1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
5 */
6
7 #include <linux/spinlock.h>
8 #include <linux/completion.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/gfs2_ondisk.h>
12 #include <linux/crc32.h>
13 #include <linux/iomap.h>
14 #include <linux/ktime.h>
15
16 #include "gfs2.h"
17 #include "incore.h"
18 #include "bmap.h"
19 #include "glock.h"
20 #include "inode.h"
21 #include "meta_io.h"
22 #include "quota.h"
23 #include "rgrp.h"
24 #include "log.h"
25 #include "super.h"
26 #include "trans.h"
27 #include "dir.h"
28 #include "util.h"
29 #include "aops.h"
30 #include "trace_gfs2.h"
31
32 /* This doesn't need to be that large as max 64 bit pointers in a 4k
33 * block is 512, so __u16 is fine for that. It saves stack space to
34 * keep it small.
35 */
36 struct metapath {
37 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
38 __u16 mp_list[GFS2_MAX_META_HEIGHT];
39 int mp_fheight; /* find_metapath height */
40 int mp_aheight; /* actual height (lookup height) */
41 };
42
43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length);
44
45 /**
46 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
47 * @ip: the inode
48 * @dibh: the dinode buffer
49 * @block: the block number that was allocated
50 * @page: The (optional) page. This is looked up if @page is NULL
51 *
52 * Returns: errno
53 */
54
gfs2_unstuffer_page(struct gfs2_inode * ip,struct buffer_head * dibh,u64 block,struct page * page)55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
56 u64 block, struct page *page)
57 {
58 struct inode *inode = &ip->i_inode;
59
60 if (!PageUptodate(page)) {
61 void *kaddr = kmap(page);
62 u64 dsize = i_size_read(inode);
63
64 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
65 memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
66 kunmap(page);
67
68 SetPageUptodate(page);
69 }
70
71 if (gfs2_is_jdata(ip)) {
72 struct buffer_head *bh;
73
74 if (!page_has_buffers(page))
75 create_empty_buffers(page, BIT(inode->i_blkbits),
76 BIT(BH_Uptodate));
77
78 bh = page_buffers(page);
79 if (!buffer_mapped(bh))
80 map_bh(bh, inode->i_sb, block);
81
82 set_buffer_uptodate(bh);
83 gfs2_trans_add_data(ip->i_gl, bh);
84 } else {
85 set_page_dirty(page);
86 gfs2_ordered_add_inode(ip);
87 }
88
89 return 0;
90 }
91
__gfs2_unstuff_inode(struct gfs2_inode * ip,struct page * page)92 static int __gfs2_unstuff_inode(struct gfs2_inode *ip, struct page *page)
93 {
94 struct buffer_head *bh, *dibh;
95 struct gfs2_dinode *di;
96 u64 block = 0;
97 int isdir = gfs2_is_dir(ip);
98 int error;
99
100 error = gfs2_meta_inode_buffer(ip, &dibh);
101 if (error)
102 return error;
103
104 if (i_size_read(&ip->i_inode)) {
105 /* Get a free block, fill it with the stuffed data,
106 and write it out to disk */
107
108 unsigned int n = 1;
109 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
110 if (error)
111 goto out_brelse;
112 if (isdir) {
113 gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1);
114 error = gfs2_dir_get_new_buffer(ip, block, &bh);
115 if (error)
116 goto out_brelse;
117 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
118 dibh, sizeof(struct gfs2_dinode));
119 brelse(bh);
120 } else {
121 error = gfs2_unstuffer_page(ip, dibh, block, page);
122 if (error)
123 goto out_brelse;
124 }
125 }
126
127 /* Set up the pointer to the new block */
128
129 gfs2_trans_add_meta(ip->i_gl, dibh);
130 di = (struct gfs2_dinode *)dibh->b_data;
131 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
132
133 if (i_size_read(&ip->i_inode)) {
134 *(__be64 *)(di + 1) = cpu_to_be64(block);
135 gfs2_add_inode_blocks(&ip->i_inode, 1);
136 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
137 }
138
139 ip->i_height = 1;
140 di->di_height = cpu_to_be16(1);
141
142 out_brelse:
143 brelse(dibh);
144 return error;
145 }
146
147 /**
148 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
149 * @ip: The GFS2 inode to unstuff
150 *
151 * This routine unstuffs a dinode and returns it to a "normal" state such
152 * that the height can be grown in the traditional way.
153 *
154 * Returns: errno
155 */
156
gfs2_unstuff_dinode(struct gfs2_inode * ip)157 int gfs2_unstuff_dinode(struct gfs2_inode *ip)
158 {
159 struct inode *inode = &ip->i_inode;
160 struct page *page;
161 int error;
162
163 down_write(&ip->i_rw_mutex);
164 page = grab_cache_page(inode->i_mapping, 0);
165 error = -ENOMEM;
166 if (!page)
167 goto out;
168 error = __gfs2_unstuff_inode(ip, page);
169 unlock_page(page);
170 put_page(page);
171 out:
172 up_write(&ip->i_rw_mutex);
173 return error;
174 }
175
176 /**
177 * find_metapath - Find path through the metadata tree
178 * @sdp: The superblock
179 * @block: The disk block to look up
180 * @mp: The metapath to return the result in
181 * @height: The pre-calculated height of the metadata tree
182 *
183 * This routine returns a struct metapath structure that defines a path
184 * through the metadata of inode "ip" to get to block "block".
185 *
186 * Example:
187 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a
188 * filesystem with a blocksize of 4096.
189 *
190 * find_metapath() would return a struct metapath structure set to:
191 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165.
192 *
193 * That means that in order to get to the block containing the byte at
194 * offset 101342453, we would load the indirect block pointed to by pointer
195 * 0 in the dinode. We would then load the indirect block pointed to by
196 * pointer 48 in that indirect block. We would then load the data block
197 * pointed to by pointer 165 in that indirect block.
198 *
199 * ----------------------------------------
200 * | Dinode | |
201 * | | 4|
202 * | |0 1 2 3 4 5 9|
203 * | | 6|
204 * ----------------------------------------
205 * |
206 * |
207 * V
208 * ----------------------------------------
209 * | Indirect Block |
210 * | 5|
211 * | 4 4 4 4 4 5 5 1|
212 * |0 5 6 7 8 9 0 1 2|
213 * ----------------------------------------
214 * |
215 * |
216 * V
217 * ----------------------------------------
218 * | Indirect Block |
219 * | 1 1 1 1 1 5|
220 * | 6 6 6 6 6 1|
221 * |0 3 4 5 6 7 2|
222 * ----------------------------------------
223 * |
224 * |
225 * V
226 * ----------------------------------------
227 * | Data block containing offset |
228 * | 101342453 |
229 * | |
230 * | |
231 * ----------------------------------------
232 *
233 */
234
find_metapath(const struct gfs2_sbd * sdp,u64 block,struct metapath * mp,unsigned int height)235 static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
236 struct metapath *mp, unsigned int height)
237 {
238 unsigned int i;
239
240 mp->mp_fheight = height;
241 for (i = height; i--;)
242 mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
243 }
244
metapath_branch_start(const struct metapath * mp)245 static inline unsigned int metapath_branch_start(const struct metapath *mp)
246 {
247 if (mp->mp_list[0] == 0)
248 return 2;
249 return 1;
250 }
251
252 /**
253 * metaptr1 - Return the first possible metadata pointer in a metapath buffer
254 * @height: The metadata height (0 = dinode)
255 * @mp: The metapath
256 */
metaptr1(unsigned int height,const struct metapath * mp)257 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
258 {
259 struct buffer_head *bh = mp->mp_bh[height];
260 if (height == 0)
261 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
262 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
263 }
264
265 /**
266 * metapointer - Return pointer to start of metadata in a buffer
267 * @height: The metadata height (0 = dinode)
268 * @mp: The metapath
269 *
270 * Return a pointer to the block number of the next height of the metadata
271 * tree given a buffer containing the pointer to the current height of the
272 * metadata tree.
273 */
274
metapointer(unsigned int height,const struct metapath * mp)275 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
276 {
277 __be64 *p = metaptr1(height, mp);
278 return p + mp->mp_list[height];
279 }
280
metaend(unsigned int height,const struct metapath * mp)281 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp)
282 {
283 const struct buffer_head *bh = mp->mp_bh[height];
284 return (const __be64 *)(bh->b_data + bh->b_size);
285 }
286
clone_metapath(struct metapath * clone,struct metapath * mp)287 static void clone_metapath(struct metapath *clone, struct metapath *mp)
288 {
289 unsigned int hgt;
290
291 *clone = *mp;
292 for (hgt = 0; hgt < mp->mp_aheight; hgt++)
293 get_bh(clone->mp_bh[hgt]);
294 }
295
gfs2_metapath_ra(struct gfs2_glock * gl,__be64 * start,__be64 * end)296 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
297 {
298 const __be64 *t;
299
300 for (t = start; t < end; t++) {
301 struct buffer_head *rabh;
302
303 if (!*t)
304 continue;
305
306 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
307 if (trylock_buffer(rabh)) {
308 if (!buffer_uptodate(rabh)) {
309 rabh->b_end_io = end_buffer_read_sync;
310 submit_bh(REQ_OP_READ | REQ_RAHEAD | REQ_META |
311 REQ_PRIO, rabh);
312 continue;
313 }
314 unlock_buffer(rabh);
315 }
316 brelse(rabh);
317 }
318 }
319
__fillup_metapath(struct gfs2_inode * ip,struct metapath * mp,unsigned int x,unsigned int h)320 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
321 unsigned int x, unsigned int h)
322 {
323 for (; x < h; x++) {
324 __be64 *ptr = metapointer(x, mp);
325 u64 dblock = be64_to_cpu(*ptr);
326 int ret;
327
328 if (!dblock)
329 break;
330 ret = gfs2_meta_buffer(ip, GFS2_METATYPE_IN, dblock, &mp->mp_bh[x + 1]);
331 if (ret)
332 return ret;
333 }
334 mp->mp_aheight = x + 1;
335 return 0;
336 }
337
338 /**
339 * lookup_metapath - Walk the metadata tree to a specific point
340 * @ip: The inode
341 * @mp: The metapath
342 *
343 * Assumes that the inode's buffer has already been looked up and
344 * hooked onto mp->mp_bh[0] and that the metapath has been initialised
345 * by find_metapath().
346 *
347 * If this function encounters part of the tree which has not been
348 * allocated, it returns the current height of the tree at the point
349 * at which it found the unallocated block. Blocks which are found are
350 * added to the mp->mp_bh[] list.
351 *
352 * Returns: error
353 */
354
lookup_metapath(struct gfs2_inode * ip,struct metapath * mp)355 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
356 {
357 return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
358 }
359
360 /**
361 * fillup_metapath - fill up buffers for the metadata path to a specific height
362 * @ip: The inode
363 * @mp: The metapath
364 * @h: The height to which it should be mapped
365 *
366 * Similar to lookup_metapath, but does lookups for a range of heights
367 *
368 * Returns: error or the number of buffers filled
369 */
370
fillup_metapath(struct gfs2_inode * ip,struct metapath * mp,int h)371 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
372 {
373 unsigned int x = 0;
374 int ret;
375
376 if (h) {
377 /* find the first buffer we need to look up. */
378 for (x = h - 1; x > 0; x--) {
379 if (mp->mp_bh[x])
380 break;
381 }
382 }
383 ret = __fillup_metapath(ip, mp, x, h);
384 if (ret)
385 return ret;
386 return mp->mp_aheight - x - 1;
387 }
388
metapath_to_block(struct gfs2_sbd * sdp,struct metapath * mp)389 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp)
390 {
391 sector_t factor = 1, block = 0;
392 int hgt;
393
394 for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) {
395 if (hgt < mp->mp_aheight)
396 block += mp->mp_list[hgt] * factor;
397 factor *= sdp->sd_inptrs;
398 }
399 return block;
400 }
401
release_metapath(struct metapath * mp)402 static void release_metapath(struct metapath *mp)
403 {
404 int i;
405
406 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
407 if (mp->mp_bh[i] == NULL)
408 break;
409 brelse(mp->mp_bh[i]);
410 mp->mp_bh[i] = NULL;
411 }
412 }
413
414 /**
415 * gfs2_extent_length - Returns length of an extent of blocks
416 * @bh: The metadata block
417 * @ptr: Current position in @bh
418 * @limit: Max extent length to return
419 * @eob: Set to 1 if we hit "end of block"
420 *
421 * Returns: The length of the extent (minimum of one block)
422 */
423
gfs2_extent_length(struct buffer_head * bh,__be64 * ptr,size_t limit,int * eob)424 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob)
425 {
426 const __be64 *end = (__be64 *)(bh->b_data + bh->b_size);
427 const __be64 *first = ptr;
428 u64 d = be64_to_cpu(*ptr);
429
430 *eob = 0;
431 do {
432 ptr++;
433 if (ptr >= end)
434 break;
435 d++;
436 } while(be64_to_cpu(*ptr) == d);
437 if (ptr >= end)
438 *eob = 1;
439 return ptr - first;
440 }
441
442 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE };
443
444 /*
445 * gfs2_metadata_walker - walk an indirect block
446 * @mp: Metapath to indirect block
447 * @ptrs: Number of pointers to look at
448 *
449 * When returning WALK_FOLLOW, the walker must update @mp to point at the right
450 * indirect block to follow.
451 */
452 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp,
453 unsigned int ptrs);
454
455 /*
456 * gfs2_walk_metadata - walk a tree of indirect blocks
457 * @inode: The inode
458 * @mp: Starting point of walk
459 * @max_len: Maximum number of blocks to walk
460 * @walker: Called during the walk
461 *
462 * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or
463 * past the end of metadata, and a negative error code otherwise.
464 */
465
gfs2_walk_metadata(struct inode * inode,struct metapath * mp,u64 max_len,gfs2_metadata_walker walker)466 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp,
467 u64 max_len, gfs2_metadata_walker walker)
468 {
469 struct gfs2_inode *ip = GFS2_I(inode);
470 struct gfs2_sbd *sdp = GFS2_SB(inode);
471 u64 factor = 1;
472 unsigned int hgt;
473 int ret;
474
475 /*
476 * The walk starts in the lowest allocated indirect block, which may be
477 * before the position indicated by @mp. Adjust @max_len accordingly
478 * to avoid a short walk.
479 */
480 for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) {
481 max_len += mp->mp_list[hgt] * factor;
482 mp->mp_list[hgt] = 0;
483 factor *= sdp->sd_inptrs;
484 }
485
486 for (;;) {
487 u16 start = mp->mp_list[hgt];
488 enum walker_status status;
489 unsigned int ptrs;
490 u64 len;
491
492 /* Walk indirect block. */
493 ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start;
494 len = ptrs * factor;
495 if (len > max_len)
496 ptrs = DIV_ROUND_UP_ULL(max_len, factor);
497 status = walker(mp, ptrs);
498 switch (status) {
499 case WALK_STOP:
500 return 1;
501 case WALK_FOLLOW:
502 BUG_ON(mp->mp_aheight == mp->mp_fheight);
503 ptrs = mp->mp_list[hgt] - start;
504 len = ptrs * factor;
505 break;
506 case WALK_CONTINUE:
507 break;
508 }
509 if (len >= max_len)
510 break;
511 max_len -= len;
512 if (status == WALK_FOLLOW)
513 goto fill_up_metapath;
514
515 lower_metapath:
516 /* Decrease height of metapath. */
517 brelse(mp->mp_bh[hgt]);
518 mp->mp_bh[hgt] = NULL;
519 mp->mp_list[hgt] = 0;
520 if (!hgt)
521 break;
522 hgt--;
523 factor *= sdp->sd_inptrs;
524
525 /* Advance in metadata tree. */
526 (mp->mp_list[hgt])++;
527 if (hgt) {
528 if (mp->mp_list[hgt] >= sdp->sd_inptrs)
529 goto lower_metapath;
530 } else {
531 if (mp->mp_list[hgt] >= sdp->sd_diptrs)
532 break;
533 }
534
535 fill_up_metapath:
536 /* Increase height of metapath. */
537 ret = fillup_metapath(ip, mp, ip->i_height - 1);
538 if (ret < 0)
539 return ret;
540 hgt += ret;
541 for (; ret; ret--)
542 do_div(factor, sdp->sd_inptrs);
543 mp->mp_aheight = hgt + 1;
544 }
545 return 0;
546 }
547
gfs2_hole_walker(struct metapath * mp,unsigned int ptrs)548 static enum walker_status gfs2_hole_walker(struct metapath *mp,
549 unsigned int ptrs)
550 {
551 const __be64 *start, *ptr, *end;
552 unsigned int hgt;
553
554 hgt = mp->mp_aheight - 1;
555 start = metapointer(hgt, mp);
556 end = start + ptrs;
557
558 for (ptr = start; ptr < end; ptr++) {
559 if (*ptr) {
560 mp->mp_list[hgt] += ptr - start;
561 if (mp->mp_aheight == mp->mp_fheight)
562 return WALK_STOP;
563 return WALK_FOLLOW;
564 }
565 }
566 return WALK_CONTINUE;
567 }
568
569 /**
570 * gfs2_hole_size - figure out the size of a hole
571 * @inode: The inode
572 * @lblock: The logical starting block number
573 * @len: How far to look (in blocks)
574 * @mp: The metapath at lblock
575 * @iomap: The iomap to store the hole size in
576 *
577 * This function modifies @mp.
578 *
579 * Returns: errno on error
580 */
gfs2_hole_size(struct inode * inode,sector_t lblock,u64 len,struct metapath * mp,struct iomap * iomap)581 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len,
582 struct metapath *mp, struct iomap *iomap)
583 {
584 struct metapath clone;
585 u64 hole_size;
586 int ret;
587
588 clone_metapath(&clone, mp);
589 ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker);
590 if (ret < 0)
591 goto out;
592
593 if (ret == 1)
594 hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock;
595 else
596 hole_size = len;
597 iomap->length = hole_size << inode->i_blkbits;
598 ret = 0;
599
600 out:
601 release_metapath(&clone);
602 return ret;
603 }
604
gfs2_indirect_init(struct metapath * mp,struct gfs2_glock * gl,unsigned int i,unsigned offset,u64 bn)605 static inline void gfs2_indirect_init(struct metapath *mp,
606 struct gfs2_glock *gl, unsigned int i,
607 unsigned offset, u64 bn)
608 {
609 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
610 ((i > 1) ? sizeof(struct gfs2_meta_header) :
611 sizeof(struct gfs2_dinode)));
612 BUG_ON(i < 1);
613 BUG_ON(mp->mp_bh[i] != NULL);
614 mp->mp_bh[i] = gfs2_meta_new(gl, bn);
615 gfs2_trans_add_meta(gl, mp->mp_bh[i]);
616 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
617 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
618 ptr += offset;
619 *ptr = cpu_to_be64(bn);
620 }
621
622 enum alloc_state {
623 ALLOC_DATA = 0,
624 ALLOC_GROW_DEPTH = 1,
625 ALLOC_GROW_HEIGHT = 2,
626 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */
627 };
628
629 /**
630 * __gfs2_iomap_alloc - Build a metadata tree of the requested height
631 * @inode: The GFS2 inode
632 * @iomap: The iomap structure
633 * @mp: The metapath, with proper height information calculated
634 *
635 * In this routine we may have to alloc:
636 * i) Indirect blocks to grow the metadata tree height
637 * ii) Indirect blocks to fill in lower part of the metadata tree
638 * iii) Data blocks
639 *
640 * This function is called after __gfs2_iomap_get, which works out the
641 * total number of blocks which we need via gfs2_alloc_size.
642 *
643 * We then do the actual allocation asking for an extent at a time (if
644 * enough contiguous free blocks are available, there will only be one
645 * allocation request per call) and uses the state machine to initialise
646 * the blocks in order.
647 *
648 * Right now, this function will allocate at most one indirect block
649 * worth of data -- with a default block size of 4K, that's slightly
650 * less than 2M. If this limitation is ever removed to allow huge
651 * allocations, we would probably still want to limit the iomap size we
652 * return to avoid stalling other tasks during huge writes; the next
653 * iomap iteration would then find the blocks already allocated.
654 *
655 * Returns: errno on error
656 */
657
__gfs2_iomap_alloc(struct inode * inode,struct iomap * iomap,struct metapath * mp)658 static int __gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
659 struct metapath *mp)
660 {
661 struct gfs2_inode *ip = GFS2_I(inode);
662 struct gfs2_sbd *sdp = GFS2_SB(inode);
663 struct buffer_head *dibh = mp->mp_bh[0];
664 u64 bn;
665 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
666 size_t dblks = iomap->length >> inode->i_blkbits;
667 const unsigned end_of_metadata = mp->mp_fheight - 1;
668 int ret;
669 enum alloc_state state;
670 __be64 *ptr;
671 __be64 zero_bn = 0;
672
673 BUG_ON(mp->mp_aheight < 1);
674 BUG_ON(dibh == NULL);
675 BUG_ON(dblks < 1);
676
677 gfs2_trans_add_meta(ip->i_gl, dibh);
678
679 down_write(&ip->i_rw_mutex);
680
681 if (mp->mp_fheight == mp->mp_aheight) {
682 /* Bottom indirect block exists */
683 state = ALLOC_DATA;
684 } else {
685 /* Need to allocate indirect blocks */
686 if (mp->mp_fheight == ip->i_height) {
687 /* Writing into existing tree, extend tree down */
688 iblks = mp->mp_fheight - mp->mp_aheight;
689 state = ALLOC_GROW_DEPTH;
690 } else {
691 /* Building up tree height */
692 state = ALLOC_GROW_HEIGHT;
693 iblks = mp->mp_fheight - ip->i_height;
694 branch_start = metapath_branch_start(mp);
695 iblks += (mp->mp_fheight - branch_start);
696 }
697 }
698
699 /* start of the second part of the function (state machine) */
700
701 blks = dblks + iblks;
702 i = mp->mp_aheight;
703 do {
704 n = blks - alloced;
705 ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
706 if (ret)
707 goto out;
708 alloced += n;
709 if (state != ALLOC_DATA || gfs2_is_jdata(ip))
710 gfs2_trans_remove_revoke(sdp, bn, n);
711 switch (state) {
712 /* Growing height of tree */
713 case ALLOC_GROW_HEIGHT:
714 if (i == 1) {
715 ptr = (__be64 *)(dibh->b_data +
716 sizeof(struct gfs2_dinode));
717 zero_bn = *ptr;
718 }
719 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
720 i++, n--)
721 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
722 if (i - 1 == mp->mp_fheight - ip->i_height) {
723 i--;
724 gfs2_buffer_copy_tail(mp->mp_bh[i],
725 sizeof(struct gfs2_meta_header),
726 dibh, sizeof(struct gfs2_dinode));
727 gfs2_buffer_clear_tail(dibh,
728 sizeof(struct gfs2_dinode) +
729 sizeof(__be64));
730 ptr = (__be64 *)(mp->mp_bh[i]->b_data +
731 sizeof(struct gfs2_meta_header));
732 *ptr = zero_bn;
733 state = ALLOC_GROW_DEPTH;
734 for(i = branch_start; i < mp->mp_fheight; i++) {
735 if (mp->mp_bh[i] == NULL)
736 break;
737 brelse(mp->mp_bh[i]);
738 mp->mp_bh[i] = NULL;
739 }
740 i = branch_start;
741 }
742 if (n == 0)
743 break;
744 fallthrough; /* To branching from existing tree */
745 case ALLOC_GROW_DEPTH:
746 if (i > 1 && i < mp->mp_fheight)
747 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
748 for (; i < mp->mp_fheight && n > 0; i++, n--)
749 gfs2_indirect_init(mp, ip->i_gl, i,
750 mp->mp_list[i-1], bn++);
751 if (i == mp->mp_fheight)
752 state = ALLOC_DATA;
753 if (n == 0)
754 break;
755 fallthrough; /* To tree complete, adding data blocks */
756 case ALLOC_DATA:
757 BUG_ON(n > dblks);
758 BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
759 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
760 dblks = n;
761 ptr = metapointer(end_of_metadata, mp);
762 iomap->addr = bn << inode->i_blkbits;
763 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW;
764 while (n-- > 0)
765 *ptr++ = cpu_to_be64(bn++);
766 break;
767 }
768 } while (iomap->addr == IOMAP_NULL_ADDR);
769
770 iomap->type = IOMAP_MAPPED;
771 iomap->length = (u64)dblks << inode->i_blkbits;
772 ip->i_height = mp->mp_fheight;
773 gfs2_add_inode_blocks(&ip->i_inode, alloced);
774 gfs2_dinode_out(ip, dibh->b_data);
775 out:
776 up_write(&ip->i_rw_mutex);
777 return ret;
778 }
779
780 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE
781
782 /**
783 * gfs2_alloc_size - Compute the maximum allocation size
784 * @inode: The inode
785 * @mp: The metapath
786 * @size: Requested size in blocks
787 *
788 * Compute the maximum size of the next allocation at @mp.
789 *
790 * Returns: size in blocks
791 */
gfs2_alloc_size(struct inode * inode,struct metapath * mp,u64 size)792 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size)
793 {
794 struct gfs2_inode *ip = GFS2_I(inode);
795 struct gfs2_sbd *sdp = GFS2_SB(inode);
796 const __be64 *first, *ptr, *end;
797
798 /*
799 * For writes to stuffed files, this function is called twice via
800 * __gfs2_iomap_get, before and after unstuffing. The size we return the
801 * first time needs to be large enough to get the reservation and
802 * allocation sizes right. The size we return the second time must
803 * be exact or else __gfs2_iomap_alloc won't do the right thing.
804 */
805
806 if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) {
807 unsigned int maxsize = mp->mp_fheight > 1 ?
808 sdp->sd_inptrs : sdp->sd_diptrs;
809 maxsize -= mp->mp_list[mp->mp_fheight - 1];
810 if (size > maxsize)
811 size = maxsize;
812 return size;
813 }
814
815 first = metapointer(ip->i_height - 1, mp);
816 end = metaend(ip->i_height - 1, mp);
817 if (end - first > size)
818 end = first + size;
819 for (ptr = first; ptr < end; ptr++) {
820 if (*ptr)
821 break;
822 }
823 return ptr - first;
824 }
825
826 /**
827 * __gfs2_iomap_get - Map blocks from an inode to disk blocks
828 * @inode: The inode
829 * @pos: Starting position in bytes
830 * @length: Length to map, in bytes
831 * @flags: iomap flags
832 * @iomap: The iomap structure
833 * @mp: The metapath
834 *
835 * Returns: errno
836 */
__gfs2_iomap_get(struct inode * inode,loff_t pos,loff_t length,unsigned flags,struct iomap * iomap,struct metapath * mp)837 static int __gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
838 unsigned flags, struct iomap *iomap,
839 struct metapath *mp)
840 {
841 struct gfs2_inode *ip = GFS2_I(inode);
842 struct gfs2_sbd *sdp = GFS2_SB(inode);
843 loff_t size = i_size_read(inode);
844 __be64 *ptr;
845 sector_t lblock;
846 sector_t lblock_stop;
847 int ret;
848 int eob;
849 u64 len;
850 struct buffer_head *dibh = NULL, *bh;
851 u8 height;
852
853 if (!length)
854 return -EINVAL;
855
856 down_read(&ip->i_rw_mutex);
857
858 ret = gfs2_meta_inode_buffer(ip, &dibh);
859 if (ret)
860 goto unlock;
861 mp->mp_bh[0] = dibh;
862
863 if (gfs2_is_stuffed(ip)) {
864 if (flags & IOMAP_WRITE) {
865 loff_t max_size = gfs2_max_stuffed_size(ip);
866
867 if (pos + length > max_size)
868 goto unstuff;
869 iomap->length = max_size;
870 } else {
871 if (pos >= size) {
872 if (flags & IOMAP_REPORT) {
873 ret = -ENOENT;
874 goto unlock;
875 } else {
876 iomap->offset = pos;
877 iomap->length = length;
878 goto hole_found;
879 }
880 }
881 iomap->length = size;
882 }
883 iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
884 sizeof(struct gfs2_dinode);
885 iomap->type = IOMAP_INLINE;
886 iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode);
887 goto out;
888 }
889
890 unstuff:
891 lblock = pos >> inode->i_blkbits;
892 iomap->offset = lblock << inode->i_blkbits;
893 lblock_stop = (pos + length - 1) >> inode->i_blkbits;
894 len = lblock_stop - lblock + 1;
895 iomap->length = len << inode->i_blkbits;
896
897 height = ip->i_height;
898 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height])
899 height++;
900 find_metapath(sdp, lblock, mp, height);
901 if (height > ip->i_height || gfs2_is_stuffed(ip))
902 goto do_alloc;
903
904 ret = lookup_metapath(ip, mp);
905 if (ret)
906 goto unlock;
907
908 if (mp->mp_aheight != ip->i_height)
909 goto do_alloc;
910
911 ptr = metapointer(ip->i_height - 1, mp);
912 if (*ptr == 0)
913 goto do_alloc;
914
915 bh = mp->mp_bh[ip->i_height - 1];
916 len = gfs2_extent_length(bh, ptr, len, &eob);
917
918 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
919 iomap->length = len << inode->i_blkbits;
920 iomap->type = IOMAP_MAPPED;
921 iomap->flags |= IOMAP_F_MERGED;
922 if (eob)
923 iomap->flags |= IOMAP_F_GFS2_BOUNDARY;
924
925 out:
926 iomap->bdev = inode->i_sb->s_bdev;
927 unlock:
928 up_read(&ip->i_rw_mutex);
929 return ret;
930
931 do_alloc:
932 if (flags & IOMAP_REPORT) {
933 if (pos >= size)
934 ret = -ENOENT;
935 else if (height == ip->i_height)
936 ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
937 else
938 iomap->length = size - iomap->offset;
939 } else if (flags & IOMAP_WRITE) {
940 u64 alloc_size;
941
942 if (flags & IOMAP_DIRECT)
943 goto out; /* (see gfs2_file_direct_write) */
944
945 len = gfs2_alloc_size(inode, mp, len);
946 alloc_size = len << inode->i_blkbits;
947 if (alloc_size < iomap->length)
948 iomap->length = alloc_size;
949 } else {
950 if (pos < size && height == ip->i_height)
951 ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
952 }
953 hole_found:
954 iomap->addr = IOMAP_NULL_ADDR;
955 iomap->type = IOMAP_HOLE;
956 goto out;
957 }
958
959 static struct folio *
gfs2_iomap_get_folio(struct iomap_iter * iter,loff_t pos,unsigned len)960 gfs2_iomap_get_folio(struct iomap_iter *iter, loff_t pos, unsigned len)
961 {
962 struct inode *inode = iter->inode;
963 unsigned int blockmask = i_blocksize(inode) - 1;
964 struct gfs2_sbd *sdp = GFS2_SB(inode);
965 unsigned int blocks;
966 struct folio *folio;
967 int status;
968
969 blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits;
970 status = gfs2_trans_begin(sdp, RES_DINODE + blocks, 0);
971 if (status)
972 return ERR_PTR(status);
973
974 folio = iomap_get_folio(iter, pos, len);
975 if (IS_ERR(folio))
976 gfs2_trans_end(sdp);
977 return folio;
978 }
979
gfs2_iomap_put_folio(struct inode * inode,loff_t pos,unsigned copied,struct folio * folio)980 static void gfs2_iomap_put_folio(struct inode *inode, loff_t pos,
981 unsigned copied, struct folio *folio)
982 {
983 struct gfs2_trans *tr = current->journal_info;
984 struct gfs2_inode *ip = GFS2_I(inode);
985 struct gfs2_sbd *sdp = GFS2_SB(inode);
986
987 if (!gfs2_is_stuffed(ip))
988 gfs2_trans_add_databufs(ip, folio, offset_in_folio(folio, pos),
989 copied);
990
991 folio_unlock(folio);
992 folio_put(folio);
993
994 if (tr->tr_num_buf_new)
995 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
996
997 gfs2_trans_end(sdp);
998 }
999
1000 static const struct iomap_folio_ops gfs2_iomap_folio_ops = {
1001 .get_folio = gfs2_iomap_get_folio,
1002 .put_folio = gfs2_iomap_put_folio,
1003 };
1004
gfs2_iomap_begin_write(struct inode * inode,loff_t pos,loff_t length,unsigned flags,struct iomap * iomap,struct metapath * mp)1005 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos,
1006 loff_t length, unsigned flags,
1007 struct iomap *iomap,
1008 struct metapath *mp)
1009 {
1010 struct gfs2_inode *ip = GFS2_I(inode);
1011 struct gfs2_sbd *sdp = GFS2_SB(inode);
1012 bool unstuff;
1013 int ret;
1014
1015 unstuff = gfs2_is_stuffed(ip) &&
1016 pos + length > gfs2_max_stuffed_size(ip);
1017
1018 if (unstuff || iomap->type == IOMAP_HOLE) {
1019 unsigned int data_blocks, ind_blocks;
1020 struct gfs2_alloc_parms ap = {};
1021 unsigned int rblocks;
1022 struct gfs2_trans *tr;
1023
1024 gfs2_write_calc_reserv(ip, iomap->length, &data_blocks,
1025 &ind_blocks);
1026 ap.target = data_blocks + ind_blocks;
1027 ret = gfs2_quota_lock_check(ip, &ap);
1028 if (ret)
1029 return ret;
1030
1031 ret = gfs2_inplace_reserve(ip, &ap);
1032 if (ret)
1033 goto out_qunlock;
1034
1035 rblocks = RES_DINODE + ind_blocks;
1036 if (gfs2_is_jdata(ip))
1037 rblocks += data_blocks;
1038 if (ind_blocks || data_blocks)
1039 rblocks += RES_STATFS + RES_QUOTA;
1040 if (inode == sdp->sd_rindex)
1041 rblocks += 2 * RES_STATFS;
1042 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1043
1044 ret = gfs2_trans_begin(sdp, rblocks,
1045 iomap->length >> inode->i_blkbits);
1046 if (ret)
1047 goto out_trans_fail;
1048
1049 if (unstuff) {
1050 ret = gfs2_unstuff_dinode(ip);
1051 if (ret)
1052 goto out_trans_end;
1053 release_metapath(mp);
1054 ret = __gfs2_iomap_get(inode, iomap->offset,
1055 iomap->length, flags, iomap, mp);
1056 if (ret)
1057 goto out_trans_end;
1058 }
1059
1060 if (iomap->type == IOMAP_HOLE) {
1061 ret = __gfs2_iomap_alloc(inode, iomap, mp);
1062 if (ret) {
1063 gfs2_trans_end(sdp);
1064 gfs2_inplace_release(ip);
1065 punch_hole(ip, iomap->offset, iomap->length);
1066 goto out_qunlock;
1067 }
1068 }
1069
1070 tr = current->journal_info;
1071 if (tr->tr_num_buf_new)
1072 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1073
1074 gfs2_trans_end(sdp);
1075 }
1076
1077 if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip))
1078 iomap->folio_ops = &gfs2_iomap_folio_ops;
1079 return 0;
1080
1081 out_trans_end:
1082 gfs2_trans_end(sdp);
1083 out_trans_fail:
1084 gfs2_inplace_release(ip);
1085 out_qunlock:
1086 gfs2_quota_unlock(ip);
1087 return ret;
1088 }
1089
gfs2_iomap_begin(struct inode * inode,loff_t pos,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1090 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
1091 unsigned flags, struct iomap *iomap,
1092 struct iomap *srcmap)
1093 {
1094 struct gfs2_inode *ip = GFS2_I(inode);
1095 struct metapath mp = { .mp_aheight = 1, };
1096 int ret;
1097
1098 if (gfs2_is_jdata(ip))
1099 iomap->flags |= IOMAP_F_BUFFER_HEAD;
1100
1101 trace_gfs2_iomap_start(ip, pos, length, flags);
1102 ret = __gfs2_iomap_get(inode, pos, length, flags, iomap, &mp);
1103 if (ret)
1104 goto out_unlock;
1105
1106 switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1107 case IOMAP_WRITE:
1108 if (flags & IOMAP_DIRECT) {
1109 /*
1110 * Silently fall back to buffered I/O for stuffed files
1111 * or if we've got a hole (see gfs2_file_direct_write).
1112 */
1113 if (iomap->type != IOMAP_MAPPED)
1114 ret = -ENOTBLK;
1115 goto out_unlock;
1116 }
1117 break;
1118 case IOMAP_ZERO:
1119 if (iomap->type == IOMAP_HOLE)
1120 goto out_unlock;
1121 break;
1122 default:
1123 goto out_unlock;
1124 }
1125
1126 ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp);
1127
1128 out_unlock:
1129 release_metapath(&mp);
1130 trace_gfs2_iomap_end(ip, iomap, ret);
1131 return ret;
1132 }
1133
gfs2_iomap_end(struct inode * inode,loff_t pos,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)1134 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length,
1135 ssize_t written, unsigned flags, struct iomap *iomap)
1136 {
1137 struct gfs2_inode *ip = GFS2_I(inode);
1138 struct gfs2_sbd *sdp = GFS2_SB(inode);
1139
1140 switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1141 case IOMAP_WRITE:
1142 if (flags & IOMAP_DIRECT)
1143 return 0;
1144 break;
1145 case IOMAP_ZERO:
1146 if (iomap->type == IOMAP_HOLE)
1147 return 0;
1148 break;
1149 default:
1150 return 0;
1151 }
1152
1153 if (!gfs2_is_stuffed(ip))
1154 gfs2_ordered_add_inode(ip);
1155
1156 if (inode == sdp->sd_rindex)
1157 adjust_fs_space(inode);
1158
1159 gfs2_inplace_release(ip);
1160
1161 if (ip->i_qadata && ip->i_qadata->qa_qd_num)
1162 gfs2_quota_unlock(ip);
1163
1164 if (length != written && (iomap->flags & IOMAP_F_NEW)) {
1165 /* Deallocate blocks that were just allocated. */
1166 loff_t hstart = round_up(pos + written, i_blocksize(inode));
1167 loff_t hend = iomap->offset + iomap->length;
1168
1169 if (hstart < hend) {
1170 truncate_pagecache_range(inode, hstart, hend - 1);
1171 punch_hole(ip, hstart, hend - hstart);
1172 }
1173 }
1174
1175 if (unlikely(!written))
1176 return 0;
1177
1178 if (iomap->flags & IOMAP_F_SIZE_CHANGED)
1179 mark_inode_dirty(inode);
1180 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
1181 return 0;
1182 }
1183
1184 const struct iomap_ops gfs2_iomap_ops = {
1185 .iomap_begin = gfs2_iomap_begin,
1186 .iomap_end = gfs2_iomap_end,
1187 };
1188
1189 /**
1190 * gfs2_block_map - Map one or more blocks of an inode to a disk block
1191 * @inode: The inode
1192 * @lblock: The logical block number
1193 * @bh_map: The bh to be mapped
1194 * @create: True if its ok to alloc blocks to satify the request
1195 *
1196 * The size of the requested mapping is defined in bh_map->b_size.
1197 *
1198 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
1199 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and
1200 * bh_map->b_size to indicate the size of the mapping when @lblock and
1201 * successive blocks are mapped, up to the requested size.
1202 *
1203 * Sets buffer_boundary() if a read of metadata will be required
1204 * before the next block can be mapped. Sets buffer_new() if new
1205 * blocks were allocated.
1206 *
1207 * Returns: errno
1208 */
1209
gfs2_block_map(struct inode * inode,sector_t lblock,struct buffer_head * bh_map,int create)1210 int gfs2_block_map(struct inode *inode, sector_t lblock,
1211 struct buffer_head *bh_map, int create)
1212 {
1213 struct gfs2_inode *ip = GFS2_I(inode);
1214 loff_t pos = (loff_t)lblock << inode->i_blkbits;
1215 loff_t length = bh_map->b_size;
1216 struct iomap iomap = { };
1217 int ret;
1218
1219 clear_buffer_mapped(bh_map);
1220 clear_buffer_new(bh_map);
1221 clear_buffer_boundary(bh_map);
1222 trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
1223
1224 if (!create)
1225 ret = gfs2_iomap_get(inode, pos, length, &iomap);
1226 else
1227 ret = gfs2_iomap_alloc(inode, pos, length, &iomap);
1228 if (ret)
1229 goto out;
1230
1231 if (iomap.length > bh_map->b_size) {
1232 iomap.length = bh_map->b_size;
1233 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY;
1234 }
1235 if (iomap.addr != IOMAP_NULL_ADDR)
1236 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
1237 bh_map->b_size = iomap.length;
1238 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY)
1239 set_buffer_boundary(bh_map);
1240 if (iomap.flags & IOMAP_F_NEW)
1241 set_buffer_new(bh_map);
1242
1243 out:
1244 trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
1245 return ret;
1246 }
1247
gfs2_get_extent(struct inode * inode,u64 lblock,u64 * dblock,unsigned int * extlen)1248 int gfs2_get_extent(struct inode *inode, u64 lblock, u64 *dblock,
1249 unsigned int *extlen)
1250 {
1251 unsigned int blkbits = inode->i_blkbits;
1252 struct iomap iomap = { };
1253 unsigned int len;
1254 int ret;
1255
1256 ret = gfs2_iomap_get(inode, lblock << blkbits, *extlen << blkbits,
1257 &iomap);
1258 if (ret)
1259 return ret;
1260 if (iomap.type != IOMAP_MAPPED)
1261 return -EIO;
1262 *dblock = iomap.addr >> blkbits;
1263 len = iomap.length >> blkbits;
1264 if (len < *extlen)
1265 *extlen = len;
1266 return 0;
1267 }
1268
gfs2_alloc_extent(struct inode * inode,u64 lblock,u64 * dblock,unsigned int * extlen,bool * new)1269 int gfs2_alloc_extent(struct inode *inode, u64 lblock, u64 *dblock,
1270 unsigned int *extlen, bool *new)
1271 {
1272 unsigned int blkbits = inode->i_blkbits;
1273 struct iomap iomap = { };
1274 unsigned int len;
1275 int ret;
1276
1277 ret = gfs2_iomap_alloc(inode, lblock << blkbits, *extlen << blkbits,
1278 &iomap);
1279 if (ret)
1280 return ret;
1281 if (iomap.type != IOMAP_MAPPED)
1282 return -EIO;
1283 *dblock = iomap.addr >> blkbits;
1284 len = iomap.length >> blkbits;
1285 if (len < *extlen)
1286 *extlen = len;
1287 *new = iomap.flags & IOMAP_F_NEW;
1288 return 0;
1289 }
1290
1291 /*
1292 * NOTE: Never call gfs2_block_zero_range with an open transaction because it
1293 * uses iomap write to perform its actions, which begin their own transactions
1294 * (iomap_begin, get_folio, etc.)
1295 */
gfs2_block_zero_range(struct inode * inode,loff_t from,unsigned int length)1296 static int gfs2_block_zero_range(struct inode *inode, loff_t from,
1297 unsigned int length)
1298 {
1299 BUG_ON(current->journal_info);
1300 return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops);
1301 }
1302
1303 #define GFS2_JTRUNC_REVOKES 8192
1304
1305 /**
1306 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
1307 * @inode: The inode being truncated
1308 * @oldsize: The original (larger) size
1309 * @newsize: The new smaller size
1310 *
1311 * With jdata files, we have to journal a revoke for each block which is
1312 * truncated. As a result, we need to split this into separate transactions
1313 * if the number of pages being truncated gets too large.
1314 */
1315
gfs2_journaled_truncate(struct inode * inode,u64 oldsize,u64 newsize)1316 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1317 {
1318 struct gfs2_sbd *sdp = GFS2_SB(inode);
1319 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1320 u64 chunk;
1321 int error;
1322
1323 while (oldsize != newsize) {
1324 struct gfs2_trans *tr;
1325 unsigned int offs;
1326
1327 chunk = oldsize - newsize;
1328 if (chunk > max_chunk)
1329 chunk = max_chunk;
1330
1331 offs = oldsize & ~PAGE_MASK;
1332 if (offs && chunk > PAGE_SIZE)
1333 chunk = offs + ((chunk - offs) & PAGE_MASK);
1334
1335 truncate_pagecache(inode, oldsize - chunk);
1336 oldsize -= chunk;
1337
1338 tr = current->journal_info;
1339 if (!test_bit(TR_TOUCHED, &tr->tr_flags))
1340 continue;
1341
1342 gfs2_trans_end(sdp);
1343 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1344 if (error)
1345 return error;
1346 }
1347
1348 return 0;
1349 }
1350
trunc_start(struct inode * inode,u64 newsize)1351 static int trunc_start(struct inode *inode, u64 newsize)
1352 {
1353 struct gfs2_inode *ip = GFS2_I(inode);
1354 struct gfs2_sbd *sdp = GFS2_SB(inode);
1355 struct buffer_head *dibh = NULL;
1356 int journaled = gfs2_is_jdata(ip);
1357 u64 oldsize = inode->i_size;
1358 int error;
1359
1360 if (!gfs2_is_stuffed(ip)) {
1361 unsigned int blocksize = i_blocksize(inode);
1362 unsigned int offs = newsize & (blocksize - 1);
1363 if (offs) {
1364 error = gfs2_block_zero_range(inode, newsize,
1365 blocksize - offs);
1366 if (error)
1367 return error;
1368 }
1369 }
1370 if (journaled)
1371 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1372 else
1373 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1374 if (error)
1375 return error;
1376
1377 error = gfs2_meta_inode_buffer(ip, &dibh);
1378 if (error)
1379 goto out;
1380
1381 gfs2_trans_add_meta(ip->i_gl, dibh);
1382
1383 if (gfs2_is_stuffed(ip))
1384 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1385 else
1386 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1387
1388 i_size_write(inode, newsize);
1389 ip->i_inode.i_mtime = inode_set_ctime_current(&ip->i_inode);
1390 gfs2_dinode_out(ip, dibh->b_data);
1391
1392 if (journaled)
1393 error = gfs2_journaled_truncate(inode, oldsize, newsize);
1394 else
1395 truncate_pagecache(inode, newsize);
1396
1397 out:
1398 brelse(dibh);
1399 if (current->journal_info)
1400 gfs2_trans_end(sdp);
1401 return error;
1402 }
1403
gfs2_iomap_get(struct inode * inode,loff_t pos,loff_t length,struct iomap * iomap)1404 int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
1405 struct iomap *iomap)
1406 {
1407 struct metapath mp = { .mp_aheight = 1, };
1408 int ret;
1409
1410 ret = __gfs2_iomap_get(inode, pos, length, 0, iomap, &mp);
1411 release_metapath(&mp);
1412 return ret;
1413 }
1414
gfs2_iomap_alloc(struct inode * inode,loff_t pos,loff_t length,struct iomap * iomap)1415 int gfs2_iomap_alloc(struct inode *inode, loff_t pos, loff_t length,
1416 struct iomap *iomap)
1417 {
1418 struct metapath mp = { .mp_aheight = 1, };
1419 int ret;
1420
1421 ret = __gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp);
1422 if (!ret && iomap->type == IOMAP_HOLE)
1423 ret = __gfs2_iomap_alloc(inode, iomap, &mp);
1424 release_metapath(&mp);
1425 return ret;
1426 }
1427
1428 /**
1429 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1430 * @ip: inode
1431 * @rd_gh: holder of resource group glock
1432 * @bh: buffer head to sweep
1433 * @start: starting point in bh
1434 * @end: end point in bh
1435 * @meta: true if bh points to metadata (rather than data)
1436 * @btotal: place to keep count of total blocks freed
1437 *
1438 * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1439 * free, and free them all. However, we do it one rgrp at a time. If this
1440 * block has references to multiple rgrps, we break it into individual
1441 * transactions. This allows other processes to use the rgrps while we're
1442 * focused on a single one, for better concurrency / performance.
1443 * At every transaction boundary, we rewrite the inode into the journal.
1444 * That way the bitmaps are kept consistent with the inode and we can recover
1445 * if we're interrupted by power-outages.
1446 *
1447 * Returns: 0, or return code if an error occurred.
1448 * *btotal has the total number of blocks freed
1449 */
sweep_bh_for_rgrps(struct gfs2_inode * ip,struct gfs2_holder * rd_gh,struct buffer_head * bh,__be64 * start,__be64 * end,bool meta,u32 * btotal)1450 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1451 struct buffer_head *bh, __be64 *start, __be64 *end,
1452 bool meta, u32 *btotal)
1453 {
1454 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1455 struct gfs2_rgrpd *rgd;
1456 struct gfs2_trans *tr;
1457 __be64 *p;
1458 int blks_outside_rgrp;
1459 u64 bn, bstart, isize_blks;
1460 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1461 int ret = 0;
1462 bool buf_in_tr = false; /* buffer was added to transaction */
1463
1464 more_rgrps:
1465 rgd = NULL;
1466 if (gfs2_holder_initialized(rd_gh)) {
1467 rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1468 gfs2_assert_withdraw(sdp,
1469 gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1470 }
1471 blks_outside_rgrp = 0;
1472 bstart = 0;
1473 blen = 0;
1474
1475 for (p = start; p < end; p++) {
1476 if (!*p)
1477 continue;
1478 bn = be64_to_cpu(*p);
1479
1480 if (rgd) {
1481 if (!rgrp_contains_block(rgd, bn)) {
1482 blks_outside_rgrp++;
1483 continue;
1484 }
1485 } else {
1486 rgd = gfs2_blk2rgrpd(sdp, bn, true);
1487 if (unlikely(!rgd)) {
1488 ret = -EIO;
1489 goto out;
1490 }
1491 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1492 LM_FLAG_NODE_SCOPE, rd_gh);
1493 if (ret)
1494 goto out;
1495
1496 /* Must be done with the rgrp glock held: */
1497 if (gfs2_rs_active(&ip->i_res) &&
1498 rgd == ip->i_res.rs_rgd)
1499 gfs2_rs_deltree(&ip->i_res);
1500 }
1501
1502 /* The size of our transactions will be unknown until we
1503 actually process all the metadata blocks that relate to
1504 the rgrp. So we estimate. We know it can't be more than
1505 the dinode's i_blocks and we don't want to exceed the
1506 journal flush threshold, sd_log_thresh2. */
1507 if (current->journal_info == NULL) {
1508 unsigned int jblocks_rqsted, revokes;
1509
1510 jblocks_rqsted = rgd->rd_length + RES_DINODE +
1511 RES_INDIRECT;
1512 isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1513 if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1514 jblocks_rqsted +=
1515 atomic_read(&sdp->sd_log_thresh2);
1516 else
1517 jblocks_rqsted += isize_blks;
1518 revokes = jblocks_rqsted;
1519 if (meta)
1520 revokes += end - start;
1521 else if (ip->i_depth)
1522 revokes += sdp->sd_inptrs;
1523 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1524 if (ret)
1525 goto out_unlock;
1526 down_write(&ip->i_rw_mutex);
1527 }
1528 /* check if we will exceed the transaction blocks requested */
1529 tr = current->journal_info;
1530 if (tr->tr_num_buf_new + RES_STATFS +
1531 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1532 /* We set blks_outside_rgrp to ensure the loop will
1533 be repeated for the same rgrp, but with a new
1534 transaction. */
1535 blks_outside_rgrp++;
1536 /* This next part is tricky. If the buffer was added
1537 to the transaction, we've already set some block
1538 pointers to 0, so we better follow through and free
1539 them, or we will introduce corruption (so break).
1540 This may be impossible, or at least rare, but I
1541 decided to cover the case regardless.
1542
1543 If the buffer was not added to the transaction
1544 (this call), doing so would exceed our transaction
1545 size, so we need to end the transaction and start a
1546 new one (so goto). */
1547
1548 if (buf_in_tr)
1549 break;
1550 goto out_unlock;
1551 }
1552
1553 gfs2_trans_add_meta(ip->i_gl, bh);
1554 buf_in_tr = true;
1555 *p = 0;
1556 if (bstart + blen == bn) {
1557 blen++;
1558 continue;
1559 }
1560 if (bstart) {
1561 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1562 (*btotal) += blen;
1563 gfs2_add_inode_blocks(&ip->i_inode, -blen);
1564 }
1565 bstart = bn;
1566 blen = 1;
1567 }
1568 if (bstart) {
1569 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1570 (*btotal) += blen;
1571 gfs2_add_inode_blocks(&ip->i_inode, -blen);
1572 }
1573 out_unlock:
1574 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1575 outside the rgrp we just processed,
1576 do it all over again. */
1577 if (current->journal_info) {
1578 struct buffer_head *dibh;
1579
1580 ret = gfs2_meta_inode_buffer(ip, &dibh);
1581 if (ret)
1582 goto out;
1583
1584 /* Every transaction boundary, we rewrite the dinode
1585 to keep its di_blocks current in case of failure. */
1586 ip->i_inode.i_mtime = inode_set_ctime_current(&ip->i_inode);
1587 gfs2_trans_add_meta(ip->i_gl, dibh);
1588 gfs2_dinode_out(ip, dibh->b_data);
1589 brelse(dibh);
1590 up_write(&ip->i_rw_mutex);
1591 gfs2_trans_end(sdp);
1592 buf_in_tr = false;
1593 }
1594 gfs2_glock_dq_uninit(rd_gh);
1595 cond_resched();
1596 goto more_rgrps;
1597 }
1598 out:
1599 return ret;
1600 }
1601
mp_eq_to_hgt(struct metapath * mp,__u16 * list,unsigned int h)1602 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1603 {
1604 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1605 return false;
1606 return true;
1607 }
1608
1609 /**
1610 * find_nonnull_ptr - find a non-null pointer given a metapath and height
1611 * @sdp: The superblock
1612 * @mp: starting metapath
1613 * @h: desired height to search
1614 * @end_list: See punch_hole().
1615 * @end_aligned: See punch_hole().
1616 *
1617 * Assumes the metapath is valid (with buffers) out to height h.
1618 * Returns: true if a non-null pointer was found in the metapath buffer
1619 * false if all remaining pointers are NULL in the buffer
1620 */
find_nonnull_ptr(struct gfs2_sbd * sdp,struct metapath * mp,unsigned int h,__u16 * end_list,unsigned int end_aligned)1621 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1622 unsigned int h,
1623 __u16 *end_list, unsigned int end_aligned)
1624 {
1625 struct buffer_head *bh = mp->mp_bh[h];
1626 __be64 *first, *ptr, *end;
1627
1628 first = metaptr1(h, mp);
1629 ptr = first + mp->mp_list[h];
1630 end = (__be64 *)(bh->b_data + bh->b_size);
1631 if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1632 bool keep_end = h < end_aligned;
1633 end = first + end_list[h] + keep_end;
1634 }
1635
1636 while (ptr < end) {
1637 if (*ptr) { /* if we have a non-null pointer */
1638 mp->mp_list[h] = ptr - first;
1639 h++;
1640 if (h < GFS2_MAX_META_HEIGHT)
1641 mp->mp_list[h] = 0;
1642 return true;
1643 }
1644 ptr++;
1645 }
1646 return false;
1647 }
1648
1649 enum dealloc_states {
1650 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */
1651 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */
1652 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */
1653 DEALLOC_DONE = 3, /* process complete */
1654 };
1655
1656 static inline void
metapointer_range(struct metapath * mp,int height,__u16 * start_list,unsigned int start_aligned,__u16 * end_list,unsigned int end_aligned,__be64 ** start,__be64 ** end)1657 metapointer_range(struct metapath *mp, int height,
1658 __u16 *start_list, unsigned int start_aligned,
1659 __u16 *end_list, unsigned int end_aligned,
1660 __be64 **start, __be64 **end)
1661 {
1662 struct buffer_head *bh = mp->mp_bh[height];
1663 __be64 *first;
1664
1665 first = metaptr1(height, mp);
1666 *start = first;
1667 if (mp_eq_to_hgt(mp, start_list, height)) {
1668 bool keep_start = height < start_aligned;
1669 *start = first + start_list[height] + keep_start;
1670 }
1671 *end = (__be64 *)(bh->b_data + bh->b_size);
1672 if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1673 bool keep_end = height < end_aligned;
1674 *end = first + end_list[height] + keep_end;
1675 }
1676 }
1677
walk_done(struct gfs2_sbd * sdp,struct metapath * mp,int height,__u16 * end_list,unsigned int end_aligned)1678 static inline bool walk_done(struct gfs2_sbd *sdp,
1679 struct metapath *mp, int height,
1680 __u16 *end_list, unsigned int end_aligned)
1681 {
1682 __u16 end;
1683
1684 if (end_list) {
1685 bool keep_end = height < end_aligned;
1686 if (!mp_eq_to_hgt(mp, end_list, height))
1687 return false;
1688 end = end_list[height] + keep_end;
1689 } else
1690 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1691 return mp->mp_list[height] >= end;
1692 }
1693
1694 /**
1695 * punch_hole - deallocate blocks in a file
1696 * @ip: inode to truncate
1697 * @offset: the start of the hole
1698 * @length: the size of the hole (or 0 for truncate)
1699 *
1700 * Punch a hole into a file or truncate a file at a given position. This
1701 * function operates in whole blocks (@offset and @length are rounded
1702 * accordingly); partially filled blocks must be cleared otherwise.
1703 *
1704 * This function works from the bottom up, and from the right to the left. In
1705 * other words, it strips off the highest layer (data) before stripping any of
1706 * the metadata. Doing it this way is best in case the operation is interrupted
1707 * by power failure, etc. The dinode is rewritten in every transaction to
1708 * guarantee integrity.
1709 */
punch_hole(struct gfs2_inode * ip,u64 offset,u64 length)1710 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1711 {
1712 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1713 u64 maxsize = sdp->sd_heightsize[ip->i_height];
1714 struct metapath mp = {};
1715 struct buffer_head *dibh, *bh;
1716 struct gfs2_holder rd_gh;
1717 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1718 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift;
1719 __u16 start_list[GFS2_MAX_META_HEIGHT];
1720 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1721 unsigned int start_aligned, end_aligned;
1722 unsigned int strip_h = ip->i_height - 1;
1723 u32 btotal = 0;
1724 int ret, state;
1725 int mp_h; /* metapath buffers are read in to this height */
1726 u64 prev_bnr = 0;
1727 __be64 *start, *end;
1728
1729 if (offset >= maxsize) {
1730 /*
1731 * The starting point lies beyond the allocated metadata;
1732 * there are no blocks to deallocate.
1733 */
1734 return 0;
1735 }
1736
1737 /*
1738 * The start position of the hole is defined by lblock, start_list, and
1739 * start_aligned. The end position of the hole is defined by lend,
1740 * end_list, and end_aligned.
1741 *
1742 * start_aligned and end_aligned define down to which height the start
1743 * and end positions are aligned to the metadata tree (i.e., the
1744 * position is a multiple of the metadata granularity at the height
1745 * above). This determines at which heights additional meta pointers
1746 * needs to be preserved for the remaining data.
1747 */
1748
1749 if (length) {
1750 u64 end_offset = offset + length;
1751 u64 lend;
1752
1753 /*
1754 * Clip the end at the maximum file size for the given height:
1755 * that's how far the metadata goes; files bigger than that
1756 * will have additional layers of indirection.
1757 */
1758 if (end_offset > maxsize)
1759 end_offset = maxsize;
1760 lend = end_offset >> bsize_shift;
1761
1762 if (lblock >= lend)
1763 return 0;
1764
1765 find_metapath(sdp, lend, &mp, ip->i_height);
1766 end_list = __end_list;
1767 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1768
1769 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1770 if (end_list[mp_h])
1771 break;
1772 }
1773 end_aligned = mp_h;
1774 }
1775
1776 find_metapath(sdp, lblock, &mp, ip->i_height);
1777 memcpy(start_list, mp.mp_list, sizeof(start_list));
1778
1779 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1780 if (start_list[mp_h])
1781 break;
1782 }
1783 start_aligned = mp_h;
1784
1785 ret = gfs2_meta_inode_buffer(ip, &dibh);
1786 if (ret)
1787 return ret;
1788
1789 mp.mp_bh[0] = dibh;
1790 ret = lookup_metapath(ip, &mp);
1791 if (ret)
1792 goto out_metapath;
1793
1794 /* issue read-ahead on metadata */
1795 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1796 metapointer_range(&mp, mp_h, start_list, start_aligned,
1797 end_list, end_aligned, &start, &end);
1798 gfs2_metapath_ra(ip->i_gl, start, end);
1799 }
1800
1801 if (mp.mp_aheight == ip->i_height)
1802 state = DEALLOC_MP_FULL; /* We have a complete metapath */
1803 else
1804 state = DEALLOC_FILL_MP; /* deal with partial metapath */
1805
1806 ret = gfs2_rindex_update(sdp);
1807 if (ret)
1808 goto out_metapath;
1809
1810 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1811 if (ret)
1812 goto out_metapath;
1813 gfs2_holder_mark_uninitialized(&rd_gh);
1814
1815 mp_h = strip_h;
1816
1817 while (state != DEALLOC_DONE) {
1818 switch (state) {
1819 /* Truncate a full metapath at the given strip height.
1820 * Note that strip_h == mp_h in order to be in this state. */
1821 case DEALLOC_MP_FULL:
1822 bh = mp.mp_bh[mp_h];
1823 gfs2_assert_withdraw(sdp, bh);
1824 if (gfs2_assert_withdraw(sdp,
1825 prev_bnr != bh->b_blocknr)) {
1826 fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u,"
1827 "s_h:%u, mp_h:%u\n",
1828 (unsigned long long)ip->i_no_addr,
1829 prev_bnr, ip->i_height, strip_h, mp_h);
1830 }
1831 prev_bnr = bh->b_blocknr;
1832
1833 if (gfs2_metatype_check(sdp, bh,
1834 (mp_h ? GFS2_METATYPE_IN :
1835 GFS2_METATYPE_DI))) {
1836 ret = -EIO;
1837 goto out;
1838 }
1839
1840 /*
1841 * Below, passing end_aligned as 0 gives us the
1842 * metapointer range excluding the end point: the end
1843 * point is the first metapath we must not deallocate!
1844 */
1845
1846 metapointer_range(&mp, mp_h, start_list, start_aligned,
1847 end_list, 0 /* end_aligned */,
1848 &start, &end);
1849 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1850 start, end,
1851 mp_h != ip->i_height - 1,
1852 &btotal);
1853
1854 /* If we hit an error or just swept dinode buffer,
1855 just exit. */
1856 if (ret || !mp_h) {
1857 state = DEALLOC_DONE;
1858 break;
1859 }
1860 state = DEALLOC_MP_LOWER;
1861 break;
1862
1863 /* lower the metapath strip height */
1864 case DEALLOC_MP_LOWER:
1865 /* We're done with the current buffer, so release it,
1866 unless it's the dinode buffer. Then back up to the
1867 previous pointer. */
1868 if (mp_h) {
1869 brelse(mp.mp_bh[mp_h]);
1870 mp.mp_bh[mp_h] = NULL;
1871 }
1872 /* If we can't get any lower in height, we've stripped
1873 off all we can. Next step is to back up and start
1874 stripping the previous level of metadata. */
1875 if (mp_h == 0) {
1876 strip_h--;
1877 memcpy(mp.mp_list, start_list, sizeof(start_list));
1878 mp_h = strip_h;
1879 state = DEALLOC_FILL_MP;
1880 break;
1881 }
1882 mp.mp_list[mp_h] = 0;
1883 mp_h--; /* search one metadata height down */
1884 mp.mp_list[mp_h]++;
1885 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1886 break;
1887 /* Here we've found a part of the metapath that is not
1888 * allocated. We need to search at that height for the
1889 * next non-null pointer. */
1890 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1891 state = DEALLOC_FILL_MP;
1892 mp_h++;
1893 }
1894 /* No more non-null pointers at this height. Back up
1895 to the previous height and try again. */
1896 break; /* loop around in the same state */
1897
1898 /* Fill the metapath with buffers to the given height. */
1899 case DEALLOC_FILL_MP:
1900 /* Fill the buffers out to the current height. */
1901 ret = fillup_metapath(ip, &mp, mp_h);
1902 if (ret < 0)
1903 goto out;
1904
1905 /* On the first pass, issue read-ahead on metadata. */
1906 if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) {
1907 unsigned int height = mp.mp_aheight - 1;
1908
1909 /* No read-ahead for data blocks. */
1910 if (mp.mp_aheight - 1 == strip_h)
1911 height--;
1912
1913 for (; height >= mp.mp_aheight - ret; height--) {
1914 metapointer_range(&mp, height,
1915 start_list, start_aligned,
1916 end_list, end_aligned,
1917 &start, &end);
1918 gfs2_metapath_ra(ip->i_gl, start, end);
1919 }
1920 }
1921
1922 /* If buffers found for the entire strip height */
1923 if (mp.mp_aheight - 1 == strip_h) {
1924 state = DEALLOC_MP_FULL;
1925 break;
1926 }
1927 if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1928 mp_h = mp.mp_aheight - 1;
1929
1930 /* If we find a non-null block pointer, crawl a bit
1931 higher up in the metapath and try again, otherwise
1932 we need to look lower for a new starting point. */
1933 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1934 mp_h++;
1935 else
1936 state = DEALLOC_MP_LOWER;
1937 break;
1938 }
1939 }
1940
1941 if (btotal) {
1942 if (current->journal_info == NULL) {
1943 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1944 RES_QUOTA, 0);
1945 if (ret)
1946 goto out;
1947 down_write(&ip->i_rw_mutex);
1948 }
1949 gfs2_statfs_change(sdp, 0, +btotal, 0);
1950 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
1951 ip->i_inode.i_gid);
1952 ip->i_inode.i_mtime = inode_set_ctime_current(&ip->i_inode);
1953 gfs2_trans_add_meta(ip->i_gl, dibh);
1954 gfs2_dinode_out(ip, dibh->b_data);
1955 up_write(&ip->i_rw_mutex);
1956 gfs2_trans_end(sdp);
1957 }
1958
1959 out:
1960 if (gfs2_holder_initialized(&rd_gh))
1961 gfs2_glock_dq_uninit(&rd_gh);
1962 if (current->journal_info) {
1963 up_write(&ip->i_rw_mutex);
1964 gfs2_trans_end(sdp);
1965 cond_resched();
1966 }
1967 gfs2_quota_unhold(ip);
1968 out_metapath:
1969 release_metapath(&mp);
1970 return ret;
1971 }
1972
trunc_end(struct gfs2_inode * ip)1973 static int trunc_end(struct gfs2_inode *ip)
1974 {
1975 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1976 struct buffer_head *dibh;
1977 int error;
1978
1979 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1980 if (error)
1981 return error;
1982
1983 down_write(&ip->i_rw_mutex);
1984
1985 error = gfs2_meta_inode_buffer(ip, &dibh);
1986 if (error)
1987 goto out;
1988
1989 if (!i_size_read(&ip->i_inode)) {
1990 ip->i_height = 0;
1991 ip->i_goal = ip->i_no_addr;
1992 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
1993 gfs2_ordered_del_inode(ip);
1994 }
1995 ip->i_inode.i_mtime = inode_set_ctime_current(&ip->i_inode);
1996 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
1997
1998 gfs2_trans_add_meta(ip->i_gl, dibh);
1999 gfs2_dinode_out(ip, dibh->b_data);
2000 brelse(dibh);
2001
2002 out:
2003 up_write(&ip->i_rw_mutex);
2004 gfs2_trans_end(sdp);
2005 return error;
2006 }
2007
2008 /**
2009 * do_shrink - make a file smaller
2010 * @inode: the inode
2011 * @newsize: the size to make the file
2012 *
2013 * Called with an exclusive lock on @inode. The @size must
2014 * be equal to or smaller than the current inode size.
2015 *
2016 * Returns: errno
2017 */
2018
do_shrink(struct inode * inode,u64 newsize)2019 static int do_shrink(struct inode *inode, u64 newsize)
2020 {
2021 struct gfs2_inode *ip = GFS2_I(inode);
2022 int error;
2023
2024 error = trunc_start(inode, newsize);
2025 if (error < 0)
2026 return error;
2027 if (gfs2_is_stuffed(ip))
2028 return 0;
2029
2030 error = punch_hole(ip, newsize, 0);
2031 if (error == 0)
2032 error = trunc_end(ip);
2033
2034 return error;
2035 }
2036
2037 /**
2038 * do_grow - Touch and update inode size
2039 * @inode: The inode
2040 * @size: The new size
2041 *
2042 * This function updates the timestamps on the inode and
2043 * may also increase the size of the inode. This function
2044 * must not be called with @size any smaller than the current
2045 * inode size.
2046 *
2047 * Although it is not strictly required to unstuff files here,
2048 * earlier versions of GFS2 have a bug in the stuffed file reading
2049 * code which will result in a buffer overrun if the size is larger
2050 * than the max stuffed file size. In order to prevent this from
2051 * occurring, such files are unstuffed, but in other cases we can
2052 * just update the inode size directly.
2053 *
2054 * Returns: 0 on success, or -ve on error
2055 */
2056
do_grow(struct inode * inode,u64 size)2057 static int do_grow(struct inode *inode, u64 size)
2058 {
2059 struct gfs2_inode *ip = GFS2_I(inode);
2060 struct gfs2_sbd *sdp = GFS2_SB(inode);
2061 struct gfs2_alloc_parms ap = { .target = 1, };
2062 struct buffer_head *dibh;
2063 int error;
2064 int unstuff = 0;
2065
2066 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
2067 error = gfs2_quota_lock_check(ip, &ap);
2068 if (error)
2069 return error;
2070
2071 error = gfs2_inplace_reserve(ip, &ap);
2072 if (error)
2073 goto do_grow_qunlock;
2074 unstuff = 1;
2075 }
2076
2077 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
2078 (unstuff &&
2079 gfs2_is_jdata(ip) ? RES_JDATA : 0) +
2080 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
2081 0 : RES_QUOTA), 0);
2082 if (error)
2083 goto do_grow_release;
2084
2085 if (unstuff) {
2086 error = gfs2_unstuff_dinode(ip);
2087 if (error)
2088 goto do_end_trans;
2089 }
2090
2091 error = gfs2_meta_inode_buffer(ip, &dibh);
2092 if (error)
2093 goto do_end_trans;
2094
2095 truncate_setsize(inode, size);
2096 ip->i_inode.i_mtime = inode_set_ctime_current(&ip->i_inode);
2097 gfs2_trans_add_meta(ip->i_gl, dibh);
2098 gfs2_dinode_out(ip, dibh->b_data);
2099 brelse(dibh);
2100
2101 do_end_trans:
2102 gfs2_trans_end(sdp);
2103 do_grow_release:
2104 if (unstuff) {
2105 gfs2_inplace_release(ip);
2106 do_grow_qunlock:
2107 gfs2_quota_unlock(ip);
2108 }
2109 return error;
2110 }
2111
2112 /**
2113 * gfs2_setattr_size - make a file a given size
2114 * @inode: the inode
2115 * @newsize: the size to make the file
2116 *
2117 * The file size can grow, shrink, or stay the same size. This
2118 * is called holding i_rwsem and an exclusive glock on the inode
2119 * in question.
2120 *
2121 * Returns: errno
2122 */
2123
gfs2_setattr_size(struct inode * inode,u64 newsize)2124 int gfs2_setattr_size(struct inode *inode, u64 newsize)
2125 {
2126 struct gfs2_inode *ip = GFS2_I(inode);
2127 int ret;
2128
2129 BUG_ON(!S_ISREG(inode->i_mode));
2130
2131 ret = inode_newsize_ok(inode, newsize);
2132 if (ret)
2133 return ret;
2134
2135 inode_dio_wait(inode);
2136
2137 ret = gfs2_qa_get(ip);
2138 if (ret)
2139 goto out;
2140
2141 if (newsize >= inode->i_size) {
2142 ret = do_grow(inode, newsize);
2143 goto out;
2144 }
2145
2146 ret = do_shrink(inode, newsize);
2147 out:
2148 gfs2_rs_delete(ip);
2149 gfs2_qa_put(ip);
2150 return ret;
2151 }
2152
gfs2_truncatei_resume(struct gfs2_inode * ip)2153 int gfs2_truncatei_resume(struct gfs2_inode *ip)
2154 {
2155 int error;
2156 error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
2157 if (!error)
2158 error = trunc_end(ip);
2159 return error;
2160 }
2161
gfs2_file_dealloc(struct gfs2_inode * ip)2162 int gfs2_file_dealloc(struct gfs2_inode *ip)
2163 {
2164 return punch_hole(ip, 0, 0);
2165 }
2166
2167 /**
2168 * gfs2_free_journal_extents - Free cached journal bmap info
2169 * @jd: The journal
2170 *
2171 */
2172
gfs2_free_journal_extents(struct gfs2_jdesc * jd)2173 void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
2174 {
2175 struct gfs2_journal_extent *jext;
2176
2177 while(!list_empty(&jd->extent_list)) {
2178 jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2179 list_del(&jext->list);
2180 kfree(jext);
2181 }
2182 }
2183
2184 /**
2185 * gfs2_add_jextent - Add or merge a new extent to extent cache
2186 * @jd: The journal descriptor
2187 * @lblock: The logical block at start of new extent
2188 * @dblock: The physical block at start of new extent
2189 * @blocks: Size of extent in fs blocks
2190 *
2191 * Returns: 0 on success or -ENOMEM
2192 */
2193
gfs2_add_jextent(struct gfs2_jdesc * jd,u64 lblock,u64 dblock,u64 blocks)2194 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
2195 {
2196 struct gfs2_journal_extent *jext;
2197
2198 if (!list_empty(&jd->extent_list)) {
2199 jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2200 if ((jext->dblock + jext->blocks) == dblock) {
2201 jext->blocks += blocks;
2202 return 0;
2203 }
2204 }
2205
2206 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
2207 if (jext == NULL)
2208 return -ENOMEM;
2209 jext->dblock = dblock;
2210 jext->lblock = lblock;
2211 jext->blocks = blocks;
2212 list_add_tail(&jext->list, &jd->extent_list);
2213 jd->nr_extents++;
2214 return 0;
2215 }
2216
2217 /**
2218 * gfs2_map_journal_extents - Cache journal bmap info
2219 * @sdp: The super block
2220 * @jd: The journal to map
2221 *
2222 * Create a reusable "extent" mapping from all logical
2223 * blocks to all physical blocks for the given journal. This will save
2224 * us time when writing journal blocks. Most journals will have only one
2225 * extent that maps all their logical blocks. That's because gfs2.mkfs
2226 * arranges the journal blocks sequentially to maximize performance.
2227 * So the extent would map the first block for the entire file length.
2228 * However, gfs2_jadd can happen while file activity is happening, so
2229 * those journals may not be sequential. Less likely is the case where
2230 * the users created their own journals by mounting the metafs and
2231 * laying it out. But it's still possible. These journals might have
2232 * several extents.
2233 *
2234 * Returns: 0 on success, or error on failure
2235 */
2236
gfs2_map_journal_extents(struct gfs2_sbd * sdp,struct gfs2_jdesc * jd)2237 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
2238 {
2239 u64 lblock = 0;
2240 u64 lblock_stop;
2241 struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
2242 struct buffer_head bh;
2243 unsigned int shift = sdp->sd_sb.sb_bsize_shift;
2244 u64 size;
2245 int rc;
2246 ktime_t start, end;
2247
2248 start = ktime_get();
2249 lblock_stop = i_size_read(jd->jd_inode) >> shift;
2250 size = (lblock_stop - lblock) << shift;
2251 jd->nr_extents = 0;
2252 WARN_ON(!list_empty(&jd->extent_list));
2253
2254 do {
2255 bh.b_state = 0;
2256 bh.b_blocknr = 0;
2257 bh.b_size = size;
2258 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
2259 if (rc || !buffer_mapped(&bh))
2260 goto fail;
2261 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
2262 if (rc)
2263 goto fail;
2264 size -= bh.b_size;
2265 lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2266 } while(size > 0);
2267
2268 end = ktime_get();
2269 fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid,
2270 jd->nr_extents, ktime_ms_delta(end, start));
2271 return 0;
2272
2273 fail:
2274 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
2275 rc, jd->jd_jid,
2276 (unsigned long long)(i_size_read(jd->jd_inode) - size),
2277 jd->nr_extents);
2278 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
2279 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
2280 bh.b_state, (unsigned long long)bh.b_size);
2281 gfs2_free_journal_extents(jd);
2282 return rc;
2283 }
2284
2285 /**
2286 * gfs2_write_alloc_required - figure out if a write will require an allocation
2287 * @ip: the file being written to
2288 * @offset: the offset to write to
2289 * @len: the number of bytes being written
2290 *
2291 * Returns: 1 if an alloc is required, 0 otherwise
2292 */
2293
gfs2_write_alloc_required(struct gfs2_inode * ip,u64 offset,unsigned int len)2294 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
2295 unsigned int len)
2296 {
2297 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2298 struct buffer_head bh;
2299 unsigned int shift;
2300 u64 lblock, lblock_stop, size;
2301 u64 end_of_file;
2302
2303 if (!len)
2304 return 0;
2305
2306 if (gfs2_is_stuffed(ip)) {
2307 if (offset + len > gfs2_max_stuffed_size(ip))
2308 return 1;
2309 return 0;
2310 }
2311
2312 shift = sdp->sd_sb.sb_bsize_shift;
2313 BUG_ON(gfs2_is_dir(ip));
2314 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
2315 lblock = offset >> shift;
2316 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
2317 if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex))
2318 return 1;
2319
2320 size = (lblock_stop - lblock) << shift;
2321 do {
2322 bh.b_state = 0;
2323 bh.b_size = size;
2324 gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
2325 if (!buffer_mapped(&bh))
2326 return 1;
2327 size -= bh.b_size;
2328 lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2329 } while(size > 0);
2330
2331 return 0;
2332 }
2333
stuffed_zero_range(struct inode * inode,loff_t offset,loff_t length)2334 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
2335 {
2336 struct gfs2_inode *ip = GFS2_I(inode);
2337 struct buffer_head *dibh;
2338 int error;
2339
2340 if (offset >= inode->i_size)
2341 return 0;
2342 if (offset + length > inode->i_size)
2343 length = inode->i_size - offset;
2344
2345 error = gfs2_meta_inode_buffer(ip, &dibh);
2346 if (error)
2347 return error;
2348 gfs2_trans_add_meta(ip->i_gl, dibh);
2349 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
2350 length);
2351 brelse(dibh);
2352 return 0;
2353 }
2354
gfs2_journaled_truncate_range(struct inode * inode,loff_t offset,loff_t length)2355 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
2356 loff_t length)
2357 {
2358 struct gfs2_sbd *sdp = GFS2_SB(inode);
2359 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
2360 int error;
2361
2362 while (length) {
2363 struct gfs2_trans *tr;
2364 loff_t chunk;
2365 unsigned int offs;
2366
2367 chunk = length;
2368 if (chunk > max_chunk)
2369 chunk = max_chunk;
2370
2371 offs = offset & ~PAGE_MASK;
2372 if (offs && chunk > PAGE_SIZE)
2373 chunk = offs + ((chunk - offs) & PAGE_MASK);
2374
2375 truncate_pagecache_range(inode, offset, chunk);
2376 offset += chunk;
2377 length -= chunk;
2378
2379 tr = current->journal_info;
2380 if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2381 continue;
2382
2383 gfs2_trans_end(sdp);
2384 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2385 if (error)
2386 return error;
2387 }
2388 return 0;
2389 }
2390
__gfs2_punch_hole(struct file * file,loff_t offset,loff_t length)2391 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2392 {
2393 struct inode *inode = file_inode(file);
2394 struct gfs2_inode *ip = GFS2_I(inode);
2395 struct gfs2_sbd *sdp = GFS2_SB(inode);
2396 unsigned int blocksize = i_blocksize(inode);
2397 loff_t start, end;
2398 int error;
2399
2400 if (!gfs2_is_stuffed(ip)) {
2401 unsigned int start_off, end_len;
2402
2403 start_off = offset & (blocksize - 1);
2404 end_len = (offset + length) & (blocksize - 1);
2405 if (start_off) {
2406 unsigned int len = length;
2407 if (length > blocksize - start_off)
2408 len = blocksize - start_off;
2409 error = gfs2_block_zero_range(inode, offset, len);
2410 if (error)
2411 goto out;
2412 if (start_off + length < blocksize)
2413 end_len = 0;
2414 }
2415 if (end_len) {
2416 error = gfs2_block_zero_range(inode,
2417 offset + length - end_len, end_len);
2418 if (error)
2419 goto out;
2420 }
2421 }
2422
2423 start = round_down(offset, blocksize);
2424 end = round_up(offset + length, blocksize) - 1;
2425 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
2426 if (error)
2427 return error;
2428
2429 if (gfs2_is_jdata(ip))
2430 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2431 GFS2_JTRUNC_REVOKES);
2432 else
2433 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2434 if (error)
2435 return error;
2436
2437 if (gfs2_is_stuffed(ip)) {
2438 error = stuffed_zero_range(inode, offset, length);
2439 if (error)
2440 goto out;
2441 }
2442
2443 if (gfs2_is_jdata(ip)) {
2444 BUG_ON(!current->journal_info);
2445 gfs2_journaled_truncate_range(inode, offset, length);
2446 } else
2447 truncate_pagecache_range(inode, offset, offset + length - 1);
2448
2449 file_update_time(file);
2450 mark_inode_dirty(inode);
2451
2452 if (current->journal_info)
2453 gfs2_trans_end(sdp);
2454
2455 if (!gfs2_is_stuffed(ip))
2456 error = punch_hole(ip, offset, length);
2457
2458 out:
2459 if (current->journal_info)
2460 gfs2_trans_end(sdp);
2461 return error;
2462 }
2463
gfs2_map_blocks(struct iomap_writepage_ctx * wpc,struct inode * inode,loff_t offset)2464 static int gfs2_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode,
2465 loff_t offset)
2466 {
2467 int ret;
2468
2469 if (WARN_ON_ONCE(gfs2_is_stuffed(GFS2_I(inode))))
2470 return -EIO;
2471
2472 if (offset >= wpc->iomap.offset &&
2473 offset < wpc->iomap.offset + wpc->iomap.length)
2474 return 0;
2475
2476 memset(&wpc->iomap, 0, sizeof(wpc->iomap));
2477 ret = gfs2_iomap_get(inode, offset, INT_MAX, &wpc->iomap);
2478 return ret;
2479 }
2480
2481 const struct iomap_writeback_ops gfs2_writeback_ops = {
2482 .map_blocks = gfs2_map_blocks,
2483 };
2484