1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2 
3 #include <errno.h>
4 #include <fcntl.h>
5 #include <linux/btrfs.h>
6 #include <linux/fs.h>
7 #include <linux/magic.h>
8 #include <sys/ioctl.h>
9 #include <sys/resource.h>
10 #include <sys/stat.h>
11 #include <unistd.h>
12 
13 #include "alloc-util.h"
14 #include "dirent-util.h"
15 #include "fd-util.h"
16 #include "fileio.h"
17 #include "fs-util.h"
18 #include "io-util.h"
19 #include "macro.h"
20 #include "missing_fcntl.h"
21 #include "missing_fs.h"
22 #include "missing_syscall.h"
23 #include "parse-util.h"
24 #include "path-util.h"
25 #include "process-util.h"
26 #include "socket-util.h"
27 #include "sort-util.h"
28 #include "stat-util.h"
29 #include "stdio-util.h"
30 #include "tmpfile-util.h"
31 #include "util.h"
32 
33 /* The maximum number of iterations in the loop to close descriptors in the fallback case
34  * when /proc/self/fd/ is inaccessible. */
35 #define MAX_FD_LOOP_LIMIT (1024*1024)
36 
close_nointr(int fd)37 int close_nointr(int fd) {
38         assert(fd >= 0);
39 
40         if (close(fd) >= 0)
41                 return 0;
42 
43         /*
44          * Just ignore EINTR; a retry loop is the wrong thing to do on
45          * Linux.
46          *
47          * http://lkml.indiana.edu/hypermail/linux/kernel/0509.1/0877.html
48          * https://bugzilla.gnome.org/show_bug.cgi?id=682819
49          * http://utcc.utoronto.ca/~cks/space/blog/unix/CloseEINTR
50          * https://sites.google.com/site/michaelsafyan/software-engineering/checkforeintrwheninvokingclosethinkagain
51          */
52         if (errno == EINTR)
53                 return 0;
54 
55         return -errno;
56 }
57 
safe_close(int fd)58 int safe_close(int fd) {
59 
60         /*
61          * Like close_nointr() but cannot fail. Guarantees errno is
62          * unchanged. Is a NOP with negative fds passed, and returns
63          * -1, so that it can be used in this syntax:
64          *
65          * fd = safe_close(fd);
66          */
67 
68         if (fd >= 0) {
69                 PROTECT_ERRNO;
70 
71                 /* The kernel might return pretty much any error code
72                  * via close(), but the fd will be closed anyway. The
73                  * only condition we want to check for here is whether
74                  * the fd was invalid at all... */
75 
76                 assert_se(close_nointr(fd) != -EBADF);
77         }
78 
79         return -1;
80 }
81 
safe_close_pair(int p[static2])82 void safe_close_pair(int p[static 2]) {
83         assert(p);
84 
85         if (p[0] == p[1]) {
86                 /* Special case pairs which use the same fd in both
87                  * directions... */
88                 p[0] = p[1] = safe_close(p[0]);
89                 return;
90         }
91 
92         p[0] = safe_close(p[0]);
93         p[1] = safe_close(p[1]);
94 }
95 
close_many(const int fds[],size_t n_fd)96 void close_many(const int fds[], size_t n_fd) {
97         assert(fds || n_fd <= 0);
98 
99         for (size_t i = 0; i < n_fd; i++)
100                 safe_close(fds[i]);
101 }
102 
fclose_nointr(FILE * f)103 int fclose_nointr(FILE *f) {
104         assert(f);
105 
106         /* Same as close_nointr(), but for fclose() */
107 
108         errno = 0; /* Extra safety: if the FILE* object is not encapsulating an fd, it might not set errno
109                     * correctly. Let's hence initialize it to zero first, so that we aren't confused by any
110                     * prior errno here */
111         if (fclose(f) == 0)
112                 return 0;
113 
114         if (errno == EINTR)
115                 return 0;
116 
117         return errno_or_else(EIO);
118 }
119 
safe_fclose(FILE * f)120 FILE* safe_fclose(FILE *f) {
121 
122         /* Same as safe_close(), but for fclose() */
123 
124         if (f) {
125                 PROTECT_ERRNO;
126 
127                 assert_se(fclose_nointr(f) != -EBADF);
128         }
129 
130         return NULL;
131 }
132 
safe_closedir(DIR * d)133 DIR* safe_closedir(DIR *d) {
134 
135         if (d) {
136                 PROTECT_ERRNO;
137 
138                 assert_se(closedir(d) >= 0 || errno != EBADF);
139         }
140 
141         return NULL;
142 }
143 
fd_nonblock(int fd,bool nonblock)144 int fd_nonblock(int fd, bool nonblock) {
145         int flags, nflags;
146 
147         assert(fd >= 0);
148 
149         flags = fcntl(fd, F_GETFL, 0);
150         if (flags < 0)
151                 return -errno;
152 
153         nflags = UPDATE_FLAG(flags, O_NONBLOCK, nonblock);
154         if (nflags == flags)
155                 return 0;
156 
157         return RET_NERRNO(fcntl(fd, F_SETFL, nflags));
158 }
159 
fd_cloexec(int fd,bool cloexec)160 int fd_cloexec(int fd, bool cloexec) {
161         int flags, nflags;
162 
163         assert(fd >= 0);
164 
165         flags = fcntl(fd, F_GETFD, 0);
166         if (flags < 0)
167                 return -errno;
168 
169         nflags = UPDATE_FLAG(flags, FD_CLOEXEC, cloexec);
170         if (nflags == flags)
171                 return 0;
172 
173         return RET_NERRNO(fcntl(fd, F_SETFD, nflags));
174 }
175 
fd_in_set(int fd,const int fdset[],size_t n_fdset)176 _pure_ static bool fd_in_set(int fd, const int fdset[], size_t n_fdset) {
177         assert(n_fdset == 0 || fdset);
178 
179         for (size_t i = 0; i < n_fdset; i++)
180                 if (fdset[i] == fd)
181                         return true;
182 
183         return false;
184 }
185 
get_max_fd(void)186 int get_max_fd(void) {
187         struct rlimit rl;
188         rlim_t m;
189 
190         /* Return the highest possible fd, based RLIMIT_NOFILE, but enforcing FD_SETSIZE-1 as lower boundary
191          * and INT_MAX as upper boundary. */
192 
193         if (getrlimit(RLIMIT_NOFILE, &rl) < 0)
194                 return -errno;
195 
196         m = MAX(rl.rlim_cur, rl.rlim_max);
197         if (m < FD_SETSIZE) /* Let's always cover at least 1024 fds */
198                 return FD_SETSIZE-1;
199 
200         if (m == RLIM_INFINITY || m > INT_MAX) /* Saturate on overflow. After all fds are "int", hence can
201                                                 * never be above INT_MAX */
202                 return INT_MAX;
203 
204         return (int) (m - 1);
205 }
206 
close_all_fds_frugal(const int except[],size_t n_except)207 static int close_all_fds_frugal(const int except[], size_t n_except) {
208         int max_fd, r = 0;
209 
210         assert(n_except == 0 || except);
211 
212         /* This is the inner fallback core of close_all_fds(). This never calls malloc() or opendir() or so
213          * and hence is safe to be called in signal handler context. Most users should call close_all_fds(),
214          * but when we assume we are called from signal handler context, then use this simpler call
215          * instead. */
216 
217         max_fd = get_max_fd();
218         if (max_fd < 0)
219                 return max_fd;
220 
221         /* Refuse to do the loop over more too many elements. It's better to fail immediately than to
222          * spin the CPU for a long time. */
223         if (max_fd > MAX_FD_LOOP_LIMIT)
224                 return log_debug_errno(SYNTHETIC_ERRNO(EPERM),
225                                        "Refusing to loop over %d potential fds.",
226                                        max_fd);
227 
228         for (int fd = 3; fd >= 0; fd = fd < max_fd ? fd + 1 : -1) {
229                 int q;
230 
231                 if (fd_in_set(fd, except, n_except))
232                         continue;
233 
234                 q = close_nointr(fd);
235                 if (q < 0 && q != -EBADF && r >= 0)
236                         r = q;
237         }
238 
239         return r;
240 }
241 
242 static bool have_close_range = true; /* Assume we live in the future */
243 
close_all_fds_special_case(const int except[],size_t n_except)244 static int close_all_fds_special_case(const int except[], size_t n_except) {
245         assert(n_except == 0 || except);
246 
247         /* Handles a few common special cases separately, since they are common and can be optimized really
248          * nicely, since we won't need sorting for them. Returns > 0 if the special casing worked, 0
249          * otherwise. */
250 
251         if (!have_close_range)
252                 return 0;
253 
254         switch (n_except) {
255 
256         case 0:
257                 /* Close everything. Yay! */
258 
259                 if (close_range(3, -1, 0) >= 0)
260                         return 1;
261 
262                 if (ERRNO_IS_NOT_SUPPORTED(errno) || ERRNO_IS_PRIVILEGE(errno)) {
263                         have_close_range = false;
264                         return 0;
265                 }
266 
267                 return -errno;
268 
269         case 1:
270                 /* Close all but exactly one, then we don't need no sorting. This is a pretty common
271                  * case, hence let's handle it specially. */
272 
273                 if ((except[0] <= 3 || close_range(3, except[0]-1, 0) >= 0) &&
274                     (except[0] >= INT_MAX || close_range(MAX(3, except[0]+1), -1, 0) >= 0))
275                         return 1;
276 
277                 if (ERRNO_IS_NOT_SUPPORTED(errno) || ERRNO_IS_PRIVILEGE(errno)) {
278                         have_close_range = false;
279                         return 0;
280                 }
281 
282                 return -errno;
283 
284         default:
285                 return 0;
286         }
287 }
288 
close_all_fds_without_malloc(const int except[],size_t n_except)289 int close_all_fds_without_malloc(const int except[], size_t n_except) {
290         int r;
291 
292         assert(n_except == 0 || except);
293 
294         r = close_all_fds_special_case(except, n_except);
295         if (r < 0)
296                 return r;
297         if (r > 0) /* special case worked! */
298                 return 0;
299 
300         return close_all_fds_frugal(except, n_except);
301 }
302 
close_all_fds(const int except[],size_t n_except)303 int close_all_fds(const int except[], size_t n_except) {
304         _cleanup_closedir_ DIR *d = NULL;
305         int r = 0;
306 
307         assert(n_except == 0 || except);
308 
309         r = close_all_fds_special_case(except, n_except);
310         if (r < 0)
311                 return r;
312         if (r > 0) /* special case worked! */
313                 return 0;
314 
315         if (have_close_range) {
316                 _cleanup_free_ int *sorted_malloc = NULL;
317                 size_t n_sorted;
318                 int *sorted;
319 
320                 /* In the best case we have close_range() to close all fds between a start and an end fd,
321                  * which we can use on the "inverted" exception array, i.e. all intervals between all
322                  * adjacent pairs from the sorted exception array. This changes loop complexity from O(n)
323                  * where n is number of open fds to O(m⋅log(m)) where m is the number of fds to keep
324                  * open. Given that we assume n ≫ m that's preferable to us. */
325 
326                 assert(n_except < SIZE_MAX);
327                 n_sorted = n_except + 1;
328 
329                 if (n_sorted > 64) /* Use heap for large numbers of fds, stack otherwise */
330                         sorted = sorted_malloc = new(int, n_sorted);
331                 else
332                         sorted = newa(int, n_sorted);
333 
334                 if (sorted) {
335                         memcpy(sorted, except, n_except * sizeof(int));
336 
337                         /* Let's add fd 2 to the list of fds, to simplify the loop below, as this
338                          * allows us to cover the head of the array the same way as the body */
339                         sorted[n_sorted-1] = 2;
340 
341                         typesafe_qsort(sorted, n_sorted, cmp_int);
342 
343                         for (size_t i = 0; i < n_sorted-1; i++) {
344                                 int start, end;
345 
346                                 start = MAX(sorted[i], 2); /* The first three fds shall always remain open */
347                                 end = MAX(sorted[i+1], 2);
348 
349                                 assert(end >= start);
350 
351                                 if (end - start <= 1)
352                                         continue;
353 
354                                 /* Close everything between the start and end fds (both of which shall stay open) */
355                                 if (close_range(start + 1, end - 1, 0) < 0) {
356                                         if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno))
357                                                 return -errno;
358 
359                                         have_close_range = false;
360                                         break;
361                                 }
362                         }
363 
364                         if (have_close_range) {
365                                 /* The loop succeeded. Let's now close everything beyond the end */
366 
367                                 if (sorted[n_sorted-1] >= INT_MAX) /* Dont let the addition below overflow */
368                                         return 0;
369 
370                                 if (close_range(sorted[n_sorted-1] + 1, -1, 0) >= 0)
371                                         return 0;
372 
373                                 if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno))
374                                         return -errno;
375 
376                                 have_close_range = false;
377                         }
378                 }
379 
380                 /* Fallback on OOM or if close_range() is not supported */
381         }
382 
383         d = opendir("/proc/self/fd");
384         if (!d)
385                 return close_all_fds_frugal(except, n_except); /* ultimate fallback if /proc/ is not available */
386 
387         FOREACH_DIRENT(de, d, return -errno) {
388                 int fd = -1, q;
389 
390                 if (!IN_SET(de->d_type, DT_LNK, DT_UNKNOWN))
391                         continue;
392 
393                 if (safe_atoi(de->d_name, &fd) < 0)
394                         /* Let's better ignore this, just in case */
395                         continue;
396 
397                 if (fd < 3)
398                         continue;
399 
400                 if (fd == dirfd(d))
401                         continue;
402 
403                 if (fd_in_set(fd, except, n_except))
404                         continue;
405 
406                 q = close_nointr(fd);
407                 if (q < 0 && q != -EBADF && r >= 0) /* Valgrind has its own FD and doesn't want to have it closed */
408                         r = q;
409         }
410 
411         return r;
412 }
413 
same_fd(int a,int b)414 int same_fd(int a, int b) {
415         struct stat sta, stb;
416         pid_t pid;
417         int r, fa, fb;
418 
419         assert(a >= 0);
420         assert(b >= 0);
421 
422         /* Compares two file descriptors. Note that semantics are quite different depending on whether we
423          * have kcmp() or we don't. If we have kcmp() this will only return true for dup()ed file
424          * descriptors, but not otherwise. If we don't have kcmp() this will also return true for two fds of
425          * the same file, created by separate open() calls. Since we use this call mostly for filtering out
426          * duplicates in the fd store this difference hopefully doesn't matter too much. */
427 
428         if (a == b)
429                 return true;
430 
431         /* Try to use kcmp() if we have it. */
432         pid = getpid_cached();
433         r = kcmp(pid, pid, KCMP_FILE, a, b);
434         if (r == 0)
435                 return true;
436         if (r > 0)
437                 return false;
438         if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno))
439                 return -errno;
440 
441         /* We don't have kcmp(), use fstat() instead. */
442         if (fstat(a, &sta) < 0)
443                 return -errno;
444 
445         if (fstat(b, &stb) < 0)
446                 return -errno;
447 
448         if (!stat_inode_same(&sta, &stb))
449                 return false;
450 
451         /* We consider all device fds different, since two device fds might refer to quite different device
452          * contexts even though they share the same inode and backing dev_t. */
453 
454         if (S_ISCHR(sta.st_mode) || S_ISBLK(sta.st_mode))
455                 return false;
456 
457         /* The fds refer to the same inode on disk, let's also check if they have the same fd flags. This is
458          * useful to distinguish the read and write side of a pipe created with pipe(). */
459         fa = fcntl(a, F_GETFL);
460         if (fa < 0)
461                 return -errno;
462 
463         fb = fcntl(b, F_GETFL);
464         if (fb < 0)
465                 return -errno;
466 
467         return fa == fb;
468 }
469 
cmsg_close_all(struct msghdr * mh)470 void cmsg_close_all(struct msghdr *mh) {
471         struct cmsghdr *cmsg;
472 
473         assert(mh);
474 
475         CMSG_FOREACH(cmsg, mh)
476                 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS)
477                         close_many((int*) CMSG_DATA(cmsg), (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(int));
478 }
479 
fdname_is_valid(const char * s)480 bool fdname_is_valid(const char *s) {
481         const char *p;
482 
483         /* Validates a name for $LISTEN_FDNAMES. We basically allow
484          * everything ASCII that's not a control character. Also, as
485          * special exception the ":" character is not allowed, as we
486          * use that as field separator in $LISTEN_FDNAMES.
487          *
488          * Note that the empty string is explicitly allowed
489          * here. However, we limit the length of the names to 255
490          * characters. */
491 
492         if (!s)
493                 return false;
494 
495         for (p = s; *p; p++) {
496                 if (*p < ' ')
497                         return false;
498                 if (*p >= 127)
499                         return false;
500                 if (*p == ':')
501                         return false;
502         }
503 
504         return p - s <= FDNAME_MAX;
505 }
506 
fd_get_path(int fd,char ** ret)507 int fd_get_path(int fd, char **ret) {
508         int r;
509 
510         r = readlink_malloc(FORMAT_PROC_FD_PATH(fd), ret);
511         if (r == -ENOENT) {
512                 /* ENOENT can mean two things: that the fd does not exist or that /proc is not mounted. Let's make
513                  * things debuggable and distinguish the two. */
514 
515                 if (proc_mounted() == 0)
516                         return -ENOSYS;  /* /proc is not available or not set up properly, we're most likely in some chroot
517                                           * environment. */
518                 return -EBADF; /* The directory exists, hence it's the fd that doesn't. */
519         }
520 
521         return r;
522 }
523 
move_fd(int from,int to,int cloexec)524 int move_fd(int from, int to, int cloexec) {
525         int r;
526 
527         /* Move fd 'from' to 'to', make sure FD_CLOEXEC remains equal if requested, and release the old fd. If
528          * 'cloexec' is passed as -1, the original FD_CLOEXEC is inherited for the new fd. If it is 0, it is turned
529          * off, if it is > 0 it is turned on. */
530 
531         if (from < 0)
532                 return -EBADF;
533         if (to < 0)
534                 return -EBADF;
535 
536         if (from == to) {
537 
538                 if (cloexec >= 0) {
539                         r = fd_cloexec(to, cloexec);
540                         if (r < 0)
541                                 return r;
542                 }
543 
544                 return to;
545         }
546 
547         if (cloexec < 0) {
548                 int fl;
549 
550                 fl = fcntl(from, F_GETFD, 0);
551                 if (fl < 0)
552                         return -errno;
553 
554                 cloexec = !!(fl & FD_CLOEXEC);
555         }
556 
557         r = dup3(from, to, cloexec ? O_CLOEXEC : 0);
558         if (r < 0)
559                 return -errno;
560 
561         assert(r == to);
562 
563         safe_close(from);
564 
565         return to;
566 }
567 
fd_move_above_stdio(int fd)568 int fd_move_above_stdio(int fd) {
569         int flags, copy;
570         PROTECT_ERRNO;
571 
572         /* Moves the specified file descriptor if possible out of the range [0…2], i.e. the range of
573          * stdin/stdout/stderr. If it can't be moved outside of this range the original file descriptor is
574          * returned. This call is supposed to be used for long-lasting file descriptors we allocate in our code that
575          * might get loaded into foreign code, and where we want ensure our fds are unlikely used accidentally as
576          * stdin/stdout/stderr of unrelated code.
577          *
578          * Note that this doesn't fix any real bugs, it just makes it less likely that our code will be affected by
579          * buggy code from others that mindlessly invokes 'fprintf(stderr, …' or similar in places where stderr has
580          * been closed before.
581          *
582          * This function is written in a "best-effort" and "least-impact" style. This means whenever we encounter an
583          * error we simply return the original file descriptor, and we do not touch errno. */
584 
585         if (fd < 0 || fd > 2)
586                 return fd;
587 
588         flags = fcntl(fd, F_GETFD, 0);
589         if (flags < 0)
590                 return fd;
591 
592         if (flags & FD_CLOEXEC)
593                 copy = fcntl(fd, F_DUPFD_CLOEXEC, 3);
594         else
595                 copy = fcntl(fd, F_DUPFD, 3);
596         if (copy < 0)
597                 return fd;
598 
599         assert(copy > 2);
600 
601         (void) close(fd);
602         return copy;
603 }
604 
rearrange_stdio(int original_input_fd,int original_output_fd,int original_error_fd)605 int rearrange_stdio(int original_input_fd, int original_output_fd, int original_error_fd) {
606 
607         int fd[3] = { /* Put together an array of fds we work on */
608                 original_input_fd,
609                 original_output_fd,
610                 original_error_fd
611         };
612 
613         int r, i,
614                 null_fd = -1,                /* if we open /dev/null, we store the fd to it here */
615                 copy_fd[3] = { -1, -1, -1 }; /* This contains all fds we duplicate here temporarily, and hence need to close at the end */
616         bool null_readable, null_writable;
617 
618         /* Sets up stdin, stdout, stderr with the three file descriptors passed in. If any of the descriptors is
619          * specified as -1 it will be connected with /dev/null instead. If any of the file descriptors is passed as
620          * itself (e.g. stdin as STDIN_FILENO) it is left unmodified, but the O_CLOEXEC bit is turned off should it be
621          * on.
622          *
623          * Note that if any of the passed file descriptors are > 2 they will be closed — both on success and on
624          * failure! Thus, callers should assume that when this function returns the input fds are invalidated.
625          *
626          * Note that when this function fails stdin/stdout/stderr might remain half set up!
627          *
628          * O_CLOEXEC is turned off for all three file descriptors (which is how it should be for
629          * stdin/stdout/stderr). */
630 
631         null_readable = original_input_fd < 0;
632         null_writable = original_output_fd < 0 || original_error_fd < 0;
633 
634         /* First step, open /dev/null once, if we need it */
635         if (null_readable || null_writable) {
636 
637                 /* Let's open this with O_CLOEXEC first, and convert it to non-O_CLOEXEC when we move the fd to the final position. */
638                 null_fd = open("/dev/null", (null_readable && null_writable ? O_RDWR :
639                                              null_readable ? O_RDONLY : O_WRONLY) | O_CLOEXEC);
640                 if (null_fd < 0) {
641                         r = -errno;
642                         goto finish;
643                 }
644 
645                 /* If this fd is in the 0…2 range, let's move it out of it */
646                 if (null_fd < 3) {
647                         int copy;
648 
649                         copy = fcntl(null_fd, F_DUPFD_CLOEXEC, 3); /* Duplicate this with O_CLOEXEC set */
650                         if (copy < 0) {
651                                 r = -errno;
652                                 goto finish;
653                         }
654 
655                         CLOSE_AND_REPLACE(null_fd, copy);
656                 }
657         }
658 
659         /* Let's assemble fd[] with the fds to install in place of stdin/stdout/stderr */
660         for (i = 0; i < 3; i++) {
661 
662                 if (fd[i] < 0)
663                         fd[i] = null_fd;        /* A negative parameter means: connect this one to /dev/null */
664                 else if (fd[i] != i && fd[i] < 3) {
665                         /* This fd is in the 0…2 territory, but not at its intended place, move it out of there, so that we can work there. */
666                         copy_fd[i] = fcntl(fd[i], F_DUPFD_CLOEXEC, 3); /* Duplicate this with O_CLOEXEC set */
667                         if (copy_fd[i] < 0) {
668                                 r = -errno;
669                                 goto finish;
670                         }
671 
672                         fd[i] = copy_fd[i];
673                 }
674         }
675 
676         /* At this point we now have the fds to use in fd[], and they are all above the stdio range, so that we
677          * have freedom to move them around. If the fds already were at the right places then the specific fds are
678          * -1. Let's now move them to the right places. This is the point of no return. */
679         for (i = 0; i < 3; i++) {
680 
681                 if (fd[i] == i) {
682 
683                         /* fd is already in place, but let's make sure O_CLOEXEC is off */
684                         r = fd_cloexec(i, false);
685                         if (r < 0)
686                                 goto finish;
687 
688                 } else {
689                         assert(fd[i] > 2);
690 
691                         if (dup2(fd[i], i) < 0) { /* Turns off O_CLOEXEC on the new fd. */
692                                 r = -errno;
693                                 goto finish;
694                         }
695                 }
696         }
697 
698         r = 0;
699 
700 finish:
701         /* Close the original fds, but only if they were outside of the stdio range. Also, properly check for the same
702          * fd passed in multiple times. */
703         safe_close_above_stdio(original_input_fd);
704         if (original_output_fd != original_input_fd)
705                 safe_close_above_stdio(original_output_fd);
706         if (original_error_fd != original_input_fd && original_error_fd != original_output_fd)
707                 safe_close_above_stdio(original_error_fd);
708 
709         /* Close the copies we moved > 2 */
710         for (i = 0; i < 3; i++)
711                 safe_close(copy_fd[i]);
712 
713         /* Close our null fd, if it's > 2 */
714         safe_close_above_stdio(null_fd);
715 
716         return r;
717 }
718 
fd_reopen(int fd,int flags)719 int fd_reopen(int fd, int flags) {
720         int new_fd, r;
721 
722         /* Reopens the specified fd with new flags. This is useful for convert an O_PATH fd into a regular one, or to
723          * turn O_RDWR fds into O_RDONLY fds.
724          *
725          * This doesn't work on sockets (since they cannot be open()ed, ever).
726          *
727          * This implicitly resets the file read index to 0. */
728 
729         if (FLAGS_SET(flags, O_DIRECTORY)) {
730                 /* If we shall reopen the fd as directory we can just go via "." and thus bypass the whole
731                  * magic /proc/ directory, and make ourselves independent of that being mounted. */
732                 new_fd = openat(fd, ".", flags);
733                 if (new_fd < 0)
734                         return -errno;
735 
736                 return new_fd;
737         }
738 
739         new_fd = open(FORMAT_PROC_FD_PATH(fd), flags);
740         if (new_fd < 0) {
741                 if (errno != ENOENT)
742                         return -errno;
743 
744                 r = proc_mounted();
745                 if (r == 0)
746                         return -ENOSYS; /* if we have no /proc/, the concept is not implementable */
747 
748                 return r > 0 ? -EBADF : -ENOENT; /* If /proc/ is definitely around then this means the fd is
749                                                   * not valid, otherwise let's propagate the original
750                                                   * error */
751         }
752 
753         return new_fd;
754 }
755 
read_nr_open(void)756 int read_nr_open(void) {
757         _cleanup_free_ char *nr_open = NULL;
758         int r;
759 
760         /* Returns the kernel's current fd limit, either by reading it of /proc/sys if that works, or using the
761          * hard-coded default compiled-in value of current kernels (1M) if not. This call will never fail. */
762 
763         r = read_one_line_file("/proc/sys/fs/nr_open", &nr_open);
764         if (r < 0)
765                 log_debug_errno(r, "Failed to read /proc/sys/fs/nr_open, ignoring: %m");
766         else {
767                 int v;
768 
769                 r = safe_atoi(nr_open, &v);
770                 if (r < 0)
771                         log_debug_errno(r, "Failed to parse /proc/sys/fs/nr_open value '%s', ignoring: %m", nr_open);
772                 else
773                         return v;
774         }
775 
776         /* If we fail, fall back to the hard-coded kernel limit of 1024 * 1024. */
777         return 1024 * 1024;
778 }
779 
780 /* This is here because it's fd-related and is called from sd-journal code. Other btrfs-related utilities are
781  * in src/shared, but libsystemd must not link to libsystemd-shared, see docs/ARCHITECTURE.md. */
btrfs_defrag_fd(int fd)782 int btrfs_defrag_fd(int fd) {
783         int r;
784 
785         assert(fd >= 0);
786 
787         r = fd_verify_regular(fd);
788         if (r < 0)
789                 return r;
790 
791         return RET_NERRNO(ioctl(fd, BTRFS_IOC_DEFRAG, NULL));
792 }
793 
fd_get_diskseq(int fd,uint64_t * ret)794 int fd_get_diskseq(int fd, uint64_t *ret) {
795         uint64_t diskseq;
796 
797         assert(fd >= 0);
798         assert(ret);
799 
800         if (ioctl(fd, BLKGETDISKSEQ, &diskseq) < 0) {
801                 /* Note that the kernel is weird: non-existing ioctls currently return EINVAL
802                  * rather than ENOTTY on loopback block devices. They should fix that in the kernel,
803                  * but in the meantime we accept both here. */
804                 if (!ERRNO_IS_NOT_SUPPORTED(errno) && errno != EINVAL)
805                         return -errno;
806 
807                 return -EOPNOTSUPP;
808         }
809 
810         *ret = diskseq;
811 
812         return 0;
813 }
814