1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2016 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_rmap_item.h"
18 #include "xfs_log.h"
19 #include "xfs_rmap.h"
20 #include "xfs_error.h"
21 #include "xfs_log_priv.h"
22 #include "xfs_log_recover.h"
23 #include "xfs_ag.h"
24
25 struct kmem_cache *xfs_rui_cache;
26 struct kmem_cache *xfs_rud_cache;
27
28 static const struct xfs_item_ops xfs_rui_item_ops;
29
RUI_ITEM(struct xfs_log_item * lip)30 static inline struct xfs_rui_log_item *RUI_ITEM(struct xfs_log_item *lip)
31 {
32 return container_of(lip, struct xfs_rui_log_item, rui_item);
33 }
34
35 STATIC void
xfs_rui_item_free(struct xfs_rui_log_item * ruip)36 xfs_rui_item_free(
37 struct xfs_rui_log_item *ruip)
38 {
39 kmem_free(ruip->rui_item.li_lv_shadow);
40 if (ruip->rui_format.rui_nextents > XFS_RUI_MAX_FAST_EXTENTS)
41 kmem_free(ruip);
42 else
43 kmem_cache_free(xfs_rui_cache, ruip);
44 }
45
46 /*
47 * Freeing the RUI requires that we remove it from the AIL if it has already
48 * been placed there. However, the RUI may not yet have been placed in the AIL
49 * when called by xfs_rui_release() from RUD processing due to the ordering of
50 * committed vs unpin operations in bulk insert operations. Hence the reference
51 * count to ensure only the last caller frees the RUI.
52 */
53 STATIC void
xfs_rui_release(struct xfs_rui_log_item * ruip)54 xfs_rui_release(
55 struct xfs_rui_log_item *ruip)
56 {
57 ASSERT(atomic_read(&ruip->rui_refcount) > 0);
58 if (!atomic_dec_and_test(&ruip->rui_refcount))
59 return;
60
61 xfs_trans_ail_delete(&ruip->rui_item, 0);
62 xfs_rui_item_free(ruip);
63 }
64
65 STATIC void
xfs_rui_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)66 xfs_rui_item_size(
67 struct xfs_log_item *lip,
68 int *nvecs,
69 int *nbytes)
70 {
71 struct xfs_rui_log_item *ruip = RUI_ITEM(lip);
72
73 *nvecs += 1;
74 *nbytes += xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents);
75 }
76
77 /*
78 * This is called to fill in the vector of log iovecs for the
79 * given rui log item. We use only 1 iovec, and we point that
80 * at the rui_log_format structure embedded in the rui item.
81 * It is at this point that we assert that all of the extent
82 * slots in the rui item have been filled.
83 */
84 STATIC void
xfs_rui_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)85 xfs_rui_item_format(
86 struct xfs_log_item *lip,
87 struct xfs_log_vec *lv)
88 {
89 struct xfs_rui_log_item *ruip = RUI_ITEM(lip);
90 struct xfs_log_iovec *vecp = NULL;
91
92 ASSERT(atomic_read(&ruip->rui_next_extent) ==
93 ruip->rui_format.rui_nextents);
94
95 ruip->rui_format.rui_type = XFS_LI_RUI;
96 ruip->rui_format.rui_size = 1;
97
98 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUI_FORMAT, &ruip->rui_format,
99 xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents));
100 }
101
102 /*
103 * The unpin operation is the last place an RUI is manipulated in the log. It is
104 * either inserted in the AIL or aborted in the event of a log I/O error. In
105 * either case, the RUI transaction has been successfully committed to make it
106 * this far. Therefore, we expect whoever committed the RUI to either construct
107 * and commit the RUD or drop the RUD's reference in the event of error. Simply
108 * drop the log's RUI reference now that the log is done with it.
109 */
110 STATIC void
xfs_rui_item_unpin(struct xfs_log_item * lip,int remove)111 xfs_rui_item_unpin(
112 struct xfs_log_item *lip,
113 int remove)
114 {
115 struct xfs_rui_log_item *ruip = RUI_ITEM(lip);
116
117 xfs_rui_release(ruip);
118 }
119
120 /*
121 * The RUI has been either committed or aborted if the transaction has been
122 * cancelled. If the transaction was cancelled, an RUD isn't going to be
123 * constructed and thus we free the RUI here directly.
124 */
125 STATIC void
xfs_rui_item_release(struct xfs_log_item * lip)126 xfs_rui_item_release(
127 struct xfs_log_item *lip)
128 {
129 xfs_rui_release(RUI_ITEM(lip));
130 }
131
132 /*
133 * Allocate and initialize an rui item with the given number of extents.
134 */
135 STATIC struct xfs_rui_log_item *
xfs_rui_init(struct xfs_mount * mp,uint nextents)136 xfs_rui_init(
137 struct xfs_mount *mp,
138 uint nextents)
139
140 {
141 struct xfs_rui_log_item *ruip;
142
143 ASSERT(nextents > 0);
144 if (nextents > XFS_RUI_MAX_FAST_EXTENTS)
145 ruip = kmem_zalloc(xfs_rui_log_item_sizeof(nextents), 0);
146 else
147 ruip = kmem_cache_zalloc(xfs_rui_cache,
148 GFP_KERNEL | __GFP_NOFAIL);
149
150 xfs_log_item_init(mp, &ruip->rui_item, XFS_LI_RUI, &xfs_rui_item_ops);
151 ruip->rui_format.rui_nextents = nextents;
152 ruip->rui_format.rui_id = (uintptr_t)(void *)ruip;
153 atomic_set(&ruip->rui_next_extent, 0);
154 atomic_set(&ruip->rui_refcount, 2);
155
156 return ruip;
157 }
158
RUD_ITEM(struct xfs_log_item * lip)159 static inline struct xfs_rud_log_item *RUD_ITEM(struct xfs_log_item *lip)
160 {
161 return container_of(lip, struct xfs_rud_log_item, rud_item);
162 }
163
164 STATIC void
xfs_rud_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)165 xfs_rud_item_size(
166 struct xfs_log_item *lip,
167 int *nvecs,
168 int *nbytes)
169 {
170 *nvecs += 1;
171 *nbytes += sizeof(struct xfs_rud_log_format);
172 }
173
174 /*
175 * This is called to fill in the vector of log iovecs for the
176 * given rud log item. We use only 1 iovec, and we point that
177 * at the rud_log_format structure embedded in the rud item.
178 * It is at this point that we assert that all of the extent
179 * slots in the rud item have been filled.
180 */
181 STATIC void
xfs_rud_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)182 xfs_rud_item_format(
183 struct xfs_log_item *lip,
184 struct xfs_log_vec *lv)
185 {
186 struct xfs_rud_log_item *rudp = RUD_ITEM(lip);
187 struct xfs_log_iovec *vecp = NULL;
188
189 rudp->rud_format.rud_type = XFS_LI_RUD;
190 rudp->rud_format.rud_size = 1;
191
192 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUD_FORMAT, &rudp->rud_format,
193 sizeof(struct xfs_rud_log_format));
194 }
195
196 /*
197 * The RUD is either committed or aborted if the transaction is cancelled. If
198 * the transaction is cancelled, drop our reference to the RUI and free the
199 * RUD.
200 */
201 STATIC void
xfs_rud_item_release(struct xfs_log_item * lip)202 xfs_rud_item_release(
203 struct xfs_log_item *lip)
204 {
205 struct xfs_rud_log_item *rudp = RUD_ITEM(lip);
206
207 xfs_rui_release(rudp->rud_ruip);
208 kmem_free(rudp->rud_item.li_lv_shadow);
209 kmem_cache_free(xfs_rud_cache, rudp);
210 }
211
212 static struct xfs_log_item *
xfs_rud_item_intent(struct xfs_log_item * lip)213 xfs_rud_item_intent(
214 struct xfs_log_item *lip)
215 {
216 return &RUD_ITEM(lip)->rud_ruip->rui_item;
217 }
218
219 static const struct xfs_item_ops xfs_rud_item_ops = {
220 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED |
221 XFS_ITEM_INTENT_DONE,
222 .iop_size = xfs_rud_item_size,
223 .iop_format = xfs_rud_item_format,
224 .iop_release = xfs_rud_item_release,
225 .iop_intent = xfs_rud_item_intent,
226 };
227
228 static struct xfs_rud_log_item *
xfs_trans_get_rud(struct xfs_trans * tp,struct xfs_rui_log_item * ruip)229 xfs_trans_get_rud(
230 struct xfs_trans *tp,
231 struct xfs_rui_log_item *ruip)
232 {
233 struct xfs_rud_log_item *rudp;
234
235 rudp = kmem_cache_zalloc(xfs_rud_cache, GFP_KERNEL | __GFP_NOFAIL);
236 xfs_log_item_init(tp->t_mountp, &rudp->rud_item, XFS_LI_RUD,
237 &xfs_rud_item_ops);
238 rudp->rud_ruip = ruip;
239 rudp->rud_format.rud_rui_id = ruip->rui_format.rui_id;
240
241 xfs_trans_add_item(tp, &rudp->rud_item);
242 return rudp;
243 }
244
245 /* Set the map extent flags for this reverse mapping. */
246 static void
xfs_trans_set_rmap_flags(struct xfs_map_extent * map,enum xfs_rmap_intent_type type,int whichfork,xfs_exntst_t state)247 xfs_trans_set_rmap_flags(
248 struct xfs_map_extent *map,
249 enum xfs_rmap_intent_type type,
250 int whichfork,
251 xfs_exntst_t state)
252 {
253 map->me_flags = 0;
254 if (state == XFS_EXT_UNWRITTEN)
255 map->me_flags |= XFS_RMAP_EXTENT_UNWRITTEN;
256 if (whichfork == XFS_ATTR_FORK)
257 map->me_flags |= XFS_RMAP_EXTENT_ATTR_FORK;
258 switch (type) {
259 case XFS_RMAP_MAP:
260 map->me_flags |= XFS_RMAP_EXTENT_MAP;
261 break;
262 case XFS_RMAP_MAP_SHARED:
263 map->me_flags |= XFS_RMAP_EXTENT_MAP_SHARED;
264 break;
265 case XFS_RMAP_UNMAP:
266 map->me_flags |= XFS_RMAP_EXTENT_UNMAP;
267 break;
268 case XFS_RMAP_UNMAP_SHARED:
269 map->me_flags |= XFS_RMAP_EXTENT_UNMAP_SHARED;
270 break;
271 case XFS_RMAP_CONVERT:
272 map->me_flags |= XFS_RMAP_EXTENT_CONVERT;
273 break;
274 case XFS_RMAP_CONVERT_SHARED:
275 map->me_flags |= XFS_RMAP_EXTENT_CONVERT_SHARED;
276 break;
277 case XFS_RMAP_ALLOC:
278 map->me_flags |= XFS_RMAP_EXTENT_ALLOC;
279 break;
280 case XFS_RMAP_FREE:
281 map->me_flags |= XFS_RMAP_EXTENT_FREE;
282 break;
283 default:
284 ASSERT(0);
285 }
286 }
287
288 /*
289 * Finish an rmap update and log it to the RUD. Note that the transaction is
290 * marked dirty regardless of whether the rmap update succeeds or fails to
291 * support the RUI/RUD lifecycle rules.
292 */
293 static int
xfs_trans_log_finish_rmap_update(struct xfs_trans * tp,struct xfs_rud_log_item * rudp,struct xfs_rmap_intent * ri,struct xfs_btree_cur ** pcur)294 xfs_trans_log_finish_rmap_update(
295 struct xfs_trans *tp,
296 struct xfs_rud_log_item *rudp,
297 struct xfs_rmap_intent *ri,
298 struct xfs_btree_cur **pcur)
299 {
300 int error;
301
302 error = xfs_rmap_finish_one(tp, ri, pcur);
303
304 /*
305 * Mark the transaction dirty, even on error. This ensures the
306 * transaction is aborted, which:
307 *
308 * 1.) releases the RUI and frees the RUD
309 * 2.) shuts down the filesystem
310 */
311 tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE;
312 set_bit(XFS_LI_DIRTY, &rudp->rud_item.li_flags);
313
314 return error;
315 }
316
317 /* Sort rmap intents by AG. */
318 static int
xfs_rmap_update_diff_items(void * priv,const struct list_head * a,const struct list_head * b)319 xfs_rmap_update_diff_items(
320 void *priv,
321 const struct list_head *a,
322 const struct list_head *b)
323 {
324 struct xfs_rmap_intent *ra;
325 struct xfs_rmap_intent *rb;
326
327 ra = container_of(a, struct xfs_rmap_intent, ri_list);
328 rb = container_of(b, struct xfs_rmap_intent, ri_list);
329
330 return ra->ri_pag->pag_agno - rb->ri_pag->pag_agno;
331 }
332
333 /* Log rmap updates in the intent item. */
334 STATIC void
xfs_rmap_update_log_item(struct xfs_trans * tp,struct xfs_rui_log_item * ruip,struct xfs_rmap_intent * ri)335 xfs_rmap_update_log_item(
336 struct xfs_trans *tp,
337 struct xfs_rui_log_item *ruip,
338 struct xfs_rmap_intent *ri)
339 {
340 uint next_extent;
341 struct xfs_map_extent *map;
342
343 tp->t_flags |= XFS_TRANS_DIRTY;
344 set_bit(XFS_LI_DIRTY, &ruip->rui_item.li_flags);
345
346 /*
347 * atomic_inc_return gives us the value after the increment;
348 * we want to use it as an array index so we need to subtract 1 from
349 * it.
350 */
351 next_extent = atomic_inc_return(&ruip->rui_next_extent) - 1;
352 ASSERT(next_extent < ruip->rui_format.rui_nextents);
353 map = &ruip->rui_format.rui_extents[next_extent];
354 map->me_owner = ri->ri_owner;
355 map->me_startblock = ri->ri_bmap.br_startblock;
356 map->me_startoff = ri->ri_bmap.br_startoff;
357 map->me_len = ri->ri_bmap.br_blockcount;
358 xfs_trans_set_rmap_flags(map, ri->ri_type, ri->ri_whichfork,
359 ri->ri_bmap.br_state);
360 }
361
362 static struct xfs_log_item *
xfs_rmap_update_create_intent(struct xfs_trans * tp,struct list_head * items,unsigned int count,bool sort)363 xfs_rmap_update_create_intent(
364 struct xfs_trans *tp,
365 struct list_head *items,
366 unsigned int count,
367 bool sort)
368 {
369 struct xfs_mount *mp = tp->t_mountp;
370 struct xfs_rui_log_item *ruip = xfs_rui_init(mp, count);
371 struct xfs_rmap_intent *ri;
372
373 ASSERT(count > 0);
374
375 xfs_trans_add_item(tp, &ruip->rui_item);
376 if (sort)
377 list_sort(mp, items, xfs_rmap_update_diff_items);
378 list_for_each_entry(ri, items, ri_list)
379 xfs_rmap_update_log_item(tp, ruip, ri);
380 return &ruip->rui_item;
381 }
382
383 /* Get an RUD so we can process all the deferred rmap updates. */
384 static struct xfs_log_item *
xfs_rmap_update_create_done(struct xfs_trans * tp,struct xfs_log_item * intent,unsigned int count)385 xfs_rmap_update_create_done(
386 struct xfs_trans *tp,
387 struct xfs_log_item *intent,
388 unsigned int count)
389 {
390 return &xfs_trans_get_rud(tp, RUI_ITEM(intent))->rud_item;
391 }
392
393 /* Take a passive ref to the AG containing the space we're rmapping. */
394 void
xfs_rmap_update_get_group(struct xfs_mount * mp,struct xfs_rmap_intent * ri)395 xfs_rmap_update_get_group(
396 struct xfs_mount *mp,
397 struct xfs_rmap_intent *ri)
398 {
399 xfs_agnumber_t agno;
400
401 agno = XFS_FSB_TO_AGNO(mp, ri->ri_bmap.br_startblock);
402 ri->ri_pag = xfs_perag_intent_get(mp, agno);
403 }
404
405 /* Release a passive AG ref after finishing rmapping work. */
406 static inline void
xfs_rmap_update_put_group(struct xfs_rmap_intent * ri)407 xfs_rmap_update_put_group(
408 struct xfs_rmap_intent *ri)
409 {
410 xfs_perag_intent_put(ri->ri_pag);
411 }
412
413 /* Process a deferred rmap update. */
414 STATIC int
xfs_rmap_update_finish_item(struct xfs_trans * tp,struct xfs_log_item * done,struct list_head * item,struct xfs_btree_cur ** state)415 xfs_rmap_update_finish_item(
416 struct xfs_trans *tp,
417 struct xfs_log_item *done,
418 struct list_head *item,
419 struct xfs_btree_cur **state)
420 {
421 struct xfs_rmap_intent *ri;
422 int error;
423
424 ri = container_of(item, struct xfs_rmap_intent, ri_list);
425
426 error = xfs_trans_log_finish_rmap_update(tp, RUD_ITEM(done), ri,
427 state);
428
429 xfs_rmap_update_put_group(ri);
430 kmem_cache_free(xfs_rmap_intent_cache, ri);
431 return error;
432 }
433
434 /* Abort all pending RUIs. */
435 STATIC void
xfs_rmap_update_abort_intent(struct xfs_log_item * intent)436 xfs_rmap_update_abort_intent(
437 struct xfs_log_item *intent)
438 {
439 xfs_rui_release(RUI_ITEM(intent));
440 }
441
442 /* Cancel a deferred rmap update. */
443 STATIC void
xfs_rmap_update_cancel_item(struct list_head * item)444 xfs_rmap_update_cancel_item(
445 struct list_head *item)
446 {
447 struct xfs_rmap_intent *ri;
448
449 ri = container_of(item, struct xfs_rmap_intent, ri_list);
450
451 xfs_rmap_update_put_group(ri);
452 kmem_cache_free(xfs_rmap_intent_cache, ri);
453 }
454
455 const struct xfs_defer_op_type xfs_rmap_update_defer_type = {
456 .max_items = XFS_RUI_MAX_FAST_EXTENTS,
457 .create_intent = xfs_rmap_update_create_intent,
458 .abort_intent = xfs_rmap_update_abort_intent,
459 .create_done = xfs_rmap_update_create_done,
460 .finish_item = xfs_rmap_update_finish_item,
461 .finish_cleanup = xfs_rmap_finish_one_cleanup,
462 .cancel_item = xfs_rmap_update_cancel_item,
463 };
464
465 /* Is this recovered RUI ok? */
466 static inline bool
xfs_rui_validate_map(struct xfs_mount * mp,struct xfs_map_extent * map)467 xfs_rui_validate_map(
468 struct xfs_mount *mp,
469 struct xfs_map_extent *map)
470 {
471 if (!xfs_has_rmapbt(mp))
472 return false;
473
474 if (map->me_flags & ~XFS_RMAP_EXTENT_FLAGS)
475 return false;
476
477 switch (map->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) {
478 case XFS_RMAP_EXTENT_MAP:
479 case XFS_RMAP_EXTENT_MAP_SHARED:
480 case XFS_RMAP_EXTENT_UNMAP:
481 case XFS_RMAP_EXTENT_UNMAP_SHARED:
482 case XFS_RMAP_EXTENT_CONVERT:
483 case XFS_RMAP_EXTENT_CONVERT_SHARED:
484 case XFS_RMAP_EXTENT_ALLOC:
485 case XFS_RMAP_EXTENT_FREE:
486 break;
487 default:
488 return false;
489 }
490
491 if (!XFS_RMAP_NON_INODE_OWNER(map->me_owner) &&
492 !xfs_verify_ino(mp, map->me_owner))
493 return false;
494
495 if (!xfs_verify_fileext(mp, map->me_startoff, map->me_len))
496 return false;
497
498 return xfs_verify_fsbext(mp, map->me_startblock, map->me_len);
499 }
500
501 /*
502 * Process an rmap update intent item that was recovered from the log.
503 * We need to update the rmapbt.
504 */
505 STATIC int
xfs_rui_item_recover(struct xfs_log_item * lip,struct list_head * capture_list)506 xfs_rui_item_recover(
507 struct xfs_log_item *lip,
508 struct list_head *capture_list)
509 {
510 struct xfs_trans_res resv;
511 struct xfs_rui_log_item *ruip = RUI_ITEM(lip);
512 struct xfs_rud_log_item *rudp;
513 struct xfs_trans *tp;
514 struct xfs_btree_cur *rcur = NULL;
515 struct xfs_mount *mp = lip->li_log->l_mp;
516 int i;
517 int error = 0;
518
519 /*
520 * First check the validity of the extents described by the
521 * RUI. If any are bad, then assume that all are bad and
522 * just toss the RUI.
523 */
524 for (i = 0; i < ruip->rui_format.rui_nextents; i++) {
525 if (!xfs_rui_validate_map(mp,
526 &ruip->rui_format.rui_extents[i])) {
527 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
528 &ruip->rui_format,
529 sizeof(ruip->rui_format));
530 return -EFSCORRUPTED;
531 }
532 }
533
534 resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate);
535 error = xfs_trans_alloc(mp, &resv, mp->m_rmap_maxlevels, 0,
536 XFS_TRANS_RESERVE, &tp);
537 if (error)
538 return error;
539 rudp = xfs_trans_get_rud(tp, ruip);
540
541 for (i = 0; i < ruip->rui_format.rui_nextents; i++) {
542 struct xfs_rmap_intent fake = { };
543 struct xfs_map_extent *map;
544
545 map = &ruip->rui_format.rui_extents[i];
546 switch (map->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) {
547 case XFS_RMAP_EXTENT_MAP:
548 fake.ri_type = XFS_RMAP_MAP;
549 break;
550 case XFS_RMAP_EXTENT_MAP_SHARED:
551 fake.ri_type = XFS_RMAP_MAP_SHARED;
552 break;
553 case XFS_RMAP_EXTENT_UNMAP:
554 fake.ri_type = XFS_RMAP_UNMAP;
555 break;
556 case XFS_RMAP_EXTENT_UNMAP_SHARED:
557 fake.ri_type = XFS_RMAP_UNMAP_SHARED;
558 break;
559 case XFS_RMAP_EXTENT_CONVERT:
560 fake.ri_type = XFS_RMAP_CONVERT;
561 break;
562 case XFS_RMAP_EXTENT_CONVERT_SHARED:
563 fake.ri_type = XFS_RMAP_CONVERT_SHARED;
564 break;
565 case XFS_RMAP_EXTENT_ALLOC:
566 fake.ri_type = XFS_RMAP_ALLOC;
567 break;
568 case XFS_RMAP_EXTENT_FREE:
569 fake.ri_type = XFS_RMAP_FREE;
570 break;
571 default:
572 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
573 &ruip->rui_format,
574 sizeof(ruip->rui_format));
575 error = -EFSCORRUPTED;
576 goto abort_error;
577 }
578
579 fake.ri_owner = map->me_owner;
580 fake.ri_whichfork = (map->me_flags & XFS_RMAP_EXTENT_ATTR_FORK) ?
581 XFS_ATTR_FORK : XFS_DATA_FORK;
582 fake.ri_bmap.br_startblock = map->me_startblock;
583 fake.ri_bmap.br_startoff = map->me_startoff;
584 fake.ri_bmap.br_blockcount = map->me_len;
585 fake.ri_bmap.br_state = (map->me_flags & XFS_RMAP_EXTENT_UNWRITTEN) ?
586 XFS_EXT_UNWRITTEN : XFS_EXT_NORM;
587
588 xfs_rmap_update_get_group(mp, &fake);
589 error = xfs_trans_log_finish_rmap_update(tp, rudp, &fake,
590 &rcur);
591 if (error == -EFSCORRUPTED)
592 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
593 map, sizeof(*map));
594 xfs_rmap_update_put_group(&fake);
595 if (error)
596 goto abort_error;
597
598 }
599
600 xfs_rmap_finish_one_cleanup(tp, rcur, error);
601 return xfs_defer_ops_capture_and_commit(tp, capture_list);
602
603 abort_error:
604 xfs_rmap_finish_one_cleanup(tp, rcur, error);
605 xfs_trans_cancel(tp);
606 return error;
607 }
608
609 STATIC bool
xfs_rui_item_match(struct xfs_log_item * lip,uint64_t intent_id)610 xfs_rui_item_match(
611 struct xfs_log_item *lip,
612 uint64_t intent_id)
613 {
614 return RUI_ITEM(lip)->rui_format.rui_id == intent_id;
615 }
616
617 /* Relog an intent item to push the log tail forward. */
618 static struct xfs_log_item *
xfs_rui_item_relog(struct xfs_log_item * intent,struct xfs_trans * tp)619 xfs_rui_item_relog(
620 struct xfs_log_item *intent,
621 struct xfs_trans *tp)
622 {
623 struct xfs_rud_log_item *rudp;
624 struct xfs_rui_log_item *ruip;
625 struct xfs_map_extent *map;
626 unsigned int count;
627
628 count = RUI_ITEM(intent)->rui_format.rui_nextents;
629 map = RUI_ITEM(intent)->rui_format.rui_extents;
630
631 tp->t_flags |= XFS_TRANS_DIRTY;
632 rudp = xfs_trans_get_rud(tp, RUI_ITEM(intent));
633 set_bit(XFS_LI_DIRTY, &rudp->rud_item.li_flags);
634
635 ruip = xfs_rui_init(tp->t_mountp, count);
636 memcpy(ruip->rui_format.rui_extents, map, count * sizeof(*map));
637 atomic_set(&ruip->rui_next_extent, count);
638 xfs_trans_add_item(tp, &ruip->rui_item);
639 set_bit(XFS_LI_DIRTY, &ruip->rui_item.li_flags);
640 return &ruip->rui_item;
641 }
642
643 static const struct xfs_item_ops xfs_rui_item_ops = {
644 .flags = XFS_ITEM_INTENT,
645 .iop_size = xfs_rui_item_size,
646 .iop_format = xfs_rui_item_format,
647 .iop_unpin = xfs_rui_item_unpin,
648 .iop_release = xfs_rui_item_release,
649 .iop_recover = xfs_rui_item_recover,
650 .iop_match = xfs_rui_item_match,
651 .iop_relog = xfs_rui_item_relog,
652 };
653
654 static inline void
xfs_rui_copy_format(struct xfs_rui_log_format * dst,const struct xfs_rui_log_format * src)655 xfs_rui_copy_format(
656 struct xfs_rui_log_format *dst,
657 const struct xfs_rui_log_format *src)
658 {
659 unsigned int i;
660
661 memcpy(dst, src, offsetof(struct xfs_rui_log_format, rui_extents));
662
663 for (i = 0; i < src->rui_nextents; i++)
664 memcpy(&dst->rui_extents[i], &src->rui_extents[i],
665 sizeof(struct xfs_map_extent));
666 }
667
668 /*
669 * This routine is called to create an in-core extent rmap update
670 * item from the rui format structure which was logged on disk.
671 * It allocates an in-core rui, copies the extents from the format
672 * structure into it, and adds the rui to the AIL with the given
673 * LSN.
674 */
675 STATIC int
xlog_recover_rui_commit_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t lsn)676 xlog_recover_rui_commit_pass2(
677 struct xlog *log,
678 struct list_head *buffer_list,
679 struct xlog_recover_item *item,
680 xfs_lsn_t lsn)
681 {
682 struct xfs_mount *mp = log->l_mp;
683 struct xfs_rui_log_item *ruip;
684 struct xfs_rui_log_format *rui_formatp;
685 size_t len;
686
687 rui_formatp = item->ri_buf[0].i_addr;
688
689 if (item->ri_buf[0].i_len < xfs_rui_log_format_sizeof(0)) {
690 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
691 item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
692 return -EFSCORRUPTED;
693 }
694
695 len = xfs_rui_log_format_sizeof(rui_formatp->rui_nextents);
696 if (item->ri_buf[0].i_len != len) {
697 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
698 item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
699 return -EFSCORRUPTED;
700 }
701
702 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
703 xfs_rui_copy_format(&ruip->rui_format, rui_formatp);
704 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
705 /*
706 * Insert the intent into the AIL directly and drop one reference so
707 * that finishing or canceling the work will drop the other.
708 */
709 xfs_trans_ail_insert(log->l_ailp, &ruip->rui_item, lsn);
710 xfs_rui_release(ruip);
711 return 0;
712 }
713
714 const struct xlog_recover_item_ops xlog_rui_item_ops = {
715 .item_type = XFS_LI_RUI,
716 .commit_pass2 = xlog_recover_rui_commit_pass2,
717 };
718
719 /*
720 * This routine is called when an RUD format structure is found in a committed
721 * transaction in the log. Its purpose is to cancel the corresponding RUI if it
722 * was still in the log. To do this it searches the AIL for the RUI with an id
723 * equal to that in the RUD format structure. If we find it we drop the RUD
724 * reference, which removes the RUI from the AIL and frees it.
725 */
726 STATIC int
xlog_recover_rud_commit_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t lsn)727 xlog_recover_rud_commit_pass2(
728 struct xlog *log,
729 struct list_head *buffer_list,
730 struct xlog_recover_item *item,
731 xfs_lsn_t lsn)
732 {
733 struct xfs_rud_log_format *rud_formatp;
734
735 rud_formatp = item->ri_buf[0].i_addr;
736 if (item->ri_buf[0].i_len != sizeof(struct xfs_rud_log_format)) {
737 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
738 rud_formatp, item->ri_buf[0].i_len);
739 return -EFSCORRUPTED;
740 }
741
742 xlog_recover_release_intent(log, XFS_LI_RUI, rud_formatp->rud_rui_id);
743 return 0;
744 }
745
746 const struct xlog_recover_item_ops xlog_rud_item_ops = {
747 .item_type = XFS_LI_RUD,
748 .commit_pass2 = xlog_recover_rud_commit_pass2,
749 };
750