770 			     const int **vals, int *type, int *length,
771 			     long mask)
772 {
773 	switch (mask) {
774 	case IIO_CHAN_INFO_SCALE:
775 		*type = IIO_VAL_INT_PLUS_MICRO;
776 		*vals = bma400_scales;
777 		*length = ARRAY_SIZE(bma400_scales);
778 		return IIO_AVAIL_LIST;
779 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
780 		*type = IIO_VAL_INT;
781 		*vals = bma400_osr_range;
782 		*length = ARRAY_SIZE(bma400_osr_range);
783 		return IIO_AVAIL_RANGE;
784 	case IIO_CHAN_INFO_SAMP_FREQ:
785 		*type = IIO_VAL_INT_PLUS_MICRO;
786 		*vals = bma400_sample_freqs;
787 		*length = ARRAY_SIZE(bma400_sample_freqs);
788 		return IIO_AVAIL_LIST;
789 	default:
790 		return -EINVAL;
791 	}
792 }
793 
bma400_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)794 static int bma400_write_raw(struct iio_dev *indio_dev,
795 			    struct iio_chan_spec const *chan, int val, int val2,
796 			    long mask)
797 {
798 	struct bma400_data *data = iio_priv(indio_dev);
799 	int ret;
800 
801 	switch (mask) {
802 	case IIO_CHAN_INFO_SAMP_FREQ:
803 		/*
804 		 * The sample frequency is readonly for the temperature
805 		 * register and a fixed value in low-power mode.
806 		 */
807 		if (chan->type != IIO_ACCEL)
808 			return -EINVAL;
809 
810 		mutex_lock(&data->mutex);
811 		ret = bma400_set_accel_output_data_rate(data, val, val2);
812 		mutex_unlock(&data->mutex);
813 		return ret;
814 	case IIO_CHAN_INFO_SCALE:
815 		if (val != 0 ||
816 		    val2 < BMA400_SCALE_MIN || val2 > BMA400_SCALE_MAX)
817 			return -EINVAL;
818 
819 		mutex_lock(&data->mutex);
820 		ret = bma400_set_accel_scale(data, val2);
821 		mutex_unlock(&data->mutex);
822 		return ret;
823 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
824 		mutex_lock(&data->mutex);
825 		ret = bma400_set_accel_oversampling_ratio(data, val);
826 		mutex_unlock(&data->mutex);
827 		return ret;
828 	default:
829 		return -EINVAL;
830 	}
831 }
832 
bma400_write_raw_get_fmt(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,long mask)833 static int bma400_write_raw_get_fmt(struct iio_dev *indio_dev,
834 				    struct iio_chan_spec const *chan,
835 				    long mask)
836 {
837 	switch (mask) {
838 	case IIO_CHAN_INFO_SAMP_FREQ:
839 		return IIO_VAL_INT_PLUS_MICRO;
840 	case IIO_CHAN_INFO_SCALE:
841 		return IIO_VAL_INT_PLUS_MICRO;
842 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
843 		return IIO_VAL_INT;
844 	default:
845 		return -EINVAL;
846 	}
847 }
848 
bma400_data_rdy_trigger_set_state(struct iio_trigger * trig,bool state)849 static int bma400_data_rdy_trigger_set_state(struct iio_trigger *trig,
850 					     bool state)
851 {
852 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
853 	struct bma400_data *data = iio_priv(indio_dev);
854 	int ret;
855 
856 	ret = regmap_update_bits(data->regmap, BMA400_INT_CONFIG0_REG,
857 				 BMA400_INT_DRDY_MSK,
858 				 FIELD_PREP(BMA400_INT_DRDY_MSK, state));
859 	if (ret)
860 		return ret;
861 
862 	return regmap_update_bits(data->regmap, BMA400_INT1_MAP_REG,
863 				  BMA400_INT_DRDY_MSK,
864 				  FIELD_PREP(BMA400_INT_DRDY_MSK, state));
865 }
866 
867 static const unsigned long bma400_avail_scan_masks[] = {
868 	BIT(BMA400_ACCL_X) | BIT(BMA400_ACCL_Y) | BIT(BMA400_ACCL_Z),
869 	BIT(BMA400_ACCL_X) | BIT(BMA400_ACCL_Y) | BIT(BMA400_ACCL_Z)
870 	| BIT(BMA400_TEMP),
871 	0
872 };
873 
874 static const struct iio_info bma400_info = {
875 	.read_raw          = bma400_read_raw,
876 	.read_avail        = bma400_read_avail,
877 	.write_raw         = bma400_write_raw,
878 	.write_raw_get_fmt = bma400_write_raw_get_fmt,
879 };
880 
881 static const struct iio_trigger_ops bma400_trigger_ops = {
882 	.set_trigger_state = &bma400_data_rdy_trigger_set_state,
883 	.validate_device = &iio_trigger_validate_own_device,
884 };
885 
bma400_trigger_handler(int irq,void * p)886 static irqreturn_t bma400_trigger_handler(int irq, void *p)
887 {
888 	struct iio_poll_func *pf = p;
889 	struct iio_dev *indio_dev = pf->indio_dev;
890 	struct bma400_data *data = iio_priv(indio_dev);
891 	int ret, temp;
892 
893 	/* Lock to protect the data->buffer */
894 	mutex_lock(&data->mutex);
895 
896 	/* bulk read six registers, with the base being the LSB register */
897 	ret = regmap_bulk_read(data->regmap, BMA400_X_AXIS_LSB_REG,
898 			       &data->buffer.buff, sizeof(data->buffer.buff));
899 	if (ret)
900 		goto unlock_err;
901 
902 	if (test_bit(BMA400_TEMP, indio_dev->active_scan_mask)) {
903 		ret = regmap_read(data->regmap, BMA400_TEMP_DATA_REG, &temp);
904 		if (ret)
905 			goto unlock_err;
906 
907 		data->buffer.temperature = temp;
908 	}
909 
910 	iio_push_to_buffers_with_timestamp(indio_dev, &data->buffer,
911 					   iio_get_time_ns(indio_dev));
912 
913 	mutex_unlock(&data->mutex);
914 	iio_trigger_notify_done(indio_dev->trig);
915 	return IRQ_HANDLED;
916 
917 unlock_err:
918 	mutex_unlock(&data->mutex);
919 	return IRQ_NONE;
920 }
921 
bma400_interrupt(int irq,void * private)922 static irqreturn_t bma400_interrupt(int irq, void *private)
923 {
924 	struct iio_dev *indio_dev = private;
925 	struct bma400_data *data = iio_priv(indio_dev);
926 	int ret;
927 
928 	/* Lock to protect the data->status */
929 	mutex_lock(&data->mutex);
930 	ret = regmap_bulk_read(data->regmap, BMA400_INT_STAT0_REG,
931 			       &data->status,
932 			       sizeof(data->status));
933 	/*
934 	 * if none of the bit is set in the status register then it is
935 	 * spurious interrupt.
936 	 */
937 	if (ret || !data->status)
938 		goto unlock_err;
939 
940 	if (FIELD_GET(BMA400_INT_DRDY_MSK, le16_to_cpu(data->status))) {
941 		mutex_unlock(&data->mutex);
942 		iio_trigger_poll_chained(data->trig);
943 		return IRQ_HANDLED;
944 	}
945 
946 unlock_err:
947 	mutex_unlock(&data->mutex);
948 	return IRQ_NONE;
949 }
950 
bma400_probe(struct device * dev,struct regmap * regmap,int irq,const char * name)951 int bma400_probe(struct device *dev, struct regmap *regmap, int irq,
952 		 const char *name)
953 {
954 	struct iio_dev *indio_dev;
955 	struct bma400_data *data;
956 	int ret;
957 
958 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
959 	if (!indio_dev)
960 		return -ENOMEM;
961 
962 	data = iio_priv(indio_dev);
963 	data->regmap = regmap;
964 	data->dev = dev;
965 
966 	ret = bma400_init(data);
967 	if (ret)
968 		return ret;
969 
970 	ret = iio_read_mount_matrix(dev, &data->orientation);
971 	if (ret)
972 		return ret;
973 
974 	mutex_init(&data->mutex);
975 	indio_dev->name = name;
976 	indio_dev->info = &bma400_info;
977 	indio_dev->channels = bma400_channels;
978 	indio_dev->num_channels = ARRAY_SIZE(bma400_channels);
979 	indio_dev->available_scan_masks = bma400_avail_scan_masks;
980 	indio_dev->modes = INDIO_DIRECT_MODE;
981 
982 	if (irq > 0) {
983 		data->trig = devm_iio_trigger_alloc(dev, "%s-dev%d",
984 						    indio_dev->name,
985 						    iio_device_id(indio_dev));
986 		if (!data->trig)
987 			return -ENOMEM;
988 
989 		data->trig->ops = &bma400_trigger_ops;
990 		iio_trigger_set_drvdata(data->trig, indio_dev);
991 
992 		ret = devm_iio_trigger_register(data->dev, data->trig);
993 		if (ret)
994 			return dev_err_probe(data->dev, ret,
995 					     "iio trigger register fail\n");
996 
997 		indio_dev->trig = iio_trigger_get(data->trig);
998 		ret = devm_request_threaded_irq(dev, irq, NULL,
999 						&bma400_interrupt,
1000 						IRQF_TRIGGER_RISING | IRQF_ONESHOT,
1001 						indio_dev->name, indio_dev);
1002 		if (ret)
1003 			return dev_err_probe(data->dev, ret,
1004 					     "request irq %d failed\n", irq);
1005 	}
1006 
1007 	ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL,
1008 					      &bma400_trigger_handler, NULL);
1009 	if (ret)
1010 		return dev_err_probe(data->dev, ret,
1011 				     "iio triggered buffer setup failed\n");
1012 
1013 	return devm_iio_device_register(dev, indio_dev);
1014 }
1015 EXPORT_SYMBOL_NS(bma400_probe, IIO_BMA400);
1016 
1017 MODULE_AUTHOR("Dan Robertson <dan@dlrobertson.com>");
1018 MODULE_DESCRIPTION("Bosch BMA400 triaxial acceleration sensor core");
1019 MODULE_LICENSE("GPL");
1020