1 #ifndef _IDE_TIMING_H
2 #define _IDE_TIMING_H
3
4 /*
5 * $Id: ide-timing.h,v 1.6 2001/12/23 22:47:56 vojtech Exp $
6 *
7 * Copyright (c) 1999-2001 Vojtech Pavlik
8 */
9
10 /*
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 *
25 * Should you need to contact me, the author, you can do so either by
26 * e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail:
27 * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic
28 */
29
30 #include <linux/hdreg.h>
31
32 #define XFER_PIO_5 0x0d
33 #define XFER_UDMA_SLOW 0x4f
34
35 struct ide_timing {
36 short mode;
37 short setup; /* t1 */
38 short act8b; /* t2 for 8-bit io */
39 short rec8b; /* t2i for 8-bit io */
40 short cyc8b; /* t0 for 8-bit io */
41 short active; /* t2 or tD */
42 short recover; /* t2i or tK */
43 short cycle; /* t0 */
44 short udma; /* t2CYCTYP/2 */
45 };
46
47 /*
48 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
49 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
50 * for PIO 5, which is a nonstandard extension and UDMA6, which
51 * is currently supported only by Maxtor drives.
52 */
53
54 static struct ide_timing ide_timing[] = {
55
56 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
57 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
58 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
59 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
60
61 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
62 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
63 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
64
65 { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 },
66
67 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
68 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
69 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
70
71 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
72 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
73 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
74
75 { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 },
76 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
77 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
78
79 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
80 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
81 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
82
83 { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 },
84
85 { -1 }
86 };
87
88 #define IDE_TIMING_SETUP 0x01
89 #define IDE_TIMING_ACT8B 0x02
90 #define IDE_TIMING_REC8B 0x04
91 #define IDE_TIMING_CYC8B 0x08
92 #define IDE_TIMING_8BIT 0x0e
93 #define IDE_TIMING_ACTIVE 0x10
94 #define IDE_TIMING_RECOVER 0x20
95 #define IDE_TIMING_CYCLE 0x40
96 #define IDE_TIMING_UDMA 0x80
97 #define IDE_TIMING_ALL 0xff
98
99 #define MIN(a,b) ((a)<(b)?(a):(b))
100 #define MAX(a,b) ((a)>(b)?(a):(b))
101 #define FIT(v,min,max) MAX(MIN(v,max),min)
102 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
103 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
104
105 #define XFER_MODE 0xf0
106 #define XFER_UDMA_133 0x48
107 #define XFER_UDMA_100 0x44
108 #define XFER_UDMA_66 0x42
109 #define XFER_UDMA 0x40
110 #define XFER_MWDMA 0x20
111 #define XFER_SWDMA 0x10
112 #define XFER_EPIO 0x01
113 #define XFER_PIO 0x00
114
ide_find_best_mode(ide_drive_t * drive,int map)115 static short ide_find_best_mode(ide_drive_t *drive, int map)
116 {
117 struct hd_driveid *id = drive->id;
118 short best = 0;
119
120 if (!id)
121 return XFER_PIO_SLOW;
122
123 if ((map & XFER_UDMA) && (id->field_valid & 4)) { /* Want UDMA and UDMA bitmap valid */
124
125 if ((map & XFER_UDMA_133) == XFER_UDMA_133)
126 if ((best = (id->dma_ultra & 0x0040) ? XFER_UDMA_6 : 0)) return best;
127
128 if ((map & XFER_UDMA_100) == XFER_UDMA_100)
129 if ((best = (id->dma_ultra & 0x0020) ? XFER_UDMA_5 : 0)) return best;
130
131 if ((map & XFER_UDMA_66) == XFER_UDMA_66)
132 if ((best = (id->dma_ultra & 0x0010) ? XFER_UDMA_4 :
133 (id->dma_ultra & 0x0008) ? XFER_UDMA_3 : 0)) return best;
134
135 if ((best = (id->dma_ultra & 0x0004) ? XFER_UDMA_2 :
136 (id->dma_ultra & 0x0002) ? XFER_UDMA_1 :
137 (id->dma_ultra & 0x0001) ? XFER_UDMA_0 : 0)) return best;
138 }
139
140 if ((map & XFER_MWDMA) && (id->field_valid & 2)) { /* Want MWDMA and drive has EIDE fields */
141
142 if ((best = (id->dma_mword & 0x0004) ? XFER_MW_DMA_2 :
143 (id->dma_mword & 0x0002) ? XFER_MW_DMA_1 :
144 (id->dma_mword & 0x0001) ? XFER_MW_DMA_0 : 0)) return best;
145 }
146
147 if (map & XFER_SWDMA) { /* Want SWDMA */
148
149 if (id->field_valid & 2) { /* EIDE SWDMA */
150
151 if ((best = (id->dma_1word & 0x0004) ? XFER_SW_DMA_2 :
152 (id->dma_1word & 0x0002) ? XFER_SW_DMA_1 :
153 (id->dma_1word & 0x0001) ? XFER_SW_DMA_0 : 0)) return best;
154 }
155
156 if (id->capability & 1) { /* Pre-EIDE style SWDMA */
157
158 if ((best = (id->tDMA == 2) ? XFER_SW_DMA_2 :
159 (id->tDMA == 1) ? XFER_SW_DMA_1 :
160 (id->tDMA == 0) ? XFER_SW_DMA_0 : 0)) return best;
161 }
162 }
163
164
165 if ((map & XFER_EPIO) && (id->field_valid & 2)) { /* EIDE PIO modes */
166
167 if ((best = (drive->id->eide_pio_modes & 4) ? XFER_PIO_5 :
168 (drive->id->eide_pio_modes & 2) ? XFER_PIO_4 :
169 (drive->id->eide_pio_modes & 1) ? XFER_PIO_3 : 0)) return best;
170 }
171
172 return (drive->id->tPIO == 2) ? XFER_PIO_2 :
173 (drive->id->tPIO == 1) ? XFER_PIO_1 :
174 (drive->id->tPIO == 0) ? XFER_PIO_0 : XFER_PIO_SLOW;
175 }
176
ide_timing_quantize(struct ide_timing * t,struct ide_timing * q,int T,int UT)177 static void ide_timing_quantize(struct ide_timing *t, struct ide_timing *q, int T, int UT)
178 {
179 q->setup = EZ(t->setup * 1000, T);
180 q->act8b = EZ(t->act8b * 1000, T);
181 q->rec8b = EZ(t->rec8b * 1000, T);
182 q->cyc8b = EZ(t->cyc8b * 1000, T);
183 q->active = EZ(t->active * 1000, T);
184 q->recover = EZ(t->recover * 1000, T);
185 q->cycle = EZ(t->cycle * 1000, T);
186 q->udma = EZ(t->udma * 1000, UT);
187 }
188
ide_timing_merge(struct ide_timing * a,struct ide_timing * b,struct ide_timing * m,unsigned int what)189 static void ide_timing_merge(struct ide_timing *a, struct ide_timing *b, struct ide_timing *m, unsigned int what)
190 {
191 if (what & IDE_TIMING_SETUP ) m->setup = MAX(a->setup, b->setup);
192 if (what & IDE_TIMING_ACT8B ) m->act8b = MAX(a->act8b, b->act8b);
193 if (what & IDE_TIMING_REC8B ) m->rec8b = MAX(a->rec8b, b->rec8b);
194 if (what & IDE_TIMING_CYC8B ) m->cyc8b = MAX(a->cyc8b, b->cyc8b);
195 if (what & IDE_TIMING_ACTIVE ) m->active = MAX(a->active, b->active);
196 if (what & IDE_TIMING_RECOVER) m->recover = MAX(a->recover, b->recover);
197 if (what & IDE_TIMING_CYCLE ) m->cycle = MAX(a->cycle, b->cycle);
198 if (what & IDE_TIMING_UDMA ) m->udma = MAX(a->udma, b->udma);
199 }
200
ide_timing_find_mode(short speed)201 static struct ide_timing* ide_timing_find_mode(short speed)
202 {
203 struct ide_timing *t;
204
205 for (t = ide_timing; t->mode != speed; t++)
206 if (t->mode < 0)
207 return NULL;
208 return t;
209 }
210
ide_timing_compute(ide_drive_t * drive,short speed,struct ide_timing * t,int T,int UT)211 static int ide_timing_compute(ide_drive_t *drive, short speed, struct ide_timing *t, int T, int UT)
212 {
213 struct hd_driveid *id = drive->id;
214 struct ide_timing *s, p;
215
216 /*
217 * Find the mode.
218 */
219
220 if (!(s = ide_timing_find_mode(speed)))
221 return -EINVAL;
222
223 /*
224 * If the drive is an EIDE drive, it can tell us it needs extended
225 * PIO/MWDMA cycle timing.
226 */
227
228 if (id && id->field_valid & 2) { /* EIDE drive */
229
230 memset(&p, 0, sizeof(p));
231
232 switch (speed & XFER_MODE) {
233
234 case XFER_PIO:
235 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = id->eide_pio;
236 else p.cycle = p.cyc8b = id->eide_pio_iordy;
237 break;
238
239 case XFER_MWDMA:
240 p.cycle = id->eide_dma_min;
241 break;
242 }
243
244 ide_timing_merge(&p, t, t, IDE_TIMING_CYCLE | IDE_TIMING_CYC8B);
245 }
246
247 /*
248 * Convert the timing to bus clock counts.
249 */
250
251 ide_timing_quantize(s, t, T, UT);
252
253 /*
254 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
255 * and some other commands. We have to ensure that the DMA cycle timing is
256 * slower/equal than the fastest PIO timing.
257 */
258
259 if ((speed & XFER_MODE) != XFER_PIO) {
260 ide_timing_compute(drive, ide_find_best_mode(drive, XFER_PIO | XFER_EPIO), &p, T, UT);
261 ide_timing_merge(&p, t, t, IDE_TIMING_ALL);
262 }
263
264 /*
265 * Lenghten active & recovery time so that cycle time is correct.
266 */
267
268 if (t->act8b + t->rec8b < t->cyc8b) {
269 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
270 t->rec8b = t->cyc8b - t->act8b;
271 }
272
273 if (t->active + t->recover < t->cycle) {
274 t->active += (t->cycle - (t->active + t->recover)) / 2;
275 t->recover = t->cycle - t->active;
276 }
277
278 return 0;
279 }
280
281 #endif
282