1 // SPDX-License-Identifier: GPL-2.0
2 #include <stdbool.h>
3 #include <assert.h>
4 #include <errno.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include "metricgroup.h"
8 #include "cpumap.h"
9 #include "cputopo.h"
10 #include "debug.h"
11 #include "evlist.h"
12 #include "expr.h"
13 #include <util/expr-bison.h>
14 #include <util/expr-flex.h>
15 #include "util/hashmap.h"
16 #include "util/header.h"
17 #include "util/pmu.h"
18 #include "smt.h"
19 #include "tsc.h"
20 #include <api/fs/fs.h>
21 #include <linux/err.h>
22 #include <linux/kernel.h>
23 #include <linux/zalloc.h>
24 #include <ctype.h>
25 #include <math.h>
26 #include "pmu.h"
27
28 #ifdef PARSER_DEBUG
29 extern int expr_debug;
30 #endif
31
32 struct expr_id_data {
33 union {
34 struct {
35 double val;
36 int source_count;
37 } val;
38 struct {
39 double val;
40 const char *metric_name;
41 const char *metric_expr;
42 } ref;
43 };
44
45 enum {
46 /* Holding a double value. */
47 EXPR_ID_DATA__VALUE,
48 /* Reference to another metric. */
49 EXPR_ID_DATA__REF,
50 /* A reference but the value has been computed. */
51 EXPR_ID_DATA__REF_VALUE,
52 } kind;
53 };
54
key_hash(long key,void * ctx __maybe_unused)55 static size_t key_hash(long key, void *ctx __maybe_unused)
56 {
57 const char *str = (const char *)key;
58 size_t hash = 0;
59
60 while (*str != '\0') {
61 hash *= 31;
62 hash += *str;
63 str++;
64 }
65 return hash;
66 }
67
key_equal(long key1,long key2,void * ctx __maybe_unused)68 static bool key_equal(long key1, long key2, void *ctx __maybe_unused)
69 {
70 return !strcmp((const char *)key1, (const char *)key2);
71 }
72
ids__new(void)73 struct hashmap *ids__new(void)
74 {
75 struct hashmap *hash;
76
77 hash = hashmap__new(key_hash, key_equal, NULL);
78 if (IS_ERR(hash))
79 return NULL;
80 return hash;
81 }
82
ids__free(struct hashmap * ids)83 void ids__free(struct hashmap *ids)
84 {
85 struct hashmap_entry *cur;
86 size_t bkt;
87
88 if (ids == NULL)
89 return;
90
91 hashmap__for_each_entry(ids, cur, bkt) {
92 zfree(&cur->pkey);
93 zfree(&cur->pvalue);
94 }
95
96 hashmap__free(ids);
97 }
98
ids__insert(struct hashmap * ids,const char * id)99 int ids__insert(struct hashmap *ids, const char *id)
100 {
101 struct expr_id_data *data_ptr = NULL, *old_data = NULL;
102 char *old_key = NULL;
103 int ret;
104
105 ret = hashmap__set(ids, id, data_ptr, &old_key, &old_data);
106 if (ret)
107 free(data_ptr);
108 free(old_key);
109 free(old_data);
110 return ret;
111 }
112
ids__union(struct hashmap * ids1,struct hashmap * ids2)113 struct hashmap *ids__union(struct hashmap *ids1, struct hashmap *ids2)
114 {
115 size_t bkt;
116 struct hashmap_entry *cur;
117 int ret;
118 struct expr_id_data *old_data = NULL;
119 char *old_key = NULL;
120
121 if (!ids1)
122 return ids2;
123
124 if (!ids2)
125 return ids1;
126
127 if (hashmap__size(ids1) < hashmap__size(ids2)) {
128 struct hashmap *tmp = ids1;
129
130 ids1 = ids2;
131 ids2 = tmp;
132 }
133 hashmap__for_each_entry(ids2, cur, bkt) {
134 ret = hashmap__set(ids1, cur->key, cur->value, &old_key, &old_data);
135 free(old_key);
136 free(old_data);
137
138 if (ret) {
139 hashmap__free(ids1);
140 hashmap__free(ids2);
141 return NULL;
142 }
143 }
144 hashmap__free(ids2);
145 return ids1;
146 }
147
148 /* Caller must make sure id is allocated */
expr__add_id(struct expr_parse_ctx * ctx,const char * id)149 int expr__add_id(struct expr_parse_ctx *ctx, const char *id)
150 {
151 return ids__insert(ctx->ids, id);
152 }
153
154 /* Caller must make sure id is allocated */
expr__add_id_val(struct expr_parse_ctx * ctx,const char * id,double val)155 int expr__add_id_val(struct expr_parse_ctx *ctx, const char *id, double val)
156 {
157 return expr__add_id_val_source_count(ctx, id, val, /*source_count=*/1);
158 }
159
160 /* Caller must make sure id is allocated */
expr__add_id_val_source_count(struct expr_parse_ctx * ctx,const char * id,double val,int source_count)161 int expr__add_id_val_source_count(struct expr_parse_ctx *ctx, const char *id,
162 double val, int source_count)
163 {
164 struct expr_id_data *data_ptr = NULL, *old_data = NULL;
165 char *old_key = NULL;
166 int ret;
167
168 data_ptr = malloc(sizeof(*data_ptr));
169 if (!data_ptr)
170 return -ENOMEM;
171 data_ptr->val.val = val;
172 data_ptr->val.source_count = source_count;
173 data_ptr->kind = EXPR_ID_DATA__VALUE;
174
175 ret = hashmap__set(ctx->ids, id, data_ptr, &old_key, &old_data);
176 if (ret)
177 free(data_ptr);
178 free(old_key);
179 free(old_data);
180 return ret;
181 }
182
expr__add_ref(struct expr_parse_ctx * ctx,struct metric_ref * ref)183 int expr__add_ref(struct expr_parse_ctx *ctx, struct metric_ref *ref)
184 {
185 struct expr_id_data *data_ptr = NULL, *old_data = NULL;
186 char *old_key = NULL;
187 char *name;
188 int ret;
189
190 data_ptr = zalloc(sizeof(*data_ptr));
191 if (!data_ptr)
192 return -ENOMEM;
193
194 name = strdup(ref->metric_name);
195 if (!name) {
196 free(data_ptr);
197 return -ENOMEM;
198 }
199
200 /*
201 * Intentionally passing just const char pointers,
202 * originally from 'struct pmu_event' object.
203 * We don't need to change them, so there's no
204 * need to create our own copy.
205 */
206 data_ptr->ref.metric_name = ref->metric_name;
207 data_ptr->ref.metric_expr = ref->metric_expr;
208 data_ptr->kind = EXPR_ID_DATA__REF;
209
210 ret = hashmap__set(ctx->ids, name, data_ptr, &old_key, &old_data);
211 if (ret)
212 free(data_ptr);
213
214 pr_debug2("adding ref metric %s: %s\n",
215 ref->metric_name, ref->metric_expr);
216
217 free(old_key);
218 free(old_data);
219 return ret;
220 }
221
expr__get_id(struct expr_parse_ctx * ctx,const char * id,struct expr_id_data ** data)222 int expr__get_id(struct expr_parse_ctx *ctx, const char *id,
223 struct expr_id_data **data)
224 {
225 return hashmap__find(ctx->ids, id, data) ? 0 : -1;
226 }
227
expr__subset_of_ids(struct expr_parse_ctx * haystack,struct expr_parse_ctx * needles)228 bool expr__subset_of_ids(struct expr_parse_ctx *haystack,
229 struct expr_parse_ctx *needles)
230 {
231 struct hashmap_entry *cur;
232 size_t bkt;
233 struct expr_id_data *data;
234
235 hashmap__for_each_entry(needles->ids, cur, bkt) {
236 if (expr__get_id(haystack, cur->pkey, &data))
237 return false;
238 }
239 return true;
240 }
241
242
expr__resolve_id(struct expr_parse_ctx * ctx,const char * id,struct expr_id_data ** datap)243 int expr__resolve_id(struct expr_parse_ctx *ctx, const char *id,
244 struct expr_id_data **datap)
245 {
246 struct expr_id_data *data;
247
248 if (expr__get_id(ctx, id, datap) || !*datap) {
249 pr_debug("%s not found\n", id);
250 return -1;
251 }
252
253 data = *datap;
254
255 switch (data->kind) {
256 case EXPR_ID_DATA__VALUE:
257 pr_debug2("lookup(%s): val %f\n", id, data->val.val);
258 break;
259 case EXPR_ID_DATA__REF:
260 pr_debug2("lookup(%s): ref metric name %s\n", id,
261 data->ref.metric_name);
262 pr_debug("processing metric: %s ENTRY\n", id);
263 data->kind = EXPR_ID_DATA__REF_VALUE;
264 if (expr__parse(&data->ref.val, ctx, data->ref.metric_expr)) {
265 pr_debug("%s failed to count\n", id);
266 return -1;
267 }
268 pr_debug("processing metric: %s EXIT: %f\n", id, data->ref.val);
269 break;
270 case EXPR_ID_DATA__REF_VALUE:
271 pr_debug2("lookup(%s): ref val %f metric name %s\n", id,
272 data->ref.val, data->ref.metric_name);
273 break;
274 default:
275 assert(0); /* Unreachable. */
276 }
277
278 return 0;
279 }
280
expr__del_id(struct expr_parse_ctx * ctx,const char * id)281 void expr__del_id(struct expr_parse_ctx *ctx, const char *id)
282 {
283 struct expr_id_data *old_val = NULL;
284 char *old_key = NULL;
285
286 hashmap__delete(ctx->ids, id, &old_key, &old_val);
287 free(old_key);
288 free(old_val);
289 }
290
expr__ctx_new(void)291 struct expr_parse_ctx *expr__ctx_new(void)
292 {
293 struct expr_parse_ctx *ctx;
294
295 ctx = malloc(sizeof(struct expr_parse_ctx));
296 if (!ctx)
297 return NULL;
298
299 ctx->ids = hashmap__new(key_hash, key_equal, NULL);
300 if (IS_ERR(ctx->ids)) {
301 free(ctx);
302 return NULL;
303 }
304 ctx->sctx.user_requested_cpu_list = NULL;
305 ctx->sctx.runtime = 0;
306 ctx->sctx.system_wide = false;
307
308 return ctx;
309 }
310
expr__ctx_clear(struct expr_parse_ctx * ctx)311 void expr__ctx_clear(struct expr_parse_ctx *ctx)
312 {
313 struct hashmap_entry *cur;
314 size_t bkt;
315
316 hashmap__for_each_entry(ctx->ids, cur, bkt) {
317 zfree(&cur->pkey);
318 zfree(&cur->pvalue);
319 }
320 hashmap__clear(ctx->ids);
321 }
322
expr__ctx_free(struct expr_parse_ctx * ctx)323 void expr__ctx_free(struct expr_parse_ctx *ctx)
324 {
325 struct hashmap_entry *cur;
326 size_t bkt;
327
328 if (!ctx)
329 return;
330
331 zfree(&ctx->sctx.user_requested_cpu_list);
332 hashmap__for_each_entry(ctx->ids, cur, bkt) {
333 zfree(&cur->pkey);
334 zfree(&cur->pvalue);
335 }
336 hashmap__free(ctx->ids);
337 free(ctx);
338 }
339
340 static int
__expr__parse(double * val,struct expr_parse_ctx * ctx,const char * expr,bool compute_ids)341 __expr__parse(double *val, struct expr_parse_ctx *ctx, const char *expr,
342 bool compute_ids)
343 {
344 YY_BUFFER_STATE buffer;
345 void *scanner;
346 int ret;
347
348 pr_debug2("parsing metric: %s\n", expr);
349
350 ret = expr_lex_init_extra(&ctx->sctx, &scanner);
351 if (ret)
352 return ret;
353
354 buffer = expr__scan_string(expr, scanner);
355
356 #ifdef PARSER_DEBUG
357 expr_debug = 1;
358 expr_set_debug(1, scanner);
359 #endif
360
361 ret = expr_parse(val, ctx, compute_ids, scanner);
362
363 expr__flush_buffer(buffer, scanner);
364 expr__delete_buffer(buffer, scanner);
365 expr_lex_destroy(scanner);
366 return ret;
367 }
368
expr__parse(double * final_val,struct expr_parse_ctx * ctx,const char * expr)369 int expr__parse(double *final_val, struct expr_parse_ctx *ctx,
370 const char *expr)
371 {
372 return __expr__parse(final_val, ctx, expr, /*compute_ids=*/false) ? -1 : 0;
373 }
374
expr__find_ids(const char * expr,const char * one,struct expr_parse_ctx * ctx)375 int expr__find_ids(const char *expr, const char *one,
376 struct expr_parse_ctx *ctx)
377 {
378 int ret = __expr__parse(NULL, ctx, expr, /*compute_ids=*/true);
379
380 if (one)
381 expr__del_id(ctx, one);
382
383 return ret;
384 }
385
expr_id_data__value(const struct expr_id_data * data)386 double expr_id_data__value(const struct expr_id_data *data)
387 {
388 if (data->kind == EXPR_ID_DATA__VALUE)
389 return data->val.val;
390 assert(data->kind == EXPR_ID_DATA__REF_VALUE);
391 return data->ref.val;
392 }
393
expr_id_data__source_count(const struct expr_id_data * data)394 double expr_id_data__source_count(const struct expr_id_data *data)
395 {
396 assert(data->kind == EXPR_ID_DATA__VALUE);
397 return data->val.source_count;
398 }
399
400 #if !defined(__i386__) && !defined(__x86_64__)
arch_get_tsc_freq(void)401 double arch_get_tsc_freq(void)
402 {
403 return 0.0;
404 }
405 #endif
406
has_pmem(void)407 static double has_pmem(void)
408 {
409 static bool has_pmem, cached;
410 const char *sysfs = sysfs__mountpoint();
411 char path[PATH_MAX];
412
413 if (!cached) {
414 snprintf(path, sizeof(path), "%s/firmware/acpi/tables/NFIT", sysfs);
415 has_pmem = access(path, F_OK) == 0;
416 cached = true;
417 }
418 return has_pmem ? 1.0 : 0.0;
419 }
420
expr__get_literal(const char * literal,const struct expr_scanner_ctx * ctx)421 double expr__get_literal(const char *literal, const struct expr_scanner_ctx *ctx)
422 {
423 const struct cpu_topology *topology;
424 double result = NAN;
425
426 if (!strcmp("#num_cpus", literal)) {
427 result = cpu__max_present_cpu().cpu;
428 goto out;
429 }
430 if (!strcmp("#num_cpus_online", literal)) {
431 struct perf_cpu_map *online = cpu_map__online();
432
433 if (online)
434 result = perf_cpu_map__nr(online);
435 goto out;
436 }
437
438 if (!strcasecmp("#system_tsc_freq", literal)) {
439 result = arch_get_tsc_freq();
440 goto out;
441 }
442
443 /*
444 * Assume that topology strings are consistent, such as CPUs "0-1"
445 * wouldn't be listed as "0,1", and so after deduplication the number of
446 * these strings gives an indication of the number of packages, dies,
447 * etc.
448 */
449 if (!strcasecmp("#smt_on", literal)) {
450 result = smt_on() ? 1.0 : 0.0;
451 goto out;
452 }
453 if (!strcmp("#core_wide", literal)) {
454 result = core_wide(ctx->system_wide, ctx->user_requested_cpu_list)
455 ? 1.0 : 0.0;
456 goto out;
457 }
458 if (!strcmp("#num_packages", literal)) {
459 topology = online_topology();
460 result = topology->package_cpus_lists;
461 goto out;
462 }
463 if (!strcmp("#num_dies", literal)) {
464 topology = online_topology();
465 result = topology->die_cpus_lists;
466 goto out;
467 }
468 if (!strcmp("#num_cores", literal)) {
469 topology = online_topology();
470 result = topology->core_cpus_lists;
471 goto out;
472 }
473 if (!strcmp("#slots", literal)) {
474 result = perf_pmu__cpu_slots_per_cycle();
475 goto out;
476 }
477 if (!strcmp("#has_pmem", literal)) {
478 result = has_pmem();
479 goto out;
480 }
481
482 pr_err("Unrecognized literal '%s'", literal);
483 out:
484 pr_debug2("literal: %s = %f\n", literal, result);
485 return result;
486 }
487
488 /* Does the event 'id' parse? Determine via ctx->ids if possible. */
expr__has_event(const struct expr_parse_ctx * ctx,bool compute_ids,const char * id)489 double expr__has_event(const struct expr_parse_ctx *ctx, bool compute_ids, const char *id)
490 {
491 struct evlist *tmp;
492 double ret;
493
494 if (hashmap__find(ctx->ids, id, /*value=*/NULL))
495 return 1.0;
496
497 if (!compute_ids)
498 return 0.0;
499
500 tmp = evlist__new();
501 if (!tmp)
502 return NAN;
503 ret = parse_event(tmp, id) ? 0 : 1;
504 evlist__delete(tmp);
505 return ret;
506 }
507
expr__strcmp_cpuid_str(const struct expr_parse_ctx * ctx __maybe_unused,bool compute_ids __maybe_unused,const char * test_id)508 double expr__strcmp_cpuid_str(const struct expr_parse_ctx *ctx __maybe_unused,
509 bool compute_ids __maybe_unused, const char *test_id)
510 {
511 double ret;
512 struct perf_pmu *pmu = pmu__find_core_pmu();
513 char *cpuid = perf_pmu__getcpuid(pmu);
514
515 if (!cpuid)
516 return NAN;
517
518 ret = !strcmp_cpuid_str(test_id, cpuid);
519
520 free(cpuid);
521 return ret;
522 }
523