1 /*
2  *  SMP related functions
3  *
4  *    Copyright IBM Corp. 1999,2012
5  *    Author(s): Denis Joseph Barrow,
6  *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
7  *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17 
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/switch_to.h>
36 #include <asm/facility.h>
37 #include <asm/ipl.h>
38 #include <asm/setup.h>
39 #include <asm/irq.h>
40 #include <asm/tlbflush.h>
41 #include <asm/timer.h>
42 #include <asm/lowcore.h>
43 #include <asm/sclp.h>
44 #include <asm/vdso.h>
45 #include <asm/debug.h>
46 #include <asm/os_info.h>
47 #include "entry.h"
48 
49 enum {
50 	sigp_sense = 1,
51 	sigp_external_call = 2,
52 	sigp_emergency_signal = 3,
53 	sigp_start = 4,
54 	sigp_stop = 5,
55 	sigp_restart = 6,
56 	sigp_stop_and_store_status = 9,
57 	sigp_initial_cpu_reset = 11,
58 	sigp_cpu_reset = 12,
59 	sigp_set_prefix = 13,
60 	sigp_store_status_at_address = 14,
61 	sigp_store_extended_status_at_address = 15,
62 	sigp_set_architecture = 18,
63 	sigp_conditional_emergency_signal = 19,
64 	sigp_sense_running = 21,
65 };
66 
67 enum {
68 	sigp_order_code_accepted = 0,
69 	sigp_status_stored = 1,
70 	sigp_busy = 2,
71 	sigp_not_operational = 3,
72 };
73 
74 enum {
75 	ec_schedule = 0,
76 	ec_call_function,
77 	ec_call_function_single,
78 	ec_stop_cpu,
79 };
80 
81 enum {
82 	CPU_STATE_STANDBY,
83 	CPU_STATE_CONFIGURED,
84 };
85 
86 struct pcpu {
87 	struct cpu cpu;
88 	struct task_struct *idle;	/* idle process for the cpu */
89 	struct _lowcore *lowcore;	/* lowcore page(s) for the cpu */
90 	unsigned long async_stack;	/* async stack for the cpu */
91 	unsigned long panic_stack;	/* panic stack for the cpu */
92 	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
93 	int state;			/* physical cpu state */
94 	u32 status;			/* last status received via sigp */
95 	u16 address;			/* physical cpu address */
96 };
97 
98 static u8 boot_cpu_type;
99 static u16 boot_cpu_address;
100 static struct pcpu pcpu_devices[NR_CPUS];
101 
102 DEFINE_MUTEX(smp_cpu_state_mutex);
103 
104 /*
105  * Signal processor helper functions.
106  */
__pcpu_sigp(u16 addr,u8 order,u32 parm,u32 * status)107 static inline int __pcpu_sigp(u16 addr, u8 order, u32 parm, u32 *status)
108 {
109 	register unsigned int reg1 asm ("1") = parm;
110 	int cc;
111 
112 	asm volatile(
113 		"	sigp	%1,%2,0(%3)\n"
114 		"	ipm	%0\n"
115 		"	srl	%0,28\n"
116 		: "=d" (cc), "+d" (reg1) : "d" (addr), "a" (order) : "cc");
117 	if (status && cc == 1)
118 		*status = reg1;
119 	return cc;
120 }
121 
__pcpu_sigp_relax(u16 addr,u8 order,u32 parm,u32 * status)122 static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status)
123 {
124 	int cc;
125 
126 	while (1) {
127 		cc = __pcpu_sigp(addr, order, parm, status);
128 		if (cc != sigp_busy)
129 			return cc;
130 		cpu_relax();
131 	}
132 }
133 
pcpu_sigp_retry(struct pcpu * pcpu,u8 order,u32 parm)134 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
135 {
136 	int cc, retry;
137 
138 	for (retry = 0; ; retry++) {
139 		cc = __pcpu_sigp(pcpu->address, order, parm, &pcpu->status);
140 		if (cc != sigp_busy)
141 			break;
142 		if (retry >= 3)
143 			udelay(10);
144 	}
145 	return cc;
146 }
147 
pcpu_stopped(struct pcpu * pcpu)148 static inline int pcpu_stopped(struct pcpu *pcpu)
149 {
150 	if (__pcpu_sigp(pcpu->address, sigp_sense,
151 			0, &pcpu->status) != sigp_status_stored)
152 		return 0;
153 	/* Check for stopped and check stop state */
154 	return !!(pcpu->status & 0x50);
155 }
156 
pcpu_running(struct pcpu * pcpu)157 static inline int pcpu_running(struct pcpu *pcpu)
158 {
159 	if (__pcpu_sigp(pcpu->address, sigp_sense_running,
160 			0, &pcpu->status) != sigp_status_stored)
161 		return 1;
162 	/* Check for running status */
163 	return !(pcpu->status & 0x400);
164 }
165 
166 /*
167  * Find struct pcpu by cpu address.
168  */
pcpu_find_address(const struct cpumask * mask,int address)169 static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address)
170 {
171 	int cpu;
172 
173 	for_each_cpu(cpu, mask)
174 		if (pcpu_devices[cpu].address == address)
175 			return pcpu_devices + cpu;
176 	return NULL;
177 }
178 
pcpu_ec_call(struct pcpu * pcpu,int ec_bit)179 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
180 {
181 	int order;
182 
183 	set_bit(ec_bit, &pcpu->ec_mask);
184 	order = pcpu_running(pcpu) ?
185 		sigp_external_call : sigp_emergency_signal;
186 	pcpu_sigp_retry(pcpu, order, 0);
187 }
188 
pcpu_alloc_lowcore(struct pcpu * pcpu,int cpu)189 static int __cpuinit pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
190 {
191 	struct _lowcore *lc;
192 
193 	if (pcpu != &pcpu_devices[0]) {
194 		pcpu->lowcore =	(struct _lowcore *)
195 			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
196 		pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
197 		pcpu->panic_stack = __get_free_page(GFP_KERNEL);
198 		if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack)
199 			goto out;
200 	}
201 	lc = pcpu->lowcore;
202 	memcpy(lc, &S390_lowcore, 512);
203 	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
204 	lc->async_stack = pcpu->async_stack + ASYNC_SIZE;
205 	lc->panic_stack = pcpu->panic_stack + PAGE_SIZE;
206 	lc->cpu_nr = cpu;
207 #ifndef CONFIG_64BIT
208 	if (MACHINE_HAS_IEEE) {
209 		lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL);
210 		if (!lc->extended_save_area_addr)
211 			goto out;
212 	}
213 #else
214 	if (vdso_alloc_per_cpu(lc))
215 		goto out;
216 #endif
217 	lowcore_ptr[cpu] = lc;
218 	pcpu_sigp_retry(pcpu, sigp_set_prefix, (u32)(unsigned long) lc);
219 	return 0;
220 out:
221 	if (pcpu != &pcpu_devices[0]) {
222 		free_page(pcpu->panic_stack);
223 		free_pages(pcpu->async_stack, ASYNC_ORDER);
224 		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
225 	}
226 	return -ENOMEM;
227 }
228 
pcpu_free_lowcore(struct pcpu * pcpu)229 static void pcpu_free_lowcore(struct pcpu *pcpu)
230 {
231 	pcpu_sigp_retry(pcpu, sigp_set_prefix, 0);
232 	lowcore_ptr[pcpu - pcpu_devices] = NULL;
233 #ifndef CONFIG_64BIT
234 	if (MACHINE_HAS_IEEE) {
235 		struct _lowcore *lc = pcpu->lowcore;
236 
237 		free_page((unsigned long) lc->extended_save_area_addr);
238 		lc->extended_save_area_addr = 0;
239 	}
240 #else
241 	vdso_free_per_cpu(pcpu->lowcore);
242 #endif
243 	if (pcpu != &pcpu_devices[0]) {
244 		free_page(pcpu->panic_stack);
245 		free_pages(pcpu->async_stack, ASYNC_ORDER);
246 		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
247 	}
248 }
249 
pcpu_prepare_secondary(struct pcpu * pcpu,int cpu)250 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
251 {
252 	struct _lowcore *lc = pcpu->lowcore;
253 
254 	atomic_inc(&init_mm.context.attach_count);
255 	lc->cpu_nr = cpu;
256 	lc->percpu_offset = __per_cpu_offset[cpu];
257 	lc->kernel_asce = S390_lowcore.kernel_asce;
258 	lc->machine_flags = S390_lowcore.machine_flags;
259 	lc->ftrace_func = S390_lowcore.ftrace_func;
260 	lc->user_timer = lc->system_timer = lc->steal_timer = 0;
261 	__ctl_store(lc->cregs_save_area, 0, 15);
262 	save_access_regs((unsigned int *) lc->access_regs_save_area);
263 	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
264 	       MAX_FACILITY_BIT/8);
265 }
266 
pcpu_attach_task(struct pcpu * pcpu,struct task_struct * tsk)267 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
268 {
269 	struct _lowcore *lc = pcpu->lowcore;
270 	struct thread_info *ti = task_thread_info(tsk);
271 
272 	lc->kernel_stack = (unsigned long) task_stack_page(tsk) + THREAD_SIZE;
273 	lc->thread_info = (unsigned long) task_thread_info(tsk);
274 	lc->current_task = (unsigned long) tsk;
275 	lc->user_timer = ti->user_timer;
276 	lc->system_timer = ti->system_timer;
277 	lc->steal_timer = 0;
278 }
279 
pcpu_start_fn(struct pcpu * pcpu,void (* func)(void *),void * data)280 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
281 {
282 	struct _lowcore *lc = pcpu->lowcore;
283 
284 	lc->restart_stack = lc->kernel_stack;
285 	lc->restart_fn = (unsigned long) func;
286 	lc->restart_data = (unsigned long) data;
287 	lc->restart_source = -1UL;
288 	pcpu_sigp_retry(pcpu, sigp_restart, 0);
289 }
290 
291 /*
292  * Call function via PSW restart on pcpu and stop the current cpu.
293  */
pcpu_delegate(struct pcpu * pcpu,void (* func)(void *),void * data,unsigned long stack)294 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
295 			  void *data, unsigned long stack)
296 {
297 	struct _lowcore *lc = pcpu->lowcore;
298 	unsigned short this_cpu;
299 
300 	__load_psw_mask(psw_kernel_bits);
301 	this_cpu = stap();
302 	if (pcpu->address == this_cpu)
303 		func(data);	/* should not return */
304 	/* Stop target cpu (if func returns this stops the current cpu). */
305 	pcpu_sigp_retry(pcpu, sigp_stop, 0);
306 	/* Restart func on the target cpu and stop the current cpu. */
307 	lc->restart_stack = stack;
308 	lc->restart_fn = (unsigned long) func;
309 	lc->restart_data = (unsigned long) data;
310 	lc->restart_source = (unsigned long) this_cpu;
311 	asm volatile(
312 		"0:	sigp	0,%0,6	# sigp restart to target cpu\n"
313 		"	brc	2,0b	# busy, try again\n"
314 		"1:	sigp	0,%1,5	# sigp stop to current cpu\n"
315 		"	brc	2,1b	# busy, try again\n"
316 		: : "d" (pcpu->address), "d" (this_cpu) : "0", "1", "cc");
317 	for (;;) ;
318 }
319 
320 /*
321  * Call function on an online CPU.
322  */
smp_call_online_cpu(void (* func)(void *),void * data)323 void smp_call_online_cpu(void (*func)(void *), void *data)
324 {
325 	struct pcpu *pcpu;
326 
327 	/* Use the current cpu if it is online. */
328 	pcpu = pcpu_find_address(cpu_online_mask, stap());
329 	if (!pcpu)
330 		/* Use the first online cpu. */
331 		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
332 	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
333 }
334 
335 /*
336  * Call function on the ipl CPU.
337  */
smp_call_ipl_cpu(void (* func)(void *),void * data)338 void smp_call_ipl_cpu(void (*func)(void *), void *data)
339 {
340 	pcpu_delegate(&pcpu_devices[0], func, data,
341 		      pcpu_devices->panic_stack + PAGE_SIZE);
342 }
343 
smp_find_processor_id(u16 address)344 int smp_find_processor_id(u16 address)
345 {
346 	int cpu;
347 
348 	for_each_present_cpu(cpu)
349 		if (pcpu_devices[cpu].address == address)
350 			return cpu;
351 	return -1;
352 }
353 
smp_vcpu_scheduled(int cpu)354 int smp_vcpu_scheduled(int cpu)
355 {
356 	return pcpu_running(pcpu_devices + cpu);
357 }
358 
smp_yield(void)359 void smp_yield(void)
360 {
361 	if (MACHINE_HAS_DIAG44)
362 		asm volatile("diag 0,0,0x44");
363 }
364 
smp_yield_cpu(int cpu)365 void smp_yield_cpu(int cpu)
366 {
367 	if (MACHINE_HAS_DIAG9C)
368 		asm volatile("diag %0,0,0x9c"
369 			     : : "d" (pcpu_devices[cpu].address));
370 	else if (MACHINE_HAS_DIAG44)
371 		asm volatile("diag 0,0,0x44");
372 }
373 
374 /*
375  * Send cpus emergency shutdown signal. This gives the cpus the
376  * opportunity to complete outstanding interrupts.
377  */
smp_emergency_stop(cpumask_t * cpumask)378 void smp_emergency_stop(cpumask_t *cpumask)
379 {
380 	u64 end;
381 	int cpu;
382 
383 	end = get_clock() + (1000000UL << 12);
384 	for_each_cpu(cpu, cpumask) {
385 		struct pcpu *pcpu = pcpu_devices + cpu;
386 		set_bit(ec_stop_cpu, &pcpu->ec_mask);
387 		while (__pcpu_sigp(pcpu->address, sigp_emergency_signal,
388 				   0, NULL) == sigp_busy &&
389 		       get_clock() < end)
390 			cpu_relax();
391 	}
392 	while (get_clock() < end) {
393 		for_each_cpu(cpu, cpumask)
394 			if (pcpu_stopped(pcpu_devices + cpu))
395 				cpumask_clear_cpu(cpu, cpumask);
396 		if (cpumask_empty(cpumask))
397 			break;
398 		cpu_relax();
399 	}
400 }
401 
402 /*
403  * Stop all cpus but the current one.
404  */
smp_send_stop(void)405 void smp_send_stop(void)
406 {
407 	cpumask_t cpumask;
408 	int cpu;
409 
410 	/* Disable all interrupts/machine checks */
411 	__load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
412 	trace_hardirqs_off();
413 
414 	debug_set_critical();
415 	cpumask_copy(&cpumask, cpu_online_mask);
416 	cpumask_clear_cpu(smp_processor_id(), &cpumask);
417 
418 	if (oops_in_progress)
419 		smp_emergency_stop(&cpumask);
420 
421 	/* stop all processors */
422 	for_each_cpu(cpu, &cpumask) {
423 		struct pcpu *pcpu = pcpu_devices + cpu;
424 		pcpu_sigp_retry(pcpu, sigp_stop, 0);
425 		while (!pcpu_stopped(pcpu))
426 			cpu_relax();
427 	}
428 }
429 
430 /*
431  * Stop the current cpu.
432  */
smp_stop_cpu(void)433 void smp_stop_cpu(void)
434 {
435 	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), sigp_stop, 0);
436 	for (;;) ;
437 }
438 
439 /*
440  * This is the main routine where commands issued by other
441  * cpus are handled.
442  */
do_ext_call_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)443 static void do_ext_call_interrupt(struct ext_code ext_code,
444 				  unsigned int param32, unsigned long param64)
445 {
446 	unsigned long bits;
447 	int cpu;
448 
449 	cpu = smp_processor_id();
450 	if (ext_code.code == 0x1202)
451 		kstat_cpu(cpu).irqs[EXTINT_EXC]++;
452 	else
453 		kstat_cpu(cpu).irqs[EXTINT_EMS]++;
454 	/*
455 	 * handle bit signal external calls
456 	 */
457 	bits = xchg(&pcpu_devices[cpu].ec_mask, 0);
458 
459 	if (test_bit(ec_stop_cpu, &bits))
460 		smp_stop_cpu();
461 
462 	if (test_bit(ec_schedule, &bits))
463 		scheduler_ipi();
464 
465 	if (test_bit(ec_call_function, &bits))
466 		generic_smp_call_function_interrupt();
467 
468 	if (test_bit(ec_call_function_single, &bits))
469 		generic_smp_call_function_single_interrupt();
470 
471 }
472 
arch_send_call_function_ipi_mask(const struct cpumask * mask)473 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
474 {
475 	int cpu;
476 
477 	for_each_cpu(cpu, mask)
478 		pcpu_ec_call(pcpu_devices + cpu, ec_call_function);
479 }
480 
arch_send_call_function_single_ipi(int cpu)481 void arch_send_call_function_single_ipi(int cpu)
482 {
483 	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
484 }
485 
486 #ifndef CONFIG_64BIT
487 /*
488  * this function sends a 'purge tlb' signal to another CPU.
489  */
smp_ptlb_callback(void * info)490 static void smp_ptlb_callback(void *info)
491 {
492 	__tlb_flush_local();
493 }
494 
smp_ptlb_all(void)495 void smp_ptlb_all(void)
496 {
497 	on_each_cpu(smp_ptlb_callback, NULL, 1);
498 }
499 EXPORT_SYMBOL(smp_ptlb_all);
500 #endif /* ! CONFIG_64BIT */
501 
502 /*
503  * this function sends a 'reschedule' IPI to another CPU.
504  * it goes straight through and wastes no time serializing
505  * anything. Worst case is that we lose a reschedule ...
506  */
smp_send_reschedule(int cpu)507 void smp_send_reschedule(int cpu)
508 {
509 	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
510 }
511 
512 /*
513  * parameter area for the set/clear control bit callbacks
514  */
515 struct ec_creg_mask_parms {
516 	unsigned long orval;
517 	unsigned long andval;
518 	int cr;
519 };
520 
521 /*
522  * callback for setting/clearing control bits
523  */
smp_ctl_bit_callback(void * info)524 static void smp_ctl_bit_callback(void *info)
525 {
526 	struct ec_creg_mask_parms *pp = info;
527 	unsigned long cregs[16];
528 
529 	__ctl_store(cregs, 0, 15);
530 	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
531 	__ctl_load(cregs, 0, 15);
532 }
533 
534 /*
535  * Set a bit in a control register of all cpus
536  */
smp_ctl_set_bit(int cr,int bit)537 void smp_ctl_set_bit(int cr, int bit)
538 {
539 	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
540 
541 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
542 }
543 EXPORT_SYMBOL(smp_ctl_set_bit);
544 
545 /*
546  * Clear a bit in a control register of all cpus
547  */
smp_ctl_clear_bit(int cr,int bit)548 void smp_ctl_clear_bit(int cr, int bit)
549 {
550 	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
551 
552 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
553 }
554 EXPORT_SYMBOL(smp_ctl_clear_bit);
555 
556 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP)
557 
558 struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
559 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
560 
smp_get_save_area(int cpu,u16 address)561 static void __init smp_get_save_area(int cpu, u16 address)
562 {
563 	void *lc = pcpu_devices[0].lowcore;
564 	struct save_area *save_area;
565 
566 	if (is_kdump_kernel())
567 		return;
568 	if (!OLDMEM_BASE && (address == boot_cpu_address ||
569 			     ipl_info.type != IPL_TYPE_FCP_DUMP))
570 		return;
571 	if (cpu >= NR_CPUS) {
572 		pr_warning("CPU %i exceeds the maximum %i and is excluded "
573 			   "from the dump\n", cpu, NR_CPUS - 1);
574 		return;
575 	}
576 	save_area = kmalloc(sizeof(struct save_area), GFP_KERNEL);
577 	if (!save_area)
578 		panic("could not allocate memory for save area\n");
579 	zfcpdump_save_areas[cpu] = save_area;
580 #ifdef CONFIG_CRASH_DUMP
581 	if (address == boot_cpu_address) {
582 		/* Copy the registers of the boot cpu. */
583 		copy_oldmem_page(1, (void *) save_area, sizeof(*save_area),
584 				 SAVE_AREA_BASE - PAGE_SIZE, 0);
585 		return;
586 	}
587 #endif
588 	/* Get the registers of a non-boot cpu. */
589 	__pcpu_sigp_relax(address, sigp_stop_and_store_status, 0, NULL);
590 	memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area));
591 }
592 
smp_store_status(int cpu)593 int smp_store_status(int cpu)
594 {
595 	struct pcpu *pcpu;
596 
597 	pcpu = pcpu_devices + cpu;
598 	if (__pcpu_sigp_relax(pcpu->address, sigp_stop_and_store_status,
599 			      0, NULL) != sigp_order_code_accepted)
600 		return -EIO;
601 	return 0;
602 }
603 
604 #else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
605 
smp_get_save_area(int cpu,u16 address)606 static inline void smp_get_save_area(int cpu, u16 address) { }
607 
608 #endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
609 
smp_get_cpu_info(void)610 static struct sclp_cpu_info *smp_get_cpu_info(void)
611 {
612 	static int use_sigp_detection;
613 	struct sclp_cpu_info *info;
614 	int address;
615 
616 	info = kzalloc(sizeof(*info), GFP_KERNEL);
617 	if (info && (use_sigp_detection || sclp_get_cpu_info(info))) {
618 		use_sigp_detection = 1;
619 		for (address = 0; address <= MAX_CPU_ADDRESS; address++) {
620 			if (__pcpu_sigp_relax(address, sigp_sense, 0, NULL) ==
621 			    sigp_not_operational)
622 				continue;
623 			info->cpu[info->configured].address = address;
624 			info->configured++;
625 		}
626 		info->combined = info->configured;
627 	}
628 	return info;
629 }
630 
631 static int __devinit smp_add_present_cpu(int cpu);
632 
__smp_rescan_cpus(struct sclp_cpu_info * info,int sysfs_add)633 static int __devinit __smp_rescan_cpus(struct sclp_cpu_info *info,
634 				       int sysfs_add)
635 {
636 	struct pcpu *pcpu;
637 	cpumask_t avail;
638 	int cpu, nr, i;
639 
640 	nr = 0;
641 	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
642 	cpu = cpumask_first(&avail);
643 	for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
644 		if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
645 			continue;
646 		if (pcpu_find_address(cpu_present_mask, info->cpu[i].address))
647 			continue;
648 		pcpu = pcpu_devices + cpu;
649 		pcpu->address = info->cpu[i].address;
650 		pcpu->state = (cpu >= info->configured) ?
651 			CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
652 		cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
653 		set_cpu_present(cpu, true);
654 		if (sysfs_add && smp_add_present_cpu(cpu) != 0)
655 			set_cpu_present(cpu, false);
656 		else
657 			nr++;
658 		cpu = cpumask_next(cpu, &avail);
659 	}
660 	return nr;
661 }
662 
smp_detect_cpus(void)663 static void __init smp_detect_cpus(void)
664 {
665 	unsigned int cpu, c_cpus, s_cpus;
666 	struct sclp_cpu_info *info;
667 
668 	info = smp_get_cpu_info();
669 	if (!info)
670 		panic("smp_detect_cpus failed to allocate memory\n");
671 	if (info->has_cpu_type) {
672 		for (cpu = 0; cpu < info->combined; cpu++) {
673 			if (info->cpu[cpu].address != boot_cpu_address)
674 				continue;
675 			/* The boot cpu dictates the cpu type. */
676 			boot_cpu_type = info->cpu[cpu].type;
677 			break;
678 		}
679 	}
680 	c_cpus = s_cpus = 0;
681 	for (cpu = 0; cpu < info->combined; cpu++) {
682 		if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type)
683 			continue;
684 		if (cpu < info->configured) {
685 			smp_get_save_area(c_cpus, info->cpu[cpu].address);
686 			c_cpus++;
687 		} else
688 			s_cpus++;
689 	}
690 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
691 	get_online_cpus();
692 	__smp_rescan_cpus(info, 0);
693 	put_online_cpus();
694 	kfree(info);
695 }
696 
697 /*
698  *	Activate a secondary processor.
699  */
smp_start_secondary(void * cpuvoid)700 static void __cpuinit smp_start_secondary(void *cpuvoid)
701 {
702 	S390_lowcore.last_update_clock = get_clock();
703 	S390_lowcore.restart_stack = (unsigned long) restart_stack;
704 	S390_lowcore.restart_fn = (unsigned long) do_restart;
705 	S390_lowcore.restart_data = 0;
706 	S390_lowcore.restart_source = -1UL;
707 	restore_access_regs(S390_lowcore.access_regs_save_area);
708 	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
709 	__load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
710 	cpu_init();
711 	preempt_disable();
712 	init_cpu_timer();
713 	init_cpu_vtimer();
714 	pfault_init();
715 	notify_cpu_starting(smp_processor_id());
716 	ipi_call_lock();
717 	set_cpu_online(smp_processor_id(), true);
718 	ipi_call_unlock();
719 	local_irq_enable();
720 	/* cpu_idle will call schedule for us */
721 	cpu_idle();
722 }
723 
724 struct create_idle {
725 	struct work_struct work;
726 	struct task_struct *idle;
727 	struct completion done;
728 	int cpu;
729 };
730 
smp_fork_idle(struct work_struct * work)731 static void __cpuinit smp_fork_idle(struct work_struct *work)
732 {
733 	struct create_idle *c_idle;
734 
735 	c_idle = container_of(work, struct create_idle, work);
736 	c_idle->idle = fork_idle(c_idle->cpu);
737 	complete(&c_idle->done);
738 }
739 
740 /* Upping and downing of CPUs */
__cpu_up(unsigned int cpu)741 int __cpuinit __cpu_up(unsigned int cpu)
742 {
743 	struct create_idle c_idle;
744 	struct pcpu *pcpu;
745 	int rc;
746 
747 	pcpu = pcpu_devices + cpu;
748 	if (pcpu->state != CPU_STATE_CONFIGURED)
749 		return -EIO;
750 	if (pcpu_sigp_retry(pcpu, sigp_initial_cpu_reset, 0) !=
751 	    sigp_order_code_accepted)
752 		return -EIO;
753 	if (!pcpu->idle) {
754 		c_idle.done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done);
755 		INIT_WORK_ONSTACK(&c_idle.work, smp_fork_idle);
756 		c_idle.cpu = cpu;
757 		schedule_work(&c_idle.work);
758 		wait_for_completion(&c_idle.done);
759 		if (IS_ERR(c_idle.idle))
760 			return PTR_ERR(c_idle.idle);
761 		pcpu->idle = c_idle.idle;
762 	}
763 	init_idle(pcpu->idle, cpu);
764 	rc = pcpu_alloc_lowcore(pcpu, cpu);
765 	if (rc)
766 		return rc;
767 	pcpu_prepare_secondary(pcpu, cpu);
768 	pcpu_attach_task(pcpu, pcpu->idle);
769 	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
770 	while (!cpu_online(cpu))
771 		cpu_relax();
772 	return 0;
773 }
774 
setup_possible_cpus(char * s)775 static int __init setup_possible_cpus(char *s)
776 {
777 	int max, cpu;
778 
779 	if (kstrtoint(s, 0, &max) < 0)
780 		return 0;
781 	init_cpu_possible(cpumask_of(0));
782 	for (cpu = 1; cpu < max && cpu < nr_cpu_ids; cpu++)
783 		set_cpu_possible(cpu, true);
784 	return 0;
785 }
786 early_param("possible_cpus", setup_possible_cpus);
787 
788 #ifdef CONFIG_HOTPLUG_CPU
789 
__cpu_disable(void)790 int __cpu_disable(void)
791 {
792 	unsigned long cregs[16];
793 
794 	set_cpu_online(smp_processor_id(), false);
795 	/* Disable pseudo page faults on this cpu. */
796 	pfault_fini();
797 	/* Disable interrupt sources via control register. */
798 	__ctl_store(cregs, 0, 15);
799 	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
800 	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
801 	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
802 	__ctl_load(cregs, 0, 15);
803 	return 0;
804 }
805 
__cpu_die(unsigned int cpu)806 void __cpu_die(unsigned int cpu)
807 {
808 	struct pcpu *pcpu;
809 
810 	/* Wait until target cpu is down */
811 	pcpu = pcpu_devices + cpu;
812 	while (!pcpu_stopped(pcpu))
813 		cpu_relax();
814 	pcpu_free_lowcore(pcpu);
815 	atomic_dec(&init_mm.context.attach_count);
816 }
817 
cpu_die(void)818 void __noreturn cpu_die(void)
819 {
820 	idle_task_exit();
821 	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), sigp_stop, 0);
822 	for (;;) ;
823 }
824 
825 #endif /* CONFIG_HOTPLUG_CPU */
826 
smp_call_os_info_init_fn(void)827 static void smp_call_os_info_init_fn(void)
828 {
829 	int (*init_fn)(void);
830 	unsigned long size;
831 
832 	init_fn = os_info_old_entry(OS_INFO_INIT_FN, &size);
833 	if (!init_fn)
834 		return;
835 	init_fn();
836 }
837 
smp_prepare_cpus(unsigned int max_cpus)838 void __init smp_prepare_cpus(unsigned int max_cpus)
839 {
840 	/* request the 0x1201 emergency signal external interrupt */
841 	if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
842 		panic("Couldn't request external interrupt 0x1201");
843 	/* request the 0x1202 external call external interrupt */
844 	if (register_external_interrupt(0x1202, do_ext_call_interrupt) != 0)
845 		panic("Couldn't request external interrupt 0x1202");
846 	smp_call_os_info_init_fn();
847 	smp_detect_cpus();
848 }
849 
smp_prepare_boot_cpu(void)850 void __init smp_prepare_boot_cpu(void)
851 {
852 	struct pcpu *pcpu = pcpu_devices;
853 
854 	boot_cpu_address = stap();
855 	pcpu->idle = current;
856 	pcpu->state = CPU_STATE_CONFIGURED;
857 	pcpu->address = boot_cpu_address;
858 	pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
859 	pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE;
860 	pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE;
861 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
862 	cpu_set_polarization(0, POLARIZATION_UNKNOWN);
863 	set_cpu_present(0, true);
864 	set_cpu_online(0, true);
865 }
866 
smp_cpus_done(unsigned int max_cpus)867 void __init smp_cpus_done(unsigned int max_cpus)
868 {
869 }
870 
smp_setup_processor_id(void)871 void __init smp_setup_processor_id(void)
872 {
873 	S390_lowcore.cpu_nr = 0;
874 }
875 
876 /*
877  * the frequency of the profiling timer can be changed
878  * by writing a multiplier value into /proc/profile.
879  *
880  * usually you want to run this on all CPUs ;)
881  */
setup_profiling_timer(unsigned int multiplier)882 int setup_profiling_timer(unsigned int multiplier)
883 {
884 	return 0;
885 }
886 
887 #ifdef CONFIG_HOTPLUG_CPU
cpu_configure_show(struct device * dev,struct device_attribute * attr,char * buf)888 static ssize_t cpu_configure_show(struct device *dev,
889 				  struct device_attribute *attr, char *buf)
890 {
891 	ssize_t count;
892 
893 	mutex_lock(&smp_cpu_state_mutex);
894 	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
895 	mutex_unlock(&smp_cpu_state_mutex);
896 	return count;
897 }
898 
cpu_configure_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)899 static ssize_t cpu_configure_store(struct device *dev,
900 				   struct device_attribute *attr,
901 				   const char *buf, size_t count)
902 {
903 	struct pcpu *pcpu;
904 	int cpu, val, rc;
905 	char delim;
906 
907 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
908 		return -EINVAL;
909 	if (val != 0 && val != 1)
910 		return -EINVAL;
911 	get_online_cpus();
912 	mutex_lock(&smp_cpu_state_mutex);
913 	rc = -EBUSY;
914 	/* disallow configuration changes of online cpus and cpu 0 */
915 	cpu = dev->id;
916 	if (cpu_online(cpu) || cpu == 0)
917 		goto out;
918 	pcpu = pcpu_devices + cpu;
919 	rc = 0;
920 	switch (val) {
921 	case 0:
922 		if (pcpu->state != CPU_STATE_CONFIGURED)
923 			break;
924 		rc = sclp_cpu_deconfigure(pcpu->address);
925 		if (rc)
926 			break;
927 		pcpu->state = CPU_STATE_STANDBY;
928 		cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
929 		topology_expect_change();
930 		break;
931 	case 1:
932 		if (pcpu->state != CPU_STATE_STANDBY)
933 			break;
934 		rc = sclp_cpu_configure(pcpu->address);
935 		if (rc)
936 			break;
937 		pcpu->state = CPU_STATE_CONFIGURED;
938 		cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
939 		topology_expect_change();
940 		break;
941 	default:
942 		break;
943 	}
944 out:
945 	mutex_unlock(&smp_cpu_state_mutex);
946 	put_online_cpus();
947 	return rc ? rc : count;
948 }
949 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
950 #endif /* CONFIG_HOTPLUG_CPU */
951 
show_cpu_address(struct device * dev,struct device_attribute * attr,char * buf)952 static ssize_t show_cpu_address(struct device *dev,
953 				struct device_attribute *attr, char *buf)
954 {
955 	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
956 }
957 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
958 
959 static struct attribute *cpu_common_attrs[] = {
960 #ifdef CONFIG_HOTPLUG_CPU
961 	&dev_attr_configure.attr,
962 #endif
963 	&dev_attr_address.attr,
964 	NULL,
965 };
966 
967 static struct attribute_group cpu_common_attr_group = {
968 	.attrs = cpu_common_attrs,
969 };
970 
show_capability(struct device * dev,struct device_attribute * attr,char * buf)971 static ssize_t show_capability(struct device *dev,
972 				struct device_attribute *attr, char *buf)
973 {
974 	unsigned int capability;
975 	int rc;
976 
977 	rc = get_cpu_capability(&capability);
978 	if (rc)
979 		return rc;
980 	return sprintf(buf, "%u\n", capability);
981 }
982 static DEVICE_ATTR(capability, 0444, show_capability, NULL);
983 
show_idle_count(struct device * dev,struct device_attribute * attr,char * buf)984 static ssize_t show_idle_count(struct device *dev,
985 				struct device_attribute *attr, char *buf)
986 {
987 	struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
988 	unsigned long long idle_count;
989 	unsigned int sequence;
990 
991 	do {
992 		sequence = ACCESS_ONCE(idle->sequence);
993 		idle_count = ACCESS_ONCE(idle->idle_count);
994 		if (ACCESS_ONCE(idle->idle_enter))
995 			idle_count++;
996 	} while ((sequence & 1) || (idle->sequence != sequence));
997 	return sprintf(buf, "%llu\n", idle_count);
998 }
999 static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL);
1000 
show_idle_time(struct device * dev,struct device_attribute * attr,char * buf)1001 static ssize_t show_idle_time(struct device *dev,
1002 				struct device_attribute *attr, char *buf)
1003 {
1004 	struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
1005 	unsigned long long now, idle_time, idle_enter, idle_exit;
1006 	unsigned int sequence;
1007 
1008 	do {
1009 		now = get_clock();
1010 		sequence = ACCESS_ONCE(idle->sequence);
1011 		idle_time = ACCESS_ONCE(idle->idle_time);
1012 		idle_enter = ACCESS_ONCE(idle->idle_enter);
1013 		idle_exit = ACCESS_ONCE(idle->idle_exit);
1014 	} while ((sequence & 1) || (idle->sequence != sequence));
1015 	idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0;
1016 	return sprintf(buf, "%llu\n", idle_time >> 12);
1017 }
1018 static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL);
1019 
1020 static struct attribute *cpu_online_attrs[] = {
1021 	&dev_attr_capability.attr,
1022 	&dev_attr_idle_count.attr,
1023 	&dev_attr_idle_time_us.attr,
1024 	NULL,
1025 };
1026 
1027 static struct attribute_group cpu_online_attr_group = {
1028 	.attrs = cpu_online_attrs,
1029 };
1030 
smp_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)1031 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
1032 				    unsigned long action, void *hcpu)
1033 {
1034 	unsigned int cpu = (unsigned int)(long)hcpu;
1035 	struct cpu *c = &pcpu_devices[cpu].cpu;
1036 	struct device *s = &c->dev;
1037 	int err = 0;
1038 
1039 	switch (action) {
1040 	case CPU_ONLINE:
1041 	case CPU_ONLINE_FROZEN:
1042 		err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1043 		break;
1044 	case CPU_DEAD:
1045 	case CPU_DEAD_FROZEN:
1046 		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1047 		break;
1048 	}
1049 	return notifier_from_errno(err);
1050 }
1051 
1052 static struct notifier_block __cpuinitdata smp_cpu_nb = {
1053 	.notifier_call = smp_cpu_notify,
1054 };
1055 
smp_add_present_cpu(int cpu)1056 static int __devinit smp_add_present_cpu(int cpu)
1057 {
1058 	struct cpu *c = &pcpu_devices[cpu].cpu;
1059 	struct device *s = &c->dev;
1060 	int rc;
1061 
1062 	c->hotpluggable = 1;
1063 	rc = register_cpu(c, cpu);
1064 	if (rc)
1065 		goto out;
1066 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1067 	if (rc)
1068 		goto out_cpu;
1069 	if (cpu_online(cpu)) {
1070 		rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1071 		if (rc)
1072 			goto out_online;
1073 	}
1074 	rc = topology_cpu_init(c);
1075 	if (rc)
1076 		goto out_topology;
1077 	return 0;
1078 
1079 out_topology:
1080 	if (cpu_online(cpu))
1081 		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1082 out_online:
1083 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1084 out_cpu:
1085 #ifdef CONFIG_HOTPLUG_CPU
1086 	unregister_cpu(c);
1087 #endif
1088 out:
1089 	return rc;
1090 }
1091 
1092 #ifdef CONFIG_HOTPLUG_CPU
1093 
smp_rescan_cpus(void)1094 int __ref smp_rescan_cpus(void)
1095 {
1096 	struct sclp_cpu_info *info;
1097 	int nr;
1098 
1099 	info = smp_get_cpu_info();
1100 	if (!info)
1101 		return -ENOMEM;
1102 	get_online_cpus();
1103 	mutex_lock(&smp_cpu_state_mutex);
1104 	nr = __smp_rescan_cpus(info, 1);
1105 	mutex_unlock(&smp_cpu_state_mutex);
1106 	put_online_cpus();
1107 	kfree(info);
1108 	if (nr)
1109 		topology_schedule_update();
1110 	return 0;
1111 }
1112 
rescan_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1113 static ssize_t __ref rescan_store(struct device *dev,
1114 				  struct device_attribute *attr,
1115 				  const char *buf,
1116 				  size_t count)
1117 {
1118 	int rc;
1119 
1120 	rc = smp_rescan_cpus();
1121 	return rc ? rc : count;
1122 }
1123 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1124 #endif /* CONFIG_HOTPLUG_CPU */
1125 
s390_smp_init(void)1126 static int __init s390_smp_init(void)
1127 {
1128 	int cpu, rc;
1129 
1130 	register_cpu_notifier(&smp_cpu_nb);
1131 #ifdef CONFIG_HOTPLUG_CPU
1132 	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1133 	if (rc)
1134 		return rc;
1135 #endif
1136 	for_each_present_cpu(cpu) {
1137 		rc = smp_add_present_cpu(cpu);
1138 		if (rc)
1139 			return rc;
1140 	}
1141 	return 0;
1142 }
1143 subsys_initcall(s390_smp_init);
1144