1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/sizes.h>
4 #include <linux/list_sort.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "block-group.h"
8 #include "space-info.h"
9 #include "disk-io.h"
10 #include "free-space-cache.h"
11 #include "free-space-tree.h"
12 #include "volumes.h"
13 #include "transaction.h"
14 #include "ref-verify.h"
15 #include "sysfs.h"
16 #include "tree-log.h"
17 #include "delalloc-space.h"
18 #include "discard.h"
19 #include "raid56.h"
20 #include "zoned.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24
25 #ifdef CONFIG_BTRFS_DEBUG
btrfs_should_fragment_free_space(struct btrfs_block_group * block_group)26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group)
27 {
28 struct btrfs_fs_info *fs_info = block_group->fs_info;
29
30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33 block_group->flags & BTRFS_BLOCK_GROUP_DATA);
34 }
35 #endif
36
37 /*
38 * Return target flags in extended format or 0 if restripe for this chunk_type
39 * is not in progress
40 *
41 * Should be called with balance_lock held
42 */
get_restripe_target(struct btrfs_fs_info * fs_info,u64 flags)43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
44 {
45 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
46 u64 target = 0;
47
48 if (!bctl)
49 return 0;
50
51 if (flags & BTRFS_BLOCK_GROUP_DATA &&
52 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
53 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
54 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
55 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
56 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
57 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
58 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
59 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
60 }
61
62 return target;
63 }
64
65 /*
66 * @flags: available profiles in extended format (see ctree.h)
67 *
68 * Return reduced profile in chunk format. If profile changing is in progress
69 * (either running or paused) picks the target profile (if it's already
70 * available), otherwise falls back to plain reducing.
71 */
btrfs_reduce_alloc_profile(struct btrfs_fs_info * fs_info,u64 flags)72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
73 {
74 u64 num_devices = fs_info->fs_devices->rw_devices;
75 u64 target;
76 u64 raid_type;
77 u64 allowed = 0;
78
79 /*
80 * See if restripe for this chunk_type is in progress, if so try to
81 * reduce to the target profile
82 */
83 spin_lock(&fs_info->balance_lock);
84 target = get_restripe_target(fs_info, flags);
85 if (target) {
86 spin_unlock(&fs_info->balance_lock);
87 return extended_to_chunk(target);
88 }
89 spin_unlock(&fs_info->balance_lock);
90
91 /* First, mask out the RAID levels which aren't possible */
92 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
93 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
94 allowed |= btrfs_raid_array[raid_type].bg_flag;
95 }
96 allowed &= flags;
97
98 /* Select the highest-redundancy RAID level. */
99 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
100 allowed = BTRFS_BLOCK_GROUP_RAID1C4;
101 else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
102 allowed = BTRFS_BLOCK_GROUP_RAID6;
103 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
104 allowed = BTRFS_BLOCK_GROUP_RAID1C3;
105 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
106 allowed = BTRFS_BLOCK_GROUP_RAID5;
107 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
108 allowed = BTRFS_BLOCK_GROUP_RAID10;
109 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
110 allowed = BTRFS_BLOCK_GROUP_RAID1;
111 else if (allowed & BTRFS_BLOCK_GROUP_DUP)
112 allowed = BTRFS_BLOCK_GROUP_DUP;
113 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
114 allowed = BTRFS_BLOCK_GROUP_RAID0;
115
116 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
117
118 return extended_to_chunk(flags | allowed);
119 }
120
btrfs_get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
122 {
123 unsigned seq;
124 u64 flags;
125
126 do {
127 flags = orig_flags;
128 seq = read_seqbegin(&fs_info->profiles_lock);
129
130 if (flags & BTRFS_BLOCK_GROUP_DATA)
131 flags |= fs_info->avail_data_alloc_bits;
132 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
133 flags |= fs_info->avail_system_alloc_bits;
134 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
135 flags |= fs_info->avail_metadata_alloc_bits;
136 } while (read_seqretry(&fs_info->profiles_lock, seq));
137
138 return btrfs_reduce_alloc_profile(fs_info, flags);
139 }
140
btrfs_get_block_group(struct btrfs_block_group * cache)141 void btrfs_get_block_group(struct btrfs_block_group *cache)
142 {
143 refcount_inc(&cache->refs);
144 }
145
btrfs_put_block_group(struct btrfs_block_group * cache)146 void btrfs_put_block_group(struct btrfs_block_group *cache)
147 {
148 if (refcount_dec_and_test(&cache->refs)) {
149 WARN_ON(cache->pinned > 0);
150 /*
151 * If there was a failure to cleanup a log tree, very likely due
152 * to an IO failure on a writeback attempt of one or more of its
153 * extent buffers, we could not do proper (and cheap) unaccounting
154 * of their reserved space, so don't warn on reserved > 0 in that
155 * case.
156 */
157 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
158 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
159 WARN_ON(cache->reserved > 0);
160
161 /*
162 * A block_group shouldn't be on the discard_list anymore.
163 * Remove the block_group from the discard_list to prevent us
164 * from causing a panic due to NULL pointer dereference.
165 */
166 if (WARN_ON(!list_empty(&cache->discard_list)))
167 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
168 cache);
169
170 kfree(cache->free_space_ctl);
171 kfree(cache->physical_map);
172 kfree(cache);
173 }
174 }
175
176 /*
177 * This adds the block group to the fs_info rb tree for the block group cache
178 */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group * block_group)179 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
180 struct btrfs_block_group *block_group)
181 {
182 struct rb_node **p;
183 struct rb_node *parent = NULL;
184 struct btrfs_block_group *cache;
185 bool leftmost = true;
186
187 ASSERT(block_group->length != 0);
188
189 write_lock(&info->block_group_cache_lock);
190 p = &info->block_group_cache_tree.rb_root.rb_node;
191
192 while (*p) {
193 parent = *p;
194 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
195 if (block_group->start < cache->start) {
196 p = &(*p)->rb_left;
197 } else if (block_group->start > cache->start) {
198 p = &(*p)->rb_right;
199 leftmost = false;
200 } else {
201 write_unlock(&info->block_group_cache_lock);
202 return -EEXIST;
203 }
204 }
205
206 rb_link_node(&block_group->cache_node, parent, p);
207 rb_insert_color_cached(&block_group->cache_node,
208 &info->block_group_cache_tree, leftmost);
209
210 write_unlock(&info->block_group_cache_lock);
211
212 return 0;
213 }
214
215 /*
216 * This will return the block group at or after bytenr if contains is 0, else
217 * it will return the block group that contains the bytenr
218 */
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)219 static struct btrfs_block_group *block_group_cache_tree_search(
220 struct btrfs_fs_info *info, u64 bytenr, int contains)
221 {
222 struct btrfs_block_group *cache, *ret = NULL;
223 struct rb_node *n;
224 u64 end, start;
225
226 read_lock(&info->block_group_cache_lock);
227 n = info->block_group_cache_tree.rb_root.rb_node;
228
229 while (n) {
230 cache = rb_entry(n, struct btrfs_block_group, cache_node);
231 end = cache->start + cache->length - 1;
232 start = cache->start;
233
234 if (bytenr < start) {
235 if (!contains && (!ret || start < ret->start))
236 ret = cache;
237 n = n->rb_left;
238 } else if (bytenr > start) {
239 if (contains && bytenr <= end) {
240 ret = cache;
241 break;
242 }
243 n = n->rb_right;
244 } else {
245 ret = cache;
246 break;
247 }
248 }
249 if (ret)
250 btrfs_get_block_group(ret);
251 read_unlock(&info->block_group_cache_lock);
252
253 return ret;
254 }
255
256 /*
257 * Return the block group that starts at or after bytenr
258 */
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)259 struct btrfs_block_group *btrfs_lookup_first_block_group(
260 struct btrfs_fs_info *info, u64 bytenr)
261 {
262 return block_group_cache_tree_search(info, bytenr, 0);
263 }
264
265 /*
266 * Return the block group that contains the given bytenr
267 */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)268 struct btrfs_block_group *btrfs_lookup_block_group(
269 struct btrfs_fs_info *info, u64 bytenr)
270 {
271 return block_group_cache_tree_search(info, bytenr, 1);
272 }
273
btrfs_next_block_group(struct btrfs_block_group * cache)274 struct btrfs_block_group *btrfs_next_block_group(
275 struct btrfs_block_group *cache)
276 {
277 struct btrfs_fs_info *fs_info = cache->fs_info;
278 struct rb_node *node;
279
280 read_lock(&fs_info->block_group_cache_lock);
281
282 /* If our block group was removed, we need a full search. */
283 if (RB_EMPTY_NODE(&cache->cache_node)) {
284 const u64 next_bytenr = cache->start + cache->length;
285
286 read_unlock(&fs_info->block_group_cache_lock);
287 btrfs_put_block_group(cache);
288 return btrfs_lookup_first_block_group(fs_info, next_bytenr);
289 }
290 node = rb_next(&cache->cache_node);
291 btrfs_put_block_group(cache);
292 if (node) {
293 cache = rb_entry(node, struct btrfs_block_group, cache_node);
294 btrfs_get_block_group(cache);
295 } else
296 cache = NULL;
297 read_unlock(&fs_info->block_group_cache_lock);
298 return cache;
299 }
300
301 /*
302 * Check if we can do a NOCOW write for a given extent.
303 *
304 * @fs_info: The filesystem information object.
305 * @bytenr: Logical start address of the extent.
306 *
307 * Check if we can do a NOCOW write for the given extent, and increments the
308 * number of NOCOW writers in the block group that contains the extent, as long
309 * as the block group exists and it's currently not in read-only mode.
310 *
311 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
312 * is responsible for calling btrfs_dec_nocow_writers() later.
313 *
314 * Or NULL if we can not do a NOCOW write
315 */
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)316 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
317 u64 bytenr)
318 {
319 struct btrfs_block_group *bg;
320 bool can_nocow = true;
321
322 bg = btrfs_lookup_block_group(fs_info, bytenr);
323 if (!bg)
324 return NULL;
325
326 spin_lock(&bg->lock);
327 if (bg->ro)
328 can_nocow = false;
329 else
330 atomic_inc(&bg->nocow_writers);
331 spin_unlock(&bg->lock);
332
333 if (!can_nocow) {
334 btrfs_put_block_group(bg);
335 return NULL;
336 }
337
338 /* No put on block group, done by btrfs_dec_nocow_writers(). */
339 return bg;
340 }
341
342 /*
343 * Decrement the number of NOCOW writers in a block group.
344 *
345 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
346 * and on the block group returned by that call. Typically this is called after
347 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
348 * relocation.
349 *
350 * After this call, the caller should not use the block group anymore. It it wants
351 * to use it, then it should get a reference on it before calling this function.
352 */
btrfs_dec_nocow_writers(struct btrfs_block_group * bg)353 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
354 {
355 if (atomic_dec_and_test(&bg->nocow_writers))
356 wake_up_var(&bg->nocow_writers);
357
358 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
359 btrfs_put_block_group(bg);
360 }
361
btrfs_wait_nocow_writers(struct btrfs_block_group * bg)362 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
363 {
364 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
365 }
366
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)367 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
368 const u64 start)
369 {
370 struct btrfs_block_group *bg;
371
372 bg = btrfs_lookup_block_group(fs_info, start);
373 ASSERT(bg);
374 if (atomic_dec_and_test(&bg->reservations))
375 wake_up_var(&bg->reservations);
376 btrfs_put_block_group(bg);
377 }
378
btrfs_wait_block_group_reservations(struct btrfs_block_group * bg)379 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
380 {
381 struct btrfs_space_info *space_info = bg->space_info;
382
383 ASSERT(bg->ro);
384
385 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
386 return;
387
388 /*
389 * Our block group is read only but before we set it to read only,
390 * some task might have had allocated an extent from it already, but it
391 * has not yet created a respective ordered extent (and added it to a
392 * root's list of ordered extents).
393 * Therefore wait for any task currently allocating extents, since the
394 * block group's reservations counter is incremented while a read lock
395 * on the groups' semaphore is held and decremented after releasing
396 * the read access on that semaphore and creating the ordered extent.
397 */
398 down_write(&space_info->groups_sem);
399 up_write(&space_info->groups_sem);
400
401 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
402 }
403
btrfs_get_caching_control(struct btrfs_block_group * cache)404 struct btrfs_caching_control *btrfs_get_caching_control(
405 struct btrfs_block_group *cache)
406 {
407 struct btrfs_caching_control *ctl;
408
409 spin_lock(&cache->lock);
410 if (!cache->caching_ctl) {
411 spin_unlock(&cache->lock);
412 return NULL;
413 }
414
415 ctl = cache->caching_ctl;
416 refcount_inc(&ctl->count);
417 spin_unlock(&cache->lock);
418 return ctl;
419 }
420
btrfs_put_caching_control(struct btrfs_caching_control * ctl)421 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
422 {
423 if (refcount_dec_and_test(&ctl->count))
424 kfree(ctl);
425 }
426
427 /*
428 * When we wait for progress in the block group caching, its because our
429 * allocation attempt failed at least once. So, we must sleep and let some
430 * progress happen before we try again.
431 *
432 * This function will sleep at least once waiting for new free space to show
433 * up, and then it will check the block group free space numbers for our min
434 * num_bytes. Another option is to have it go ahead and look in the rbtree for
435 * a free extent of a given size, but this is a good start.
436 *
437 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
438 * any of the information in this block group.
439 */
btrfs_wait_block_group_cache_progress(struct btrfs_block_group * cache,u64 num_bytes)440 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
441 u64 num_bytes)
442 {
443 struct btrfs_caching_control *caching_ctl;
444 int progress;
445
446 caching_ctl = btrfs_get_caching_control(cache);
447 if (!caching_ctl)
448 return;
449
450 /*
451 * We've already failed to allocate from this block group, so even if
452 * there's enough space in the block group it isn't contiguous enough to
453 * allow for an allocation, so wait for at least the next wakeup tick,
454 * or for the thing to be done.
455 */
456 progress = atomic_read(&caching_ctl->progress);
457
458 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
459 (progress != atomic_read(&caching_ctl->progress) &&
460 (cache->free_space_ctl->free_space >= num_bytes)));
461
462 btrfs_put_caching_control(caching_ctl);
463 }
464
btrfs_caching_ctl_wait_done(struct btrfs_block_group * cache,struct btrfs_caching_control * caching_ctl)465 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
466 struct btrfs_caching_control *caching_ctl)
467 {
468 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
469 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
470 }
471
btrfs_wait_block_group_cache_done(struct btrfs_block_group * cache)472 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
473 {
474 struct btrfs_caching_control *caching_ctl;
475 int ret;
476
477 caching_ctl = btrfs_get_caching_control(cache);
478 if (!caching_ctl)
479 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
480 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
481 btrfs_put_caching_control(caching_ctl);
482 return ret;
483 }
484
485 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_block_group * block_group)486 static void fragment_free_space(struct btrfs_block_group *block_group)
487 {
488 struct btrfs_fs_info *fs_info = block_group->fs_info;
489 u64 start = block_group->start;
490 u64 len = block_group->length;
491 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
492 fs_info->nodesize : fs_info->sectorsize;
493 u64 step = chunk << 1;
494
495 while (len > chunk) {
496 btrfs_remove_free_space(block_group, start, chunk);
497 start += step;
498 if (len < step)
499 len = 0;
500 else
501 len -= step;
502 }
503 }
504 #endif
505
506 /*
507 * Add a free space range to the in memory free space cache of a block group.
508 * This checks if the range contains super block locations and any such
509 * locations are not added to the free space cache.
510 *
511 * @block_group: The target block group.
512 * @start: Start offset of the range.
513 * @end: End offset of the range (exclusive).
514 * @total_added_ret: Optional pointer to return the total amount of space
515 * added to the block group's free space cache.
516 *
517 * Returns 0 on success or < 0 on error.
518 */
btrfs_add_new_free_space(struct btrfs_block_group * block_group,u64 start,u64 end,u64 * total_added_ret)519 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start,
520 u64 end, u64 *total_added_ret)
521 {
522 struct btrfs_fs_info *info = block_group->fs_info;
523 u64 extent_start, extent_end, size;
524 int ret;
525
526 if (total_added_ret)
527 *total_added_ret = 0;
528
529 while (start < end) {
530 if (!find_first_extent_bit(&info->excluded_extents, start,
531 &extent_start, &extent_end,
532 EXTENT_DIRTY | EXTENT_UPTODATE,
533 NULL))
534 break;
535
536 if (extent_start <= start) {
537 start = extent_end + 1;
538 } else if (extent_start > start && extent_start < end) {
539 size = extent_start - start;
540 ret = btrfs_add_free_space_async_trimmed(block_group,
541 start, size);
542 if (ret)
543 return ret;
544 if (total_added_ret)
545 *total_added_ret += size;
546 start = extent_end + 1;
547 } else {
548 break;
549 }
550 }
551
552 if (start < end) {
553 size = end - start;
554 ret = btrfs_add_free_space_async_trimmed(block_group, start,
555 size);
556 if (ret)
557 return ret;
558 if (total_added_ret)
559 *total_added_ret += size;
560 }
561
562 return 0;
563 }
564
565 /*
566 * Get an arbitrary extent item index / max_index through the block group
567 *
568 * @block_group the block group to sample from
569 * @index: the integral step through the block group to grab from
570 * @max_index: the granularity of the sampling
571 * @key: return value parameter for the item we find
572 *
573 * Pre-conditions on indices:
574 * 0 <= index <= max_index
575 * 0 < max_index
576 *
577 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
578 * error code on error.
579 */
sample_block_group_extent_item(struct btrfs_caching_control * caching_ctl,struct btrfs_block_group * block_group,int index,int max_index,struct btrfs_key * found_key)580 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
581 struct btrfs_block_group *block_group,
582 int index, int max_index,
583 struct btrfs_key *found_key)
584 {
585 struct btrfs_fs_info *fs_info = block_group->fs_info;
586 struct btrfs_root *extent_root;
587 u64 search_offset;
588 u64 search_end = block_group->start + block_group->length;
589 struct btrfs_path *path;
590 struct btrfs_key search_key;
591 int ret = 0;
592
593 ASSERT(index >= 0);
594 ASSERT(index <= max_index);
595 ASSERT(max_index > 0);
596 lockdep_assert_held(&caching_ctl->mutex);
597 lockdep_assert_held_read(&fs_info->commit_root_sem);
598
599 path = btrfs_alloc_path();
600 if (!path)
601 return -ENOMEM;
602
603 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
604 BTRFS_SUPER_INFO_OFFSET));
605
606 path->skip_locking = 1;
607 path->search_commit_root = 1;
608 path->reada = READA_FORWARD;
609
610 search_offset = index * div_u64(block_group->length, max_index);
611 search_key.objectid = block_group->start + search_offset;
612 search_key.type = BTRFS_EXTENT_ITEM_KEY;
613 search_key.offset = 0;
614
615 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
616 /* Success; sampled an extent item in the block group */
617 if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
618 found_key->objectid >= block_group->start &&
619 found_key->objectid + found_key->offset <= search_end)
620 break;
621
622 /* We can't possibly find a valid extent item anymore */
623 if (found_key->objectid >= search_end) {
624 ret = 1;
625 break;
626 }
627 }
628
629 lockdep_assert_held(&caching_ctl->mutex);
630 lockdep_assert_held_read(&fs_info->commit_root_sem);
631 btrfs_free_path(path);
632 return ret;
633 }
634
635 /*
636 * Best effort attempt to compute a block group's size class while caching it.
637 *
638 * @block_group: the block group we are caching
639 *
640 * We cannot infer the size class while adding free space extents, because that
641 * logic doesn't care about contiguous file extents (it doesn't differentiate
642 * between a 100M extent and 100 contiguous 1M extents). So we need to read the
643 * file extent items. Reading all of them is quite wasteful, because usually
644 * only a handful are enough to give a good answer. Therefore, we just grab 5 of
645 * them at even steps through the block group and pick the smallest size class
646 * we see. Since size class is best effort, and not guaranteed in general,
647 * inaccuracy is acceptable.
648 *
649 * To be more explicit about why this algorithm makes sense:
650 *
651 * If we are caching in a block group from disk, then there are three major cases
652 * to consider:
653 * 1. the block group is well behaved and all extents in it are the same size
654 * class.
655 * 2. the block group is mostly one size class with rare exceptions for last
656 * ditch allocations
657 * 3. the block group was populated before size classes and can have a totally
658 * arbitrary mix of size classes.
659 *
660 * In case 1, looking at any extent in the block group will yield the correct
661 * result. For the mixed cases, taking the minimum size class seems like a good
662 * approximation, since gaps from frees will be usable to the size class. For
663 * 2., a small handful of file extents is likely to yield the right answer. For
664 * 3, we can either read every file extent, or admit that this is best effort
665 * anyway and try to stay fast.
666 *
667 * Returns: 0 on success, negative error code on error.
668 */
load_block_group_size_class(struct btrfs_caching_control * caching_ctl,struct btrfs_block_group * block_group)669 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
670 struct btrfs_block_group *block_group)
671 {
672 struct btrfs_fs_info *fs_info = block_group->fs_info;
673 struct btrfs_key key;
674 int i;
675 u64 min_size = block_group->length;
676 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
677 int ret;
678
679 if (!btrfs_block_group_should_use_size_class(block_group))
680 return 0;
681
682 lockdep_assert_held(&caching_ctl->mutex);
683 lockdep_assert_held_read(&fs_info->commit_root_sem);
684 for (i = 0; i < 5; ++i) {
685 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
686 if (ret < 0)
687 goto out;
688 if (ret > 0)
689 continue;
690 min_size = min_t(u64, min_size, key.offset);
691 size_class = btrfs_calc_block_group_size_class(min_size);
692 }
693 if (size_class != BTRFS_BG_SZ_NONE) {
694 spin_lock(&block_group->lock);
695 block_group->size_class = size_class;
696 spin_unlock(&block_group->lock);
697 }
698 out:
699 return ret;
700 }
701
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)702 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
703 {
704 struct btrfs_block_group *block_group = caching_ctl->block_group;
705 struct btrfs_fs_info *fs_info = block_group->fs_info;
706 struct btrfs_root *extent_root;
707 struct btrfs_path *path;
708 struct extent_buffer *leaf;
709 struct btrfs_key key;
710 u64 total_found = 0;
711 u64 last = 0;
712 u32 nritems;
713 int ret;
714 bool wakeup = true;
715
716 path = btrfs_alloc_path();
717 if (!path)
718 return -ENOMEM;
719
720 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
721 extent_root = btrfs_extent_root(fs_info, last);
722
723 #ifdef CONFIG_BTRFS_DEBUG
724 /*
725 * If we're fragmenting we don't want to make anybody think we can
726 * allocate from this block group until we've had a chance to fragment
727 * the free space.
728 */
729 if (btrfs_should_fragment_free_space(block_group))
730 wakeup = false;
731 #endif
732 /*
733 * We don't want to deadlock with somebody trying to allocate a new
734 * extent for the extent root while also trying to search the extent
735 * root to add free space. So we skip locking and search the commit
736 * root, since its read-only
737 */
738 path->skip_locking = 1;
739 path->search_commit_root = 1;
740 path->reada = READA_FORWARD;
741
742 key.objectid = last;
743 key.offset = 0;
744 key.type = BTRFS_EXTENT_ITEM_KEY;
745
746 next:
747 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
748 if (ret < 0)
749 goto out;
750
751 leaf = path->nodes[0];
752 nritems = btrfs_header_nritems(leaf);
753
754 while (1) {
755 if (btrfs_fs_closing(fs_info) > 1) {
756 last = (u64)-1;
757 break;
758 }
759
760 if (path->slots[0] < nritems) {
761 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
762 } else {
763 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
764 if (ret)
765 break;
766
767 if (need_resched() ||
768 rwsem_is_contended(&fs_info->commit_root_sem)) {
769 btrfs_release_path(path);
770 up_read(&fs_info->commit_root_sem);
771 mutex_unlock(&caching_ctl->mutex);
772 cond_resched();
773 mutex_lock(&caching_ctl->mutex);
774 down_read(&fs_info->commit_root_sem);
775 goto next;
776 }
777
778 ret = btrfs_next_leaf(extent_root, path);
779 if (ret < 0)
780 goto out;
781 if (ret)
782 break;
783 leaf = path->nodes[0];
784 nritems = btrfs_header_nritems(leaf);
785 continue;
786 }
787
788 if (key.objectid < last) {
789 key.objectid = last;
790 key.offset = 0;
791 key.type = BTRFS_EXTENT_ITEM_KEY;
792 btrfs_release_path(path);
793 goto next;
794 }
795
796 if (key.objectid < block_group->start) {
797 path->slots[0]++;
798 continue;
799 }
800
801 if (key.objectid >= block_group->start + block_group->length)
802 break;
803
804 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
805 key.type == BTRFS_METADATA_ITEM_KEY) {
806 u64 space_added;
807
808 ret = btrfs_add_new_free_space(block_group, last,
809 key.objectid, &space_added);
810 if (ret)
811 goto out;
812 total_found += space_added;
813 if (key.type == BTRFS_METADATA_ITEM_KEY)
814 last = key.objectid +
815 fs_info->nodesize;
816 else
817 last = key.objectid + key.offset;
818
819 if (total_found > CACHING_CTL_WAKE_UP) {
820 total_found = 0;
821 if (wakeup) {
822 atomic_inc(&caching_ctl->progress);
823 wake_up(&caching_ctl->wait);
824 }
825 }
826 }
827 path->slots[0]++;
828 }
829
830 ret = btrfs_add_new_free_space(block_group, last,
831 block_group->start + block_group->length,
832 NULL);
833 out:
834 btrfs_free_path(path);
835 return ret;
836 }
837
btrfs_free_excluded_extents(const struct btrfs_block_group * bg)838 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg)
839 {
840 clear_extent_bits(&bg->fs_info->excluded_extents, bg->start,
841 bg->start + bg->length - 1, EXTENT_UPTODATE);
842 }
843
caching_thread(struct btrfs_work * work)844 static noinline void caching_thread(struct btrfs_work *work)
845 {
846 struct btrfs_block_group *block_group;
847 struct btrfs_fs_info *fs_info;
848 struct btrfs_caching_control *caching_ctl;
849 int ret;
850
851 caching_ctl = container_of(work, struct btrfs_caching_control, work);
852 block_group = caching_ctl->block_group;
853 fs_info = block_group->fs_info;
854
855 mutex_lock(&caching_ctl->mutex);
856 down_read(&fs_info->commit_root_sem);
857
858 load_block_group_size_class(caching_ctl, block_group);
859 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
860 ret = load_free_space_cache(block_group);
861 if (ret == 1) {
862 ret = 0;
863 goto done;
864 }
865
866 /*
867 * We failed to load the space cache, set ourselves to
868 * CACHE_STARTED and carry on.
869 */
870 spin_lock(&block_group->lock);
871 block_group->cached = BTRFS_CACHE_STARTED;
872 spin_unlock(&block_group->lock);
873 wake_up(&caching_ctl->wait);
874 }
875
876 /*
877 * If we are in the transaction that populated the free space tree we
878 * can't actually cache from the free space tree as our commit root and
879 * real root are the same, so we could change the contents of the blocks
880 * while caching. Instead do the slow caching in this case, and after
881 * the transaction has committed we will be safe.
882 */
883 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
884 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
885 ret = load_free_space_tree(caching_ctl);
886 else
887 ret = load_extent_tree_free(caching_ctl);
888 done:
889 spin_lock(&block_group->lock);
890 block_group->caching_ctl = NULL;
891 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
892 spin_unlock(&block_group->lock);
893
894 #ifdef CONFIG_BTRFS_DEBUG
895 if (btrfs_should_fragment_free_space(block_group)) {
896 u64 bytes_used;
897
898 spin_lock(&block_group->space_info->lock);
899 spin_lock(&block_group->lock);
900 bytes_used = block_group->length - block_group->used;
901 block_group->space_info->bytes_used += bytes_used >> 1;
902 spin_unlock(&block_group->lock);
903 spin_unlock(&block_group->space_info->lock);
904 fragment_free_space(block_group);
905 }
906 #endif
907
908 up_read(&fs_info->commit_root_sem);
909 btrfs_free_excluded_extents(block_group);
910 mutex_unlock(&caching_ctl->mutex);
911
912 wake_up(&caching_ctl->wait);
913
914 btrfs_put_caching_control(caching_ctl);
915 btrfs_put_block_group(block_group);
916 }
917
btrfs_cache_block_group(struct btrfs_block_group * cache,bool wait)918 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
919 {
920 struct btrfs_fs_info *fs_info = cache->fs_info;
921 struct btrfs_caching_control *caching_ctl = NULL;
922 int ret = 0;
923
924 /* Allocator for zoned filesystems does not use the cache at all */
925 if (btrfs_is_zoned(fs_info))
926 return 0;
927
928 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
929 if (!caching_ctl)
930 return -ENOMEM;
931
932 INIT_LIST_HEAD(&caching_ctl->list);
933 mutex_init(&caching_ctl->mutex);
934 init_waitqueue_head(&caching_ctl->wait);
935 caching_ctl->block_group = cache;
936 refcount_set(&caching_ctl->count, 2);
937 atomic_set(&caching_ctl->progress, 0);
938 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
939
940 spin_lock(&cache->lock);
941 if (cache->cached != BTRFS_CACHE_NO) {
942 kfree(caching_ctl);
943
944 caching_ctl = cache->caching_ctl;
945 if (caching_ctl)
946 refcount_inc(&caching_ctl->count);
947 spin_unlock(&cache->lock);
948 goto out;
949 }
950 WARN_ON(cache->caching_ctl);
951 cache->caching_ctl = caching_ctl;
952 cache->cached = BTRFS_CACHE_STARTED;
953 spin_unlock(&cache->lock);
954
955 write_lock(&fs_info->block_group_cache_lock);
956 refcount_inc(&caching_ctl->count);
957 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
958 write_unlock(&fs_info->block_group_cache_lock);
959
960 btrfs_get_block_group(cache);
961
962 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
963 out:
964 if (wait && caching_ctl)
965 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
966 if (caching_ctl)
967 btrfs_put_caching_control(caching_ctl);
968
969 return ret;
970 }
971
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)972 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
973 {
974 u64 extra_flags = chunk_to_extended(flags) &
975 BTRFS_EXTENDED_PROFILE_MASK;
976
977 write_seqlock(&fs_info->profiles_lock);
978 if (flags & BTRFS_BLOCK_GROUP_DATA)
979 fs_info->avail_data_alloc_bits &= ~extra_flags;
980 if (flags & BTRFS_BLOCK_GROUP_METADATA)
981 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
982 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
983 fs_info->avail_system_alloc_bits &= ~extra_flags;
984 write_sequnlock(&fs_info->profiles_lock);
985 }
986
987 /*
988 * Clear incompat bits for the following feature(s):
989 *
990 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
991 * in the whole filesystem
992 *
993 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
994 */
clear_incompat_bg_bits(struct btrfs_fs_info * fs_info,u64 flags)995 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
996 {
997 bool found_raid56 = false;
998 bool found_raid1c34 = false;
999
1000 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
1001 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
1002 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
1003 struct list_head *head = &fs_info->space_info;
1004 struct btrfs_space_info *sinfo;
1005
1006 list_for_each_entry_rcu(sinfo, head, list) {
1007 down_read(&sinfo->groups_sem);
1008 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
1009 found_raid56 = true;
1010 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
1011 found_raid56 = true;
1012 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
1013 found_raid1c34 = true;
1014 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
1015 found_raid1c34 = true;
1016 up_read(&sinfo->groups_sem);
1017 }
1018 if (!found_raid56)
1019 btrfs_clear_fs_incompat(fs_info, RAID56);
1020 if (!found_raid1c34)
1021 btrfs_clear_fs_incompat(fs_info, RAID1C34);
1022 }
1023 }
1024
remove_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * block_group)1025 static int remove_block_group_item(struct btrfs_trans_handle *trans,
1026 struct btrfs_path *path,
1027 struct btrfs_block_group *block_group)
1028 {
1029 struct btrfs_fs_info *fs_info = trans->fs_info;
1030 struct btrfs_root *root;
1031 struct btrfs_key key;
1032 int ret;
1033
1034 root = btrfs_block_group_root(fs_info);
1035 key.objectid = block_group->start;
1036 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1037 key.offset = block_group->length;
1038
1039 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1040 if (ret > 0)
1041 ret = -ENOENT;
1042 if (ret < 0)
1043 return ret;
1044
1045 ret = btrfs_del_item(trans, root, path);
1046 return ret;
1047 }
1048
btrfs_remove_block_group(struct btrfs_trans_handle * trans,u64 group_start,struct extent_map * em)1049 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1050 u64 group_start, struct extent_map *em)
1051 {
1052 struct btrfs_fs_info *fs_info = trans->fs_info;
1053 struct btrfs_path *path;
1054 struct btrfs_block_group *block_group;
1055 struct btrfs_free_cluster *cluster;
1056 struct inode *inode;
1057 struct kobject *kobj = NULL;
1058 int ret;
1059 int index;
1060 int factor;
1061 struct btrfs_caching_control *caching_ctl = NULL;
1062 bool remove_em;
1063 bool remove_rsv = false;
1064
1065 block_group = btrfs_lookup_block_group(fs_info, group_start);
1066 BUG_ON(!block_group);
1067 BUG_ON(!block_group->ro);
1068
1069 trace_btrfs_remove_block_group(block_group);
1070 /*
1071 * Free the reserved super bytes from this block group before
1072 * remove it.
1073 */
1074 btrfs_free_excluded_extents(block_group);
1075 btrfs_free_ref_tree_range(fs_info, block_group->start,
1076 block_group->length);
1077
1078 index = btrfs_bg_flags_to_raid_index(block_group->flags);
1079 factor = btrfs_bg_type_to_factor(block_group->flags);
1080
1081 /* make sure this block group isn't part of an allocation cluster */
1082 cluster = &fs_info->data_alloc_cluster;
1083 spin_lock(&cluster->refill_lock);
1084 btrfs_return_cluster_to_free_space(block_group, cluster);
1085 spin_unlock(&cluster->refill_lock);
1086
1087 /*
1088 * make sure this block group isn't part of a metadata
1089 * allocation cluster
1090 */
1091 cluster = &fs_info->meta_alloc_cluster;
1092 spin_lock(&cluster->refill_lock);
1093 btrfs_return_cluster_to_free_space(block_group, cluster);
1094 spin_unlock(&cluster->refill_lock);
1095
1096 btrfs_clear_treelog_bg(block_group);
1097 btrfs_clear_data_reloc_bg(block_group);
1098
1099 path = btrfs_alloc_path();
1100 if (!path) {
1101 ret = -ENOMEM;
1102 goto out;
1103 }
1104
1105 /*
1106 * get the inode first so any iput calls done for the io_list
1107 * aren't the final iput (no unlinks allowed now)
1108 */
1109 inode = lookup_free_space_inode(block_group, path);
1110
1111 mutex_lock(&trans->transaction->cache_write_mutex);
1112 /*
1113 * Make sure our free space cache IO is done before removing the
1114 * free space inode
1115 */
1116 spin_lock(&trans->transaction->dirty_bgs_lock);
1117 if (!list_empty(&block_group->io_list)) {
1118 list_del_init(&block_group->io_list);
1119
1120 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1121
1122 spin_unlock(&trans->transaction->dirty_bgs_lock);
1123 btrfs_wait_cache_io(trans, block_group, path);
1124 btrfs_put_block_group(block_group);
1125 spin_lock(&trans->transaction->dirty_bgs_lock);
1126 }
1127
1128 if (!list_empty(&block_group->dirty_list)) {
1129 list_del_init(&block_group->dirty_list);
1130 remove_rsv = true;
1131 btrfs_put_block_group(block_group);
1132 }
1133 spin_unlock(&trans->transaction->dirty_bgs_lock);
1134 mutex_unlock(&trans->transaction->cache_write_mutex);
1135
1136 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1137 if (ret)
1138 goto out;
1139
1140 write_lock(&fs_info->block_group_cache_lock);
1141 rb_erase_cached(&block_group->cache_node,
1142 &fs_info->block_group_cache_tree);
1143 RB_CLEAR_NODE(&block_group->cache_node);
1144
1145 /* Once for the block groups rbtree */
1146 btrfs_put_block_group(block_group);
1147
1148 write_unlock(&fs_info->block_group_cache_lock);
1149
1150 down_write(&block_group->space_info->groups_sem);
1151 /*
1152 * we must use list_del_init so people can check to see if they
1153 * are still on the list after taking the semaphore
1154 */
1155 list_del_init(&block_group->list);
1156 if (list_empty(&block_group->space_info->block_groups[index])) {
1157 kobj = block_group->space_info->block_group_kobjs[index];
1158 block_group->space_info->block_group_kobjs[index] = NULL;
1159 clear_avail_alloc_bits(fs_info, block_group->flags);
1160 }
1161 up_write(&block_group->space_info->groups_sem);
1162 clear_incompat_bg_bits(fs_info, block_group->flags);
1163 if (kobj) {
1164 kobject_del(kobj);
1165 kobject_put(kobj);
1166 }
1167
1168 if (block_group->cached == BTRFS_CACHE_STARTED)
1169 btrfs_wait_block_group_cache_done(block_group);
1170
1171 write_lock(&fs_info->block_group_cache_lock);
1172 caching_ctl = btrfs_get_caching_control(block_group);
1173 if (!caching_ctl) {
1174 struct btrfs_caching_control *ctl;
1175
1176 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1177 if (ctl->block_group == block_group) {
1178 caching_ctl = ctl;
1179 refcount_inc(&caching_ctl->count);
1180 break;
1181 }
1182 }
1183 }
1184 if (caching_ctl)
1185 list_del_init(&caching_ctl->list);
1186 write_unlock(&fs_info->block_group_cache_lock);
1187
1188 if (caching_ctl) {
1189 /* Once for the caching bgs list and once for us. */
1190 btrfs_put_caching_control(caching_ctl);
1191 btrfs_put_caching_control(caching_ctl);
1192 }
1193
1194 spin_lock(&trans->transaction->dirty_bgs_lock);
1195 WARN_ON(!list_empty(&block_group->dirty_list));
1196 WARN_ON(!list_empty(&block_group->io_list));
1197 spin_unlock(&trans->transaction->dirty_bgs_lock);
1198
1199 btrfs_remove_free_space_cache(block_group);
1200
1201 spin_lock(&block_group->space_info->lock);
1202 list_del_init(&block_group->ro_list);
1203
1204 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1205 WARN_ON(block_group->space_info->total_bytes
1206 < block_group->length);
1207 WARN_ON(block_group->space_info->bytes_readonly
1208 < block_group->length - block_group->zone_unusable);
1209 WARN_ON(block_group->space_info->bytes_zone_unusable
1210 < block_group->zone_unusable);
1211 WARN_ON(block_group->space_info->disk_total
1212 < block_group->length * factor);
1213 }
1214 block_group->space_info->total_bytes -= block_group->length;
1215 block_group->space_info->bytes_readonly -=
1216 (block_group->length - block_group->zone_unusable);
1217 block_group->space_info->bytes_zone_unusable -=
1218 block_group->zone_unusable;
1219 block_group->space_info->disk_total -= block_group->length * factor;
1220
1221 spin_unlock(&block_group->space_info->lock);
1222
1223 /*
1224 * Remove the free space for the block group from the free space tree
1225 * and the block group's item from the extent tree before marking the
1226 * block group as removed. This is to prevent races with tasks that
1227 * freeze and unfreeze a block group, this task and another task
1228 * allocating a new block group - the unfreeze task ends up removing
1229 * the block group's extent map before the task calling this function
1230 * deletes the block group item from the extent tree, allowing for
1231 * another task to attempt to create another block group with the same
1232 * item key (and failing with -EEXIST and a transaction abort).
1233 */
1234 ret = remove_block_group_free_space(trans, block_group);
1235 if (ret)
1236 goto out;
1237
1238 ret = remove_block_group_item(trans, path, block_group);
1239 if (ret < 0)
1240 goto out;
1241
1242 spin_lock(&block_group->lock);
1243 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1244
1245 /*
1246 * At this point trimming or scrub can't start on this block group,
1247 * because we removed the block group from the rbtree
1248 * fs_info->block_group_cache_tree so no one can't find it anymore and
1249 * even if someone already got this block group before we removed it
1250 * from the rbtree, they have already incremented block_group->frozen -
1251 * if they didn't, for the trimming case they won't find any free space
1252 * entries because we already removed them all when we called
1253 * btrfs_remove_free_space_cache().
1254 *
1255 * And we must not remove the extent map from the fs_info->mapping_tree
1256 * to prevent the same logical address range and physical device space
1257 * ranges from being reused for a new block group. This is needed to
1258 * avoid races with trimming and scrub.
1259 *
1260 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1261 * completely transactionless, so while it is trimming a range the
1262 * currently running transaction might finish and a new one start,
1263 * allowing for new block groups to be created that can reuse the same
1264 * physical device locations unless we take this special care.
1265 *
1266 * There may also be an implicit trim operation if the file system
1267 * is mounted with -odiscard. The same protections must remain
1268 * in place until the extents have been discarded completely when
1269 * the transaction commit has completed.
1270 */
1271 remove_em = (atomic_read(&block_group->frozen) == 0);
1272 spin_unlock(&block_group->lock);
1273
1274 if (remove_em) {
1275 struct extent_map_tree *em_tree;
1276
1277 em_tree = &fs_info->mapping_tree;
1278 write_lock(&em_tree->lock);
1279 remove_extent_mapping(em_tree, em);
1280 write_unlock(&em_tree->lock);
1281 /* once for the tree */
1282 free_extent_map(em);
1283 }
1284
1285 out:
1286 /* Once for the lookup reference */
1287 btrfs_put_block_group(block_group);
1288 if (remove_rsv)
1289 btrfs_delayed_refs_rsv_release(fs_info, 1);
1290 btrfs_free_path(path);
1291 return ret;
1292 }
1293
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)1294 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1295 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1296 {
1297 struct btrfs_root *root = btrfs_block_group_root(fs_info);
1298 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1299 struct extent_map *em;
1300 struct map_lookup *map;
1301 unsigned int num_items;
1302
1303 read_lock(&em_tree->lock);
1304 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1305 read_unlock(&em_tree->lock);
1306 ASSERT(em && em->start == chunk_offset);
1307
1308 /*
1309 * We need to reserve 3 + N units from the metadata space info in order
1310 * to remove a block group (done at btrfs_remove_chunk() and at
1311 * btrfs_remove_block_group()), which are used for:
1312 *
1313 * 1 unit for adding the free space inode's orphan (located in the tree
1314 * of tree roots).
1315 * 1 unit for deleting the block group item (located in the extent
1316 * tree).
1317 * 1 unit for deleting the free space item (located in tree of tree
1318 * roots).
1319 * N units for deleting N device extent items corresponding to each
1320 * stripe (located in the device tree).
1321 *
1322 * In order to remove a block group we also need to reserve units in the
1323 * system space info in order to update the chunk tree (update one or
1324 * more device items and remove one chunk item), but this is done at
1325 * btrfs_remove_chunk() through a call to check_system_chunk().
1326 */
1327 map = em->map_lookup;
1328 num_items = 3 + map->num_stripes;
1329 free_extent_map(em);
1330
1331 return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1332 }
1333
1334 /*
1335 * Mark block group @cache read-only, so later write won't happen to block
1336 * group @cache.
1337 *
1338 * If @force is not set, this function will only mark the block group readonly
1339 * if we have enough free space (1M) in other metadata/system block groups.
1340 * If @force is not set, this function will mark the block group readonly
1341 * without checking free space.
1342 *
1343 * NOTE: This function doesn't care if other block groups can contain all the
1344 * data in this block group. That check should be done by relocation routine,
1345 * not this function.
1346 */
inc_block_group_ro(struct btrfs_block_group * cache,int force)1347 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1348 {
1349 struct btrfs_space_info *sinfo = cache->space_info;
1350 u64 num_bytes;
1351 int ret = -ENOSPC;
1352
1353 spin_lock(&sinfo->lock);
1354 spin_lock(&cache->lock);
1355
1356 if (cache->swap_extents) {
1357 ret = -ETXTBSY;
1358 goto out;
1359 }
1360
1361 if (cache->ro) {
1362 cache->ro++;
1363 ret = 0;
1364 goto out;
1365 }
1366
1367 num_bytes = cache->length - cache->reserved - cache->pinned -
1368 cache->bytes_super - cache->zone_unusable - cache->used;
1369
1370 /*
1371 * Data never overcommits, even in mixed mode, so do just the straight
1372 * check of left over space in how much we have allocated.
1373 */
1374 if (force) {
1375 ret = 0;
1376 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1377 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1378
1379 /*
1380 * Here we make sure if we mark this bg RO, we still have enough
1381 * free space as buffer.
1382 */
1383 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1384 ret = 0;
1385 } else {
1386 /*
1387 * We overcommit metadata, so we need to do the
1388 * btrfs_can_overcommit check here, and we need to pass in
1389 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1390 * leeway to allow us to mark this block group as read only.
1391 */
1392 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1393 BTRFS_RESERVE_NO_FLUSH))
1394 ret = 0;
1395 }
1396
1397 if (!ret) {
1398 sinfo->bytes_readonly += num_bytes;
1399 if (btrfs_is_zoned(cache->fs_info)) {
1400 /* Migrate zone_unusable bytes to readonly */
1401 sinfo->bytes_readonly += cache->zone_unusable;
1402 sinfo->bytes_zone_unusable -= cache->zone_unusable;
1403 cache->zone_unusable = 0;
1404 }
1405 cache->ro++;
1406 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1407 }
1408 out:
1409 spin_unlock(&cache->lock);
1410 spin_unlock(&sinfo->lock);
1411 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1412 btrfs_info(cache->fs_info,
1413 "unable to make block group %llu ro", cache->start);
1414 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1415 }
1416 return ret;
1417 }
1418
clean_pinned_extents(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)1419 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1420 struct btrfs_block_group *bg)
1421 {
1422 struct btrfs_fs_info *fs_info = bg->fs_info;
1423 struct btrfs_transaction *prev_trans = NULL;
1424 const u64 start = bg->start;
1425 const u64 end = start + bg->length - 1;
1426 int ret;
1427
1428 spin_lock(&fs_info->trans_lock);
1429 if (trans->transaction->list.prev != &fs_info->trans_list) {
1430 prev_trans = list_last_entry(&trans->transaction->list,
1431 struct btrfs_transaction, list);
1432 refcount_inc(&prev_trans->use_count);
1433 }
1434 spin_unlock(&fs_info->trans_lock);
1435
1436 /*
1437 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1438 * btrfs_finish_extent_commit(). If we are at transaction N, another
1439 * task might be running finish_extent_commit() for the previous
1440 * transaction N - 1, and have seen a range belonging to the block
1441 * group in pinned_extents before we were able to clear the whole block
1442 * group range from pinned_extents. This means that task can lookup for
1443 * the block group after we unpinned it from pinned_extents and removed
1444 * it, leading to a BUG_ON() at unpin_extent_range().
1445 */
1446 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1447 if (prev_trans) {
1448 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1449 EXTENT_DIRTY);
1450 if (ret)
1451 goto out;
1452 }
1453
1454 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1455 EXTENT_DIRTY);
1456 out:
1457 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1458 if (prev_trans)
1459 btrfs_put_transaction(prev_trans);
1460
1461 return ret == 0;
1462 }
1463
1464 /*
1465 * Process the unused_bgs list and remove any that don't have any allocated
1466 * space inside of them.
1467 */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)1468 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1469 {
1470 LIST_HEAD(retry_list);
1471 struct btrfs_block_group *block_group;
1472 struct btrfs_space_info *space_info;
1473 struct btrfs_trans_handle *trans;
1474 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1475 int ret = 0;
1476
1477 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1478 return;
1479
1480 if (btrfs_fs_closing(fs_info))
1481 return;
1482
1483 /*
1484 * Long running balances can keep us blocked here for eternity, so
1485 * simply skip deletion if we're unable to get the mutex.
1486 */
1487 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1488 return;
1489
1490 spin_lock(&fs_info->unused_bgs_lock);
1491 while (!list_empty(&fs_info->unused_bgs)) {
1492 u64 used;
1493 int trimming;
1494
1495 block_group = list_first_entry(&fs_info->unused_bgs,
1496 struct btrfs_block_group,
1497 bg_list);
1498 list_del_init(&block_group->bg_list);
1499
1500 space_info = block_group->space_info;
1501
1502 if (ret || btrfs_mixed_space_info(space_info)) {
1503 btrfs_put_block_group(block_group);
1504 continue;
1505 }
1506 spin_unlock(&fs_info->unused_bgs_lock);
1507
1508 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1509
1510 /* Don't want to race with allocators so take the groups_sem */
1511 down_write(&space_info->groups_sem);
1512
1513 /*
1514 * Async discard moves the final block group discard to be prior
1515 * to the unused_bgs code path. Therefore, if it's not fully
1516 * trimmed, punt it back to the async discard lists.
1517 */
1518 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1519 !btrfs_is_free_space_trimmed(block_group)) {
1520 trace_btrfs_skip_unused_block_group(block_group);
1521 up_write(&space_info->groups_sem);
1522 /* Requeue if we failed because of async discard */
1523 btrfs_discard_queue_work(&fs_info->discard_ctl,
1524 block_group);
1525 goto next;
1526 }
1527
1528 spin_lock(&space_info->lock);
1529 spin_lock(&block_group->lock);
1530 if (btrfs_is_block_group_used(block_group) || block_group->ro ||
1531 list_is_singular(&block_group->list)) {
1532 /*
1533 * We want to bail if we made new allocations or have
1534 * outstanding allocations in this block group. We do
1535 * the ro check in case balance is currently acting on
1536 * this block group.
1537 */
1538 trace_btrfs_skip_unused_block_group(block_group);
1539 spin_unlock(&block_group->lock);
1540 spin_unlock(&space_info->lock);
1541 up_write(&space_info->groups_sem);
1542 goto next;
1543 }
1544
1545 /*
1546 * The block group may be unused but there may be space reserved
1547 * accounting with the existence of that block group, that is,
1548 * space_info->bytes_may_use was incremented by a task but no
1549 * space was yet allocated from the block group by the task.
1550 * That space may or may not be allocated, as we are generally
1551 * pessimistic about space reservation for metadata as well as
1552 * for data when using compression (as we reserve space based on
1553 * the worst case, when data can't be compressed, and before
1554 * actually attempting compression, before starting writeback).
1555 *
1556 * So check if the total space of the space_info minus the size
1557 * of this block group is less than the used space of the
1558 * space_info - if that's the case, then it means we have tasks
1559 * that might be relying on the block group in order to allocate
1560 * extents, and add back the block group to the unused list when
1561 * we finish, so that we retry later in case no tasks ended up
1562 * needing to allocate extents from the block group.
1563 */
1564 used = btrfs_space_info_used(space_info, true);
1565 if (space_info->total_bytes - block_group->length < used) {
1566 /*
1567 * Add a reference for the list, compensate for the ref
1568 * drop under the "next" label for the
1569 * fs_info->unused_bgs list.
1570 */
1571 btrfs_get_block_group(block_group);
1572 list_add_tail(&block_group->bg_list, &retry_list);
1573
1574 trace_btrfs_skip_unused_block_group(block_group);
1575 spin_unlock(&block_group->lock);
1576 spin_unlock(&space_info->lock);
1577 up_write(&space_info->groups_sem);
1578 goto next;
1579 }
1580
1581 spin_unlock(&block_group->lock);
1582 spin_unlock(&space_info->lock);
1583
1584 /* We don't want to force the issue, only flip if it's ok. */
1585 ret = inc_block_group_ro(block_group, 0);
1586 up_write(&space_info->groups_sem);
1587 if (ret < 0) {
1588 ret = 0;
1589 goto next;
1590 }
1591
1592 ret = btrfs_zone_finish(block_group);
1593 if (ret < 0) {
1594 btrfs_dec_block_group_ro(block_group);
1595 if (ret == -EAGAIN)
1596 ret = 0;
1597 goto next;
1598 }
1599
1600 /*
1601 * Want to do this before we do anything else so we can recover
1602 * properly if we fail to join the transaction.
1603 */
1604 trans = btrfs_start_trans_remove_block_group(fs_info,
1605 block_group->start);
1606 if (IS_ERR(trans)) {
1607 btrfs_dec_block_group_ro(block_group);
1608 ret = PTR_ERR(trans);
1609 goto next;
1610 }
1611
1612 /*
1613 * We could have pending pinned extents for this block group,
1614 * just delete them, we don't care about them anymore.
1615 */
1616 if (!clean_pinned_extents(trans, block_group)) {
1617 btrfs_dec_block_group_ro(block_group);
1618 goto end_trans;
1619 }
1620
1621 /*
1622 * At this point, the block_group is read only and should fail
1623 * new allocations. However, btrfs_finish_extent_commit() can
1624 * cause this block_group to be placed back on the discard
1625 * lists because now the block_group isn't fully discarded.
1626 * Bail here and try again later after discarding everything.
1627 */
1628 spin_lock(&fs_info->discard_ctl.lock);
1629 if (!list_empty(&block_group->discard_list)) {
1630 spin_unlock(&fs_info->discard_ctl.lock);
1631 btrfs_dec_block_group_ro(block_group);
1632 btrfs_discard_queue_work(&fs_info->discard_ctl,
1633 block_group);
1634 goto end_trans;
1635 }
1636 spin_unlock(&fs_info->discard_ctl.lock);
1637
1638 /* Reset pinned so btrfs_put_block_group doesn't complain */
1639 spin_lock(&space_info->lock);
1640 spin_lock(&block_group->lock);
1641
1642 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1643 -block_group->pinned);
1644 space_info->bytes_readonly += block_group->pinned;
1645 block_group->pinned = 0;
1646
1647 spin_unlock(&block_group->lock);
1648 spin_unlock(&space_info->lock);
1649
1650 /*
1651 * The normal path here is an unused block group is passed here,
1652 * then trimming is handled in the transaction commit path.
1653 * Async discard interposes before this to do the trimming
1654 * before coming down the unused block group path as trimming
1655 * will no longer be done later in the transaction commit path.
1656 */
1657 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1658 goto flip_async;
1659
1660 /*
1661 * DISCARD can flip during remount. On zoned filesystems, we
1662 * need to reset sequential-required zones.
1663 */
1664 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1665 btrfs_is_zoned(fs_info);
1666
1667 /* Implicit trim during transaction commit. */
1668 if (trimming)
1669 btrfs_freeze_block_group(block_group);
1670
1671 /*
1672 * Btrfs_remove_chunk will abort the transaction if things go
1673 * horribly wrong.
1674 */
1675 ret = btrfs_remove_chunk(trans, block_group->start);
1676
1677 if (ret) {
1678 if (trimming)
1679 btrfs_unfreeze_block_group(block_group);
1680 goto end_trans;
1681 }
1682
1683 /*
1684 * If we're not mounted with -odiscard, we can just forget
1685 * about this block group. Otherwise we'll need to wait
1686 * until transaction commit to do the actual discard.
1687 */
1688 if (trimming) {
1689 spin_lock(&fs_info->unused_bgs_lock);
1690 /*
1691 * A concurrent scrub might have added us to the list
1692 * fs_info->unused_bgs, so use a list_move operation
1693 * to add the block group to the deleted_bgs list.
1694 */
1695 list_move(&block_group->bg_list,
1696 &trans->transaction->deleted_bgs);
1697 spin_unlock(&fs_info->unused_bgs_lock);
1698 btrfs_get_block_group(block_group);
1699 }
1700 end_trans:
1701 btrfs_end_transaction(trans);
1702 next:
1703 btrfs_put_block_group(block_group);
1704 spin_lock(&fs_info->unused_bgs_lock);
1705 }
1706 list_splice_tail(&retry_list, &fs_info->unused_bgs);
1707 spin_unlock(&fs_info->unused_bgs_lock);
1708 mutex_unlock(&fs_info->reclaim_bgs_lock);
1709 return;
1710
1711 flip_async:
1712 btrfs_end_transaction(trans);
1713 spin_lock(&fs_info->unused_bgs_lock);
1714 list_splice_tail(&retry_list, &fs_info->unused_bgs);
1715 spin_unlock(&fs_info->unused_bgs_lock);
1716 mutex_unlock(&fs_info->reclaim_bgs_lock);
1717 btrfs_put_block_group(block_group);
1718 btrfs_discard_punt_unused_bgs_list(fs_info);
1719 }
1720
btrfs_mark_bg_unused(struct btrfs_block_group * bg)1721 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1722 {
1723 struct btrfs_fs_info *fs_info = bg->fs_info;
1724
1725 spin_lock(&fs_info->unused_bgs_lock);
1726 if (list_empty(&bg->bg_list)) {
1727 btrfs_get_block_group(bg);
1728 trace_btrfs_add_unused_block_group(bg);
1729 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1730 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) {
1731 /* Pull out the block group from the reclaim_bgs list. */
1732 trace_btrfs_add_unused_block_group(bg);
1733 list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
1734 }
1735 spin_unlock(&fs_info->unused_bgs_lock);
1736 }
1737
1738 /*
1739 * We want block groups with a low number of used bytes to be in the beginning
1740 * of the list, so they will get reclaimed first.
1741 */
reclaim_bgs_cmp(void * unused,const struct list_head * a,const struct list_head * b)1742 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1743 const struct list_head *b)
1744 {
1745 const struct btrfs_block_group *bg1, *bg2;
1746
1747 bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1748 bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1749
1750 return bg1->used > bg2->used;
1751 }
1752
btrfs_should_reclaim(struct btrfs_fs_info * fs_info)1753 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1754 {
1755 if (btrfs_is_zoned(fs_info))
1756 return btrfs_zoned_should_reclaim(fs_info);
1757 return true;
1758 }
1759
should_reclaim_block_group(struct btrfs_block_group * bg,u64 bytes_freed)1760 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed)
1761 {
1762 const struct btrfs_space_info *space_info = bg->space_info;
1763 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
1764 const u64 new_val = bg->used;
1765 const u64 old_val = new_val + bytes_freed;
1766 u64 thresh;
1767
1768 if (reclaim_thresh == 0)
1769 return false;
1770
1771 thresh = mult_perc(bg->length, reclaim_thresh);
1772
1773 /*
1774 * If we were below the threshold before don't reclaim, we are likely a
1775 * brand new block group and we don't want to relocate new block groups.
1776 */
1777 if (old_val < thresh)
1778 return false;
1779 if (new_val >= thresh)
1780 return false;
1781 return true;
1782 }
1783
btrfs_reclaim_bgs_work(struct work_struct * work)1784 void btrfs_reclaim_bgs_work(struct work_struct *work)
1785 {
1786 struct btrfs_fs_info *fs_info =
1787 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1788 struct btrfs_block_group *bg;
1789 struct btrfs_space_info *space_info;
1790
1791 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1792 return;
1793
1794 if (btrfs_fs_closing(fs_info))
1795 return;
1796
1797 if (!btrfs_should_reclaim(fs_info))
1798 return;
1799
1800 sb_start_write(fs_info->sb);
1801
1802 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1803 sb_end_write(fs_info->sb);
1804 return;
1805 }
1806
1807 /*
1808 * Long running balances can keep us blocked here for eternity, so
1809 * simply skip reclaim if we're unable to get the mutex.
1810 */
1811 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1812 btrfs_exclop_finish(fs_info);
1813 sb_end_write(fs_info->sb);
1814 return;
1815 }
1816
1817 spin_lock(&fs_info->unused_bgs_lock);
1818 /*
1819 * Sort happens under lock because we can't simply splice it and sort.
1820 * The block groups might still be in use and reachable via bg_list,
1821 * and their presence in the reclaim_bgs list must be preserved.
1822 */
1823 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1824 while (!list_empty(&fs_info->reclaim_bgs)) {
1825 u64 zone_unusable;
1826 int ret = 0;
1827
1828 bg = list_first_entry(&fs_info->reclaim_bgs,
1829 struct btrfs_block_group,
1830 bg_list);
1831 list_del_init(&bg->bg_list);
1832
1833 space_info = bg->space_info;
1834 spin_unlock(&fs_info->unused_bgs_lock);
1835
1836 /* Don't race with allocators so take the groups_sem */
1837 down_write(&space_info->groups_sem);
1838
1839 spin_lock(&bg->lock);
1840 if (bg->reserved || bg->pinned || bg->ro) {
1841 /*
1842 * We want to bail if we made new allocations or have
1843 * outstanding allocations in this block group. We do
1844 * the ro check in case balance is currently acting on
1845 * this block group.
1846 */
1847 spin_unlock(&bg->lock);
1848 up_write(&space_info->groups_sem);
1849 goto next;
1850 }
1851 if (bg->used == 0) {
1852 /*
1853 * It is possible that we trigger relocation on a block
1854 * group as its extents are deleted and it first goes
1855 * below the threshold, then shortly after goes empty.
1856 *
1857 * In this case, relocating it does delete it, but has
1858 * some overhead in relocation specific metadata, looking
1859 * for the non-existent extents and running some extra
1860 * transactions, which we can avoid by using one of the
1861 * other mechanisms for dealing with empty block groups.
1862 */
1863 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1864 btrfs_mark_bg_unused(bg);
1865 spin_unlock(&bg->lock);
1866 up_write(&space_info->groups_sem);
1867 goto next;
1868
1869 }
1870 /*
1871 * The block group might no longer meet the reclaim condition by
1872 * the time we get around to reclaiming it, so to avoid
1873 * reclaiming overly full block_groups, skip reclaiming them.
1874 *
1875 * Since the decision making process also depends on the amount
1876 * being freed, pass in a fake giant value to skip that extra
1877 * check, which is more meaningful when adding to the list in
1878 * the first place.
1879 */
1880 if (!should_reclaim_block_group(bg, bg->length)) {
1881 spin_unlock(&bg->lock);
1882 up_write(&space_info->groups_sem);
1883 goto next;
1884 }
1885 spin_unlock(&bg->lock);
1886
1887 /*
1888 * Get out fast, in case we're read-only or unmounting the
1889 * filesystem. It is OK to drop block groups from the list even
1890 * for the read-only case. As we did sb_start_write(),
1891 * "mount -o remount,ro" won't happen and read-only filesystem
1892 * means it is forced read-only due to a fatal error. So, it
1893 * never gets back to read-write to let us reclaim again.
1894 */
1895 if (btrfs_need_cleaner_sleep(fs_info)) {
1896 up_write(&space_info->groups_sem);
1897 goto next;
1898 }
1899
1900 /*
1901 * Cache the zone_unusable value before turning the block group
1902 * to read only. As soon as the blog group is read only it's
1903 * zone_unusable value gets moved to the block group's read-only
1904 * bytes and isn't available for calculations anymore.
1905 */
1906 zone_unusable = bg->zone_unusable;
1907 ret = inc_block_group_ro(bg, 0);
1908 up_write(&space_info->groups_sem);
1909 if (ret < 0)
1910 goto next;
1911
1912 btrfs_info(fs_info,
1913 "reclaiming chunk %llu with %llu%% used %llu%% unusable",
1914 bg->start,
1915 div64_u64(bg->used * 100, bg->length),
1916 div64_u64(zone_unusable * 100, bg->length));
1917 trace_btrfs_reclaim_block_group(bg);
1918 ret = btrfs_relocate_chunk(fs_info, bg->start);
1919 if (ret) {
1920 btrfs_dec_block_group_ro(bg);
1921 btrfs_err(fs_info, "error relocating chunk %llu",
1922 bg->start);
1923 }
1924
1925 next:
1926 if (ret)
1927 btrfs_mark_bg_to_reclaim(bg);
1928 btrfs_put_block_group(bg);
1929
1930 mutex_unlock(&fs_info->reclaim_bgs_lock);
1931 /*
1932 * Reclaiming all the block groups in the list can take really
1933 * long. Prioritize cleaning up unused block groups.
1934 */
1935 btrfs_delete_unused_bgs(fs_info);
1936 /*
1937 * If we are interrupted by a balance, we can just bail out. The
1938 * cleaner thread restart again if necessary.
1939 */
1940 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1941 goto end;
1942 spin_lock(&fs_info->unused_bgs_lock);
1943 }
1944 spin_unlock(&fs_info->unused_bgs_lock);
1945 mutex_unlock(&fs_info->reclaim_bgs_lock);
1946 end:
1947 btrfs_exclop_finish(fs_info);
1948 sb_end_write(fs_info->sb);
1949 }
1950
btrfs_reclaim_bgs(struct btrfs_fs_info * fs_info)1951 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1952 {
1953 spin_lock(&fs_info->unused_bgs_lock);
1954 if (!list_empty(&fs_info->reclaim_bgs))
1955 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1956 spin_unlock(&fs_info->unused_bgs_lock);
1957 }
1958
btrfs_mark_bg_to_reclaim(struct btrfs_block_group * bg)1959 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1960 {
1961 struct btrfs_fs_info *fs_info = bg->fs_info;
1962
1963 spin_lock(&fs_info->unused_bgs_lock);
1964 if (list_empty(&bg->bg_list)) {
1965 btrfs_get_block_group(bg);
1966 trace_btrfs_add_reclaim_block_group(bg);
1967 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1968 }
1969 spin_unlock(&fs_info->unused_bgs_lock);
1970 }
1971
read_bg_from_eb(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_path * path)1972 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1973 struct btrfs_path *path)
1974 {
1975 struct extent_map_tree *em_tree;
1976 struct extent_map *em;
1977 struct btrfs_block_group_item bg;
1978 struct extent_buffer *leaf;
1979 int slot;
1980 u64 flags;
1981 int ret = 0;
1982
1983 slot = path->slots[0];
1984 leaf = path->nodes[0];
1985
1986 em_tree = &fs_info->mapping_tree;
1987 read_lock(&em_tree->lock);
1988 em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1989 read_unlock(&em_tree->lock);
1990 if (!em) {
1991 btrfs_err(fs_info,
1992 "logical %llu len %llu found bg but no related chunk",
1993 key->objectid, key->offset);
1994 return -ENOENT;
1995 }
1996
1997 if (em->start != key->objectid || em->len != key->offset) {
1998 btrfs_err(fs_info,
1999 "block group %llu len %llu mismatch with chunk %llu len %llu",
2000 key->objectid, key->offset, em->start, em->len);
2001 ret = -EUCLEAN;
2002 goto out_free_em;
2003 }
2004
2005 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
2006 sizeof(bg));
2007 flags = btrfs_stack_block_group_flags(&bg) &
2008 BTRFS_BLOCK_GROUP_TYPE_MASK;
2009
2010 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2011 btrfs_err(fs_info,
2012 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
2013 key->objectid, key->offset, flags,
2014 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
2015 ret = -EUCLEAN;
2016 }
2017
2018 out_free_em:
2019 free_extent_map(em);
2020 return ret;
2021 }
2022
find_first_block_group(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key)2023 static int find_first_block_group(struct btrfs_fs_info *fs_info,
2024 struct btrfs_path *path,
2025 struct btrfs_key *key)
2026 {
2027 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2028 int ret;
2029 struct btrfs_key found_key;
2030
2031 btrfs_for_each_slot(root, key, &found_key, path, ret) {
2032 if (found_key.objectid >= key->objectid &&
2033 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
2034 return read_bg_from_eb(fs_info, &found_key, path);
2035 }
2036 }
2037 return ret;
2038 }
2039
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)2040 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2041 {
2042 u64 extra_flags = chunk_to_extended(flags) &
2043 BTRFS_EXTENDED_PROFILE_MASK;
2044
2045 write_seqlock(&fs_info->profiles_lock);
2046 if (flags & BTRFS_BLOCK_GROUP_DATA)
2047 fs_info->avail_data_alloc_bits |= extra_flags;
2048 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2049 fs_info->avail_metadata_alloc_bits |= extra_flags;
2050 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2051 fs_info->avail_system_alloc_bits |= extra_flags;
2052 write_sequnlock(&fs_info->profiles_lock);
2053 }
2054
2055 /*
2056 * Map a physical disk address to a list of logical addresses.
2057 *
2058 * @fs_info: the filesystem
2059 * @chunk_start: logical address of block group
2060 * @physical: physical address to map to logical addresses
2061 * @logical: return array of logical addresses which map to @physical
2062 * @naddrs: length of @logical
2063 * @stripe_len: size of IO stripe for the given block group
2064 *
2065 * Maps a particular @physical disk address to a list of @logical addresses.
2066 * Used primarily to exclude those portions of a block group that contain super
2067 * block copies.
2068 */
btrfs_rmap_block(struct btrfs_fs_info * fs_info,u64 chunk_start,u64 physical,u64 ** logical,int * naddrs,int * stripe_len)2069 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
2070 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
2071 {
2072 struct extent_map *em;
2073 struct map_lookup *map;
2074 u64 *buf;
2075 u64 bytenr;
2076 u64 data_stripe_length;
2077 u64 io_stripe_size;
2078 int i, nr = 0;
2079 int ret = 0;
2080
2081 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
2082 if (IS_ERR(em))
2083 return -EIO;
2084
2085 map = em->map_lookup;
2086 data_stripe_length = em->orig_block_len;
2087 io_stripe_size = BTRFS_STRIPE_LEN;
2088 chunk_start = em->start;
2089
2090 /* For RAID5/6 adjust to a full IO stripe length */
2091 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2092 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2093
2094 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
2095 if (!buf) {
2096 ret = -ENOMEM;
2097 goto out;
2098 }
2099
2100 for (i = 0; i < map->num_stripes; i++) {
2101 bool already_inserted = false;
2102 u32 stripe_nr;
2103 u32 offset;
2104 int j;
2105
2106 if (!in_range(physical, map->stripes[i].physical,
2107 data_stripe_length))
2108 continue;
2109
2110 stripe_nr = (physical - map->stripes[i].physical) >>
2111 BTRFS_STRIPE_LEN_SHIFT;
2112 offset = (physical - map->stripes[i].physical) &
2113 BTRFS_STRIPE_LEN_MASK;
2114
2115 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2116 BTRFS_BLOCK_GROUP_RAID10))
2117 stripe_nr = div_u64(stripe_nr * map->num_stripes + i,
2118 map->sub_stripes);
2119 /*
2120 * The remaining case would be for RAID56, multiply by
2121 * nr_data_stripes(). Alternatively, just use rmap_len below
2122 * instead of map->stripe_len
2123 */
2124 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2125
2126 /* Ensure we don't add duplicate addresses */
2127 for (j = 0; j < nr; j++) {
2128 if (buf[j] == bytenr) {
2129 already_inserted = true;
2130 break;
2131 }
2132 }
2133
2134 if (!already_inserted)
2135 buf[nr++] = bytenr;
2136 }
2137
2138 *logical = buf;
2139 *naddrs = nr;
2140 *stripe_len = io_stripe_size;
2141 out:
2142 free_extent_map(em);
2143 return ret;
2144 }
2145
exclude_super_stripes(struct btrfs_block_group * cache)2146 static int exclude_super_stripes(struct btrfs_block_group *cache)
2147 {
2148 struct btrfs_fs_info *fs_info = cache->fs_info;
2149 const bool zoned = btrfs_is_zoned(fs_info);
2150 u64 bytenr;
2151 u64 *logical;
2152 int stripe_len;
2153 int i, nr, ret;
2154
2155 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2156 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2157 cache->bytes_super += stripe_len;
2158 ret = set_extent_bit(&fs_info->excluded_extents, cache->start,
2159 cache->start + stripe_len - 1,
2160 EXTENT_UPTODATE, NULL);
2161 if (ret)
2162 return ret;
2163 }
2164
2165 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2166 bytenr = btrfs_sb_offset(i);
2167 ret = btrfs_rmap_block(fs_info, cache->start,
2168 bytenr, &logical, &nr, &stripe_len);
2169 if (ret)
2170 return ret;
2171
2172 /* Shouldn't have super stripes in sequential zones */
2173 if (zoned && nr) {
2174 kfree(logical);
2175 btrfs_err(fs_info,
2176 "zoned: block group %llu must not contain super block",
2177 cache->start);
2178 return -EUCLEAN;
2179 }
2180
2181 while (nr--) {
2182 u64 len = min_t(u64, stripe_len,
2183 cache->start + cache->length - logical[nr]);
2184
2185 cache->bytes_super += len;
2186 ret = set_extent_bit(&fs_info->excluded_extents, logical[nr],
2187 logical[nr] + len - 1,
2188 EXTENT_UPTODATE, NULL);
2189 if (ret) {
2190 kfree(logical);
2191 return ret;
2192 }
2193 }
2194
2195 kfree(logical);
2196 }
2197 return 0;
2198 }
2199
btrfs_create_block_group_cache(struct btrfs_fs_info * fs_info,u64 start)2200 static struct btrfs_block_group *btrfs_create_block_group_cache(
2201 struct btrfs_fs_info *fs_info, u64 start)
2202 {
2203 struct btrfs_block_group *cache;
2204
2205 cache = kzalloc(sizeof(*cache), GFP_NOFS);
2206 if (!cache)
2207 return NULL;
2208
2209 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2210 GFP_NOFS);
2211 if (!cache->free_space_ctl) {
2212 kfree(cache);
2213 return NULL;
2214 }
2215
2216 cache->start = start;
2217
2218 cache->fs_info = fs_info;
2219 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2220
2221 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2222
2223 refcount_set(&cache->refs, 1);
2224 spin_lock_init(&cache->lock);
2225 init_rwsem(&cache->data_rwsem);
2226 INIT_LIST_HEAD(&cache->list);
2227 INIT_LIST_HEAD(&cache->cluster_list);
2228 INIT_LIST_HEAD(&cache->bg_list);
2229 INIT_LIST_HEAD(&cache->ro_list);
2230 INIT_LIST_HEAD(&cache->discard_list);
2231 INIT_LIST_HEAD(&cache->dirty_list);
2232 INIT_LIST_HEAD(&cache->io_list);
2233 INIT_LIST_HEAD(&cache->active_bg_list);
2234 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2235 atomic_set(&cache->frozen, 0);
2236 mutex_init(&cache->free_space_lock);
2237
2238 return cache;
2239 }
2240
2241 /*
2242 * Iterate all chunks and verify that each of them has the corresponding block
2243 * group
2244 */
check_chunk_block_group_mappings(struct btrfs_fs_info * fs_info)2245 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2246 {
2247 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2248 struct extent_map *em;
2249 struct btrfs_block_group *bg;
2250 u64 start = 0;
2251 int ret = 0;
2252
2253 while (1) {
2254 read_lock(&map_tree->lock);
2255 /*
2256 * lookup_extent_mapping will return the first extent map
2257 * intersecting the range, so setting @len to 1 is enough to
2258 * get the first chunk.
2259 */
2260 em = lookup_extent_mapping(map_tree, start, 1);
2261 read_unlock(&map_tree->lock);
2262 if (!em)
2263 break;
2264
2265 bg = btrfs_lookup_block_group(fs_info, em->start);
2266 if (!bg) {
2267 btrfs_err(fs_info,
2268 "chunk start=%llu len=%llu doesn't have corresponding block group",
2269 em->start, em->len);
2270 ret = -EUCLEAN;
2271 free_extent_map(em);
2272 break;
2273 }
2274 if (bg->start != em->start || bg->length != em->len ||
2275 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2276 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2277 btrfs_err(fs_info,
2278 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2279 em->start, em->len,
2280 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2281 bg->start, bg->length,
2282 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2283 ret = -EUCLEAN;
2284 free_extent_map(em);
2285 btrfs_put_block_group(bg);
2286 break;
2287 }
2288 start = em->start + em->len;
2289 free_extent_map(em);
2290 btrfs_put_block_group(bg);
2291 }
2292 return ret;
2293 }
2294
read_one_block_group(struct btrfs_fs_info * info,struct btrfs_block_group_item * bgi,const struct btrfs_key * key,int need_clear)2295 static int read_one_block_group(struct btrfs_fs_info *info,
2296 struct btrfs_block_group_item *bgi,
2297 const struct btrfs_key *key,
2298 int need_clear)
2299 {
2300 struct btrfs_block_group *cache;
2301 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2302 int ret;
2303
2304 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2305
2306 cache = btrfs_create_block_group_cache(info, key->objectid);
2307 if (!cache)
2308 return -ENOMEM;
2309
2310 cache->length = key->offset;
2311 cache->used = btrfs_stack_block_group_used(bgi);
2312 cache->commit_used = cache->used;
2313 cache->flags = btrfs_stack_block_group_flags(bgi);
2314 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2315
2316 set_free_space_tree_thresholds(cache);
2317
2318 if (need_clear) {
2319 /*
2320 * When we mount with old space cache, we need to
2321 * set BTRFS_DC_CLEAR and set dirty flag.
2322 *
2323 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2324 * truncate the old free space cache inode and
2325 * setup a new one.
2326 * b) Setting 'dirty flag' makes sure that we flush
2327 * the new space cache info onto disk.
2328 */
2329 if (btrfs_test_opt(info, SPACE_CACHE))
2330 cache->disk_cache_state = BTRFS_DC_CLEAR;
2331 }
2332 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2333 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2334 btrfs_err(info,
2335 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2336 cache->start);
2337 ret = -EINVAL;
2338 goto error;
2339 }
2340
2341 ret = btrfs_load_block_group_zone_info(cache, false);
2342 if (ret) {
2343 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2344 cache->start);
2345 goto error;
2346 }
2347
2348 /*
2349 * We need to exclude the super stripes now so that the space info has
2350 * super bytes accounted for, otherwise we'll think we have more space
2351 * than we actually do.
2352 */
2353 ret = exclude_super_stripes(cache);
2354 if (ret) {
2355 /* We may have excluded something, so call this just in case. */
2356 btrfs_free_excluded_extents(cache);
2357 goto error;
2358 }
2359
2360 /*
2361 * For zoned filesystem, space after the allocation offset is the only
2362 * free space for a block group. So, we don't need any caching work.
2363 * btrfs_calc_zone_unusable() will set the amount of free space and
2364 * zone_unusable space.
2365 *
2366 * For regular filesystem, check for two cases, either we are full, and
2367 * therefore don't need to bother with the caching work since we won't
2368 * find any space, or we are empty, and we can just add all the space
2369 * in and be done with it. This saves us _a_lot_ of time, particularly
2370 * in the full case.
2371 */
2372 if (btrfs_is_zoned(info)) {
2373 btrfs_calc_zone_unusable(cache);
2374 /* Should not have any excluded extents. Just in case, though. */
2375 btrfs_free_excluded_extents(cache);
2376 } else if (cache->length == cache->used) {
2377 cache->cached = BTRFS_CACHE_FINISHED;
2378 btrfs_free_excluded_extents(cache);
2379 } else if (cache->used == 0) {
2380 cache->cached = BTRFS_CACHE_FINISHED;
2381 ret = btrfs_add_new_free_space(cache, cache->start,
2382 cache->start + cache->length, NULL);
2383 btrfs_free_excluded_extents(cache);
2384 if (ret)
2385 goto error;
2386 }
2387
2388 ret = btrfs_add_block_group_cache(info, cache);
2389 if (ret) {
2390 btrfs_remove_free_space_cache(cache);
2391 goto error;
2392 }
2393 trace_btrfs_add_block_group(info, cache, 0);
2394 btrfs_add_bg_to_space_info(info, cache);
2395
2396 set_avail_alloc_bits(info, cache->flags);
2397 if (btrfs_chunk_writeable(info, cache->start)) {
2398 if (cache->used == 0) {
2399 ASSERT(list_empty(&cache->bg_list));
2400 if (btrfs_test_opt(info, DISCARD_ASYNC))
2401 btrfs_discard_queue_work(&info->discard_ctl, cache);
2402 else
2403 btrfs_mark_bg_unused(cache);
2404 }
2405 } else {
2406 inc_block_group_ro(cache, 1);
2407 }
2408
2409 return 0;
2410 error:
2411 btrfs_put_block_group(cache);
2412 return ret;
2413 }
2414
fill_dummy_bgs(struct btrfs_fs_info * fs_info)2415 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2416 {
2417 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2418 struct rb_node *node;
2419 int ret = 0;
2420
2421 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2422 struct extent_map *em;
2423 struct map_lookup *map;
2424 struct btrfs_block_group *bg;
2425
2426 em = rb_entry(node, struct extent_map, rb_node);
2427 map = em->map_lookup;
2428 bg = btrfs_create_block_group_cache(fs_info, em->start);
2429 if (!bg) {
2430 ret = -ENOMEM;
2431 break;
2432 }
2433
2434 /* Fill dummy cache as FULL */
2435 bg->length = em->len;
2436 bg->flags = map->type;
2437 bg->cached = BTRFS_CACHE_FINISHED;
2438 bg->used = em->len;
2439 bg->flags = map->type;
2440 ret = btrfs_add_block_group_cache(fs_info, bg);
2441 /*
2442 * We may have some valid block group cache added already, in
2443 * that case we skip to the next one.
2444 */
2445 if (ret == -EEXIST) {
2446 ret = 0;
2447 btrfs_put_block_group(bg);
2448 continue;
2449 }
2450
2451 if (ret) {
2452 btrfs_remove_free_space_cache(bg);
2453 btrfs_put_block_group(bg);
2454 break;
2455 }
2456
2457 btrfs_add_bg_to_space_info(fs_info, bg);
2458
2459 set_avail_alloc_bits(fs_info, bg->flags);
2460 }
2461 if (!ret)
2462 btrfs_init_global_block_rsv(fs_info);
2463 return ret;
2464 }
2465
btrfs_read_block_groups(struct btrfs_fs_info * info)2466 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2467 {
2468 struct btrfs_root *root = btrfs_block_group_root(info);
2469 struct btrfs_path *path;
2470 int ret;
2471 struct btrfs_block_group *cache;
2472 struct btrfs_space_info *space_info;
2473 struct btrfs_key key;
2474 int need_clear = 0;
2475 u64 cache_gen;
2476
2477 /*
2478 * Either no extent root (with ibadroots rescue option) or we have
2479 * unsupported RO options. The fs can never be mounted read-write, so no
2480 * need to waste time searching block group items.
2481 *
2482 * This also allows new extent tree related changes to be RO compat,
2483 * no need for a full incompat flag.
2484 */
2485 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2486 ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2487 return fill_dummy_bgs(info);
2488
2489 key.objectid = 0;
2490 key.offset = 0;
2491 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2492 path = btrfs_alloc_path();
2493 if (!path)
2494 return -ENOMEM;
2495
2496 cache_gen = btrfs_super_cache_generation(info->super_copy);
2497 if (btrfs_test_opt(info, SPACE_CACHE) &&
2498 btrfs_super_generation(info->super_copy) != cache_gen)
2499 need_clear = 1;
2500 if (btrfs_test_opt(info, CLEAR_CACHE))
2501 need_clear = 1;
2502
2503 while (1) {
2504 struct btrfs_block_group_item bgi;
2505 struct extent_buffer *leaf;
2506 int slot;
2507
2508 ret = find_first_block_group(info, path, &key);
2509 if (ret > 0)
2510 break;
2511 if (ret != 0)
2512 goto error;
2513
2514 leaf = path->nodes[0];
2515 slot = path->slots[0];
2516
2517 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2518 sizeof(bgi));
2519
2520 btrfs_item_key_to_cpu(leaf, &key, slot);
2521 btrfs_release_path(path);
2522 ret = read_one_block_group(info, &bgi, &key, need_clear);
2523 if (ret < 0)
2524 goto error;
2525 key.objectid += key.offset;
2526 key.offset = 0;
2527 }
2528 btrfs_release_path(path);
2529
2530 list_for_each_entry(space_info, &info->space_info, list) {
2531 int i;
2532
2533 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2534 if (list_empty(&space_info->block_groups[i]))
2535 continue;
2536 cache = list_first_entry(&space_info->block_groups[i],
2537 struct btrfs_block_group,
2538 list);
2539 btrfs_sysfs_add_block_group_type(cache);
2540 }
2541
2542 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2543 (BTRFS_BLOCK_GROUP_RAID10 |
2544 BTRFS_BLOCK_GROUP_RAID1_MASK |
2545 BTRFS_BLOCK_GROUP_RAID56_MASK |
2546 BTRFS_BLOCK_GROUP_DUP)))
2547 continue;
2548 /*
2549 * Avoid allocating from un-mirrored block group if there are
2550 * mirrored block groups.
2551 */
2552 list_for_each_entry(cache,
2553 &space_info->block_groups[BTRFS_RAID_RAID0],
2554 list)
2555 inc_block_group_ro(cache, 1);
2556 list_for_each_entry(cache,
2557 &space_info->block_groups[BTRFS_RAID_SINGLE],
2558 list)
2559 inc_block_group_ro(cache, 1);
2560 }
2561
2562 btrfs_init_global_block_rsv(info);
2563 ret = check_chunk_block_group_mappings(info);
2564 error:
2565 btrfs_free_path(path);
2566 /*
2567 * We've hit some error while reading the extent tree, and have
2568 * rescue=ibadroots mount option.
2569 * Try to fill the tree using dummy block groups so that the user can
2570 * continue to mount and grab their data.
2571 */
2572 if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2573 ret = fill_dummy_bgs(info);
2574 return ret;
2575 }
2576
2577 /*
2578 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2579 * allocation.
2580 *
2581 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2582 * phases.
2583 */
insert_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group)2584 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2585 struct btrfs_block_group *block_group)
2586 {
2587 struct btrfs_fs_info *fs_info = trans->fs_info;
2588 struct btrfs_block_group_item bgi;
2589 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2590 struct btrfs_key key;
2591 u64 old_commit_used;
2592 int ret;
2593
2594 spin_lock(&block_group->lock);
2595 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2596 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2597 block_group->global_root_id);
2598 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2599 old_commit_used = block_group->commit_used;
2600 block_group->commit_used = block_group->used;
2601 key.objectid = block_group->start;
2602 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2603 key.offset = block_group->length;
2604 spin_unlock(&block_group->lock);
2605
2606 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2607 if (ret < 0) {
2608 spin_lock(&block_group->lock);
2609 block_group->commit_used = old_commit_used;
2610 spin_unlock(&block_group->lock);
2611 }
2612
2613 return ret;
2614 }
2615
insert_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 chunk_offset,u64 start,u64 num_bytes)2616 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2617 struct btrfs_device *device, u64 chunk_offset,
2618 u64 start, u64 num_bytes)
2619 {
2620 struct btrfs_fs_info *fs_info = device->fs_info;
2621 struct btrfs_root *root = fs_info->dev_root;
2622 struct btrfs_path *path;
2623 struct btrfs_dev_extent *extent;
2624 struct extent_buffer *leaf;
2625 struct btrfs_key key;
2626 int ret;
2627
2628 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2629 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2630 path = btrfs_alloc_path();
2631 if (!path)
2632 return -ENOMEM;
2633
2634 key.objectid = device->devid;
2635 key.type = BTRFS_DEV_EXTENT_KEY;
2636 key.offset = start;
2637 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2638 if (ret)
2639 goto out;
2640
2641 leaf = path->nodes[0];
2642 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2643 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2644 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2645 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2646 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2647
2648 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2649 btrfs_mark_buffer_dirty(trans, leaf);
2650 out:
2651 btrfs_free_path(path);
2652 return ret;
2653 }
2654
2655 /*
2656 * This function belongs to phase 2.
2657 *
2658 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2659 * phases.
2660 */
insert_dev_extents(struct btrfs_trans_handle * trans,u64 chunk_offset,u64 chunk_size)2661 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2662 u64 chunk_offset, u64 chunk_size)
2663 {
2664 struct btrfs_fs_info *fs_info = trans->fs_info;
2665 struct btrfs_device *device;
2666 struct extent_map *em;
2667 struct map_lookup *map;
2668 u64 dev_offset;
2669 u64 stripe_size;
2670 int i;
2671 int ret = 0;
2672
2673 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2674 if (IS_ERR(em))
2675 return PTR_ERR(em);
2676
2677 map = em->map_lookup;
2678 stripe_size = em->orig_block_len;
2679
2680 /*
2681 * Take the device list mutex to prevent races with the final phase of
2682 * a device replace operation that replaces the device object associated
2683 * with the map's stripes, because the device object's id can change
2684 * at any time during that final phase of the device replace operation
2685 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2686 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2687 * resulting in persisting a device extent item with such ID.
2688 */
2689 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2690 for (i = 0; i < map->num_stripes; i++) {
2691 device = map->stripes[i].dev;
2692 dev_offset = map->stripes[i].physical;
2693
2694 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2695 stripe_size);
2696 if (ret)
2697 break;
2698 }
2699 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2700
2701 free_extent_map(em);
2702 return ret;
2703 }
2704
2705 /*
2706 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2707 * chunk allocation.
2708 *
2709 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2710 * phases.
2711 */
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans)2712 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2713 {
2714 struct btrfs_fs_info *fs_info = trans->fs_info;
2715 struct btrfs_block_group *block_group;
2716 int ret = 0;
2717
2718 while (!list_empty(&trans->new_bgs)) {
2719 int index;
2720
2721 block_group = list_first_entry(&trans->new_bgs,
2722 struct btrfs_block_group,
2723 bg_list);
2724 if (ret)
2725 goto next;
2726
2727 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2728
2729 ret = insert_block_group_item(trans, block_group);
2730 if (ret)
2731 btrfs_abort_transaction(trans, ret);
2732 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2733 &block_group->runtime_flags)) {
2734 mutex_lock(&fs_info->chunk_mutex);
2735 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2736 mutex_unlock(&fs_info->chunk_mutex);
2737 if (ret)
2738 btrfs_abort_transaction(trans, ret);
2739 }
2740 ret = insert_dev_extents(trans, block_group->start,
2741 block_group->length);
2742 if (ret)
2743 btrfs_abort_transaction(trans, ret);
2744 add_block_group_free_space(trans, block_group);
2745
2746 /*
2747 * If we restriped during balance, we may have added a new raid
2748 * type, so now add the sysfs entries when it is safe to do so.
2749 * We don't have to worry about locking here as it's handled in
2750 * btrfs_sysfs_add_block_group_type.
2751 */
2752 if (block_group->space_info->block_group_kobjs[index] == NULL)
2753 btrfs_sysfs_add_block_group_type(block_group);
2754
2755 /* Already aborted the transaction if it failed. */
2756 next:
2757 btrfs_delayed_refs_rsv_release(fs_info, 1);
2758 list_del_init(&block_group->bg_list);
2759 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags);
2760 }
2761 btrfs_trans_release_chunk_metadata(trans);
2762 }
2763
2764 /*
2765 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2766 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2767 */
calculate_global_root_id(struct btrfs_fs_info * fs_info,u64 offset)2768 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2769 {
2770 u64 div = SZ_1G;
2771 u64 index;
2772
2773 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2774 return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2775
2776 /* If we have a smaller fs index based on 128MiB. */
2777 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2778 div = SZ_128M;
2779
2780 offset = div64_u64(offset, div);
2781 div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2782 return index;
2783 }
2784
btrfs_make_block_group(struct btrfs_trans_handle * trans,u64 type,u64 chunk_offset,u64 size)2785 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2786 u64 type,
2787 u64 chunk_offset, u64 size)
2788 {
2789 struct btrfs_fs_info *fs_info = trans->fs_info;
2790 struct btrfs_block_group *cache;
2791 int ret;
2792
2793 btrfs_set_log_full_commit(trans);
2794
2795 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2796 if (!cache)
2797 return ERR_PTR(-ENOMEM);
2798
2799 /*
2800 * Mark it as new before adding it to the rbtree of block groups or any
2801 * list, so that no other task finds it and calls btrfs_mark_bg_unused()
2802 * before the new flag is set.
2803 */
2804 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags);
2805
2806 cache->length = size;
2807 set_free_space_tree_thresholds(cache);
2808 cache->flags = type;
2809 cache->cached = BTRFS_CACHE_FINISHED;
2810 cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2811
2812 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2813 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2814
2815 ret = btrfs_load_block_group_zone_info(cache, true);
2816 if (ret) {
2817 btrfs_put_block_group(cache);
2818 return ERR_PTR(ret);
2819 }
2820
2821 ret = exclude_super_stripes(cache);
2822 if (ret) {
2823 /* We may have excluded something, so call this just in case */
2824 btrfs_free_excluded_extents(cache);
2825 btrfs_put_block_group(cache);
2826 return ERR_PTR(ret);
2827 }
2828
2829 ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL);
2830 btrfs_free_excluded_extents(cache);
2831 if (ret) {
2832 btrfs_put_block_group(cache);
2833 return ERR_PTR(ret);
2834 }
2835
2836 /*
2837 * Ensure the corresponding space_info object is created and
2838 * assigned to our block group. We want our bg to be added to the rbtree
2839 * with its ->space_info set.
2840 */
2841 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2842 ASSERT(cache->space_info);
2843
2844 ret = btrfs_add_block_group_cache(fs_info, cache);
2845 if (ret) {
2846 btrfs_remove_free_space_cache(cache);
2847 btrfs_put_block_group(cache);
2848 return ERR_PTR(ret);
2849 }
2850
2851 /*
2852 * Now that our block group has its ->space_info set and is inserted in
2853 * the rbtree, update the space info's counters.
2854 */
2855 trace_btrfs_add_block_group(fs_info, cache, 1);
2856 btrfs_add_bg_to_space_info(fs_info, cache);
2857 btrfs_update_global_block_rsv(fs_info);
2858
2859 #ifdef CONFIG_BTRFS_DEBUG
2860 if (btrfs_should_fragment_free_space(cache)) {
2861 cache->space_info->bytes_used += size >> 1;
2862 fragment_free_space(cache);
2863 }
2864 #endif
2865
2866 list_add_tail(&cache->bg_list, &trans->new_bgs);
2867 trans->delayed_ref_updates++;
2868 btrfs_update_delayed_refs_rsv(trans);
2869
2870 set_avail_alloc_bits(fs_info, type);
2871 return cache;
2872 }
2873
2874 /*
2875 * Mark one block group RO, can be called several times for the same block
2876 * group.
2877 *
2878 * @cache: the destination block group
2879 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2880 * ensure we still have some free space after marking this
2881 * block group RO.
2882 */
btrfs_inc_block_group_ro(struct btrfs_block_group * cache,bool do_chunk_alloc)2883 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2884 bool do_chunk_alloc)
2885 {
2886 struct btrfs_fs_info *fs_info = cache->fs_info;
2887 struct btrfs_trans_handle *trans;
2888 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2889 u64 alloc_flags;
2890 int ret;
2891 bool dirty_bg_running;
2892
2893 /*
2894 * This can only happen when we are doing read-only scrub on read-only
2895 * mount.
2896 * In that case we should not start a new transaction on read-only fs.
2897 * Thus here we skip all chunk allocations.
2898 */
2899 if (sb_rdonly(fs_info->sb)) {
2900 mutex_lock(&fs_info->ro_block_group_mutex);
2901 ret = inc_block_group_ro(cache, 0);
2902 mutex_unlock(&fs_info->ro_block_group_mutex);
2903 return ret;
2904 }
2905
2906 do {
2907 trans = btrfs_join_transaction(root);
2908 if (IS_ERR(trans))
2909 return PTR_ERR(trans);
2910
2911 dirty_bg_running = false;
2912
2913 /*
2914 * We're not allowed to set block groups readonly after the dirty
2915 * block group cache has started writing. If it already started,
2916 * back off and let this transaction commit.
2917 */
2918 mutex_lock(&fs_info->ro_block_group_mutex);
2919 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2920 u64 transid = trans->transid;
2921
2922 mutex_unlock(&fs_info->ro_block_group_mutex);
2923 btrfs_end_transaction(trans);
2924
2925 ret = btrfs_wait_for_commit(fs_info, transid);
2926 if (ret)
2927 return ret;
2928 dirty_bg_running = true;
2929 }
2930 } while (dirty_bg_running);
2931
2932 if (do_chunk_alloc) {
2933 /*
2934 * If we are changing raid levels, try to allocate a
2935 * corresponding block group with the new raid level.
2936 */
2937 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2938 if (alloc_flags != cache->flags) {
2939 ret = btrfs_chunk_alloc(trans, alloc_flags,
2940 CHUNK_ALLOC_FORCE);
2941 /*
2942 * ENOSPC is allowed here, we may have enough space
2943 * already allocated at the new raid level to carry on
2944 */
2945 if (ret == -ENOSPC)
2946 ret = 0;
2947 if (ret < 0)
2948 goto out;
2949 }
2950 }
2951
2952 ret = inc_block_group_ro(cache, 0);
2953 if (!ret)
2954 goto out;
2955 if (ret == -ETXTBSY)
2956 goto unlock_out;
2957
2958 /*
2959 * Skip chunk alloction if the bg is SYSTEM, this is to avoid system
2960 * chunk allocation storm to exhaust the system chunk array. Otherwise
2961 * we still want to try our best to mark the block group read-only.
2962 */
2963 if (!do_chunk_alloc && ret == -ENOSPC &&
2964 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
2965 goto unlock_out;
2966
2967 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2968 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2969 if (ret < 0)
2970 goto out;
2971 /*
2972 * We have allocated a new chunk. We also need to activate that chunk to
2973 * grant metadata tickets for zoned filesystem.
2974 */
2975 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2976 if (ret < 0)
2977 goto out;
2978
2979 ret = inc_block_group_ro(cache, 0);
2980 if (ret == -ETXTBSY)
2981 goto unlock_out;
2982 out:
2983 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2984 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2985 mutex_lock(&fs_info->chunk_mutex);
2986 check_system_chunk(trans, alloc_flags);
2987 mutex_unlock(&fs_info->chunk_mutex);
2988 }
2989 unlock_out:
2990 mutex_unlock(&fs_info->ro_block_group_mutex);
2991
2992 btrfs_end_transaction(trans);
2993 return ret;
2994 }
2995
btrfs_dec_block_group_ro(struct btrfs_block_group * cache)2996 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2997 {
2998 struct btrfs_space_info *sinfo = cache->space_info;
2999 u64 num_bytes;
3000
3001 BUG_ON(!cache->ro);
3002
3003 spin_lock(&sinfo->lock);
3004 spin_lock(&cache->lock);
3005 if (!--cache->ro) {
3006 if (btrfs_is_zoned(cache->fs_info)) {
3007 /* Migrate zone_unusable bytes back */
3008 cache->zone_unusable =
3009 (cache->alloc_offset - cache->used) +
3010 (cache->length - cache->zone_capacity);
3011 sinfo->bytes_zone_unusable += cache->zone_unusable;
3012 sinfo->bytes_readonly -= cache->zone_unusable;
3013 }
3014 num_bytes = cache->length - cache->reserved -
3015 cache->pinned - cache->bytes_super -
3016 cache->zone_unusable - cache->used;
3017 sinfo->bytes_readonly -= num_bytes;
3018 list_del_init(&cache->ro_list);
3019 }
3020 spin_unlock(&cache->lock);
3021 spin_unlock(&sinfo->lock);
3022 }
3023
update_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * cache)3024 static int update_block_group_item(struct btrfs_trans_handle *trans,
3025 struct btrfs_path *path,
3026 struct btrfs_block_group *cache)
3027 {
3028 struct btrfs_fs_info *fs_info = trans->fs_info;
3029 int ret;
3030 struct btrfs_root *root = btrfs_block_group_root(fs_info);
3031 unsigned long bi;
3032 struct extent_buffer *leaf;
3033 struct btrfs_block_group_item bgi;
3034 struct btrfs_key key;
3035 u64 old_commit_used;
3036 u64 used;
3037
3038 /*
3039 * Block group items update can be triggered out of commit transaction
3040 * critical section, thus we need a consistent view of used bytes.
3041 * We cannot use cache->used directly outside of the spin lock, as it
3042 * may be changed.
3043 */
3044 spin_lock(&cache->lock);
3045 old_commit_used = cache->commit_used;
3046 used = cache->used;
3047 /* No change in used bytes, can safely skip it. */
3048 if (cache->commit_used == used) {
3049 spin_unlock(&cache->lock);
3050 return 0;
3051 }
3052 cache->commit_used = used;
3053 spin_unlock(&cache->lock);
3054
3055 key.objectid = cache->start;
3056 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
3057 key.offset = cache->length;
3058
3059 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3060 if (ret) {
3061 if (ret > 0)
3062 ret = -ENOENT;
3063 goto fail;
3064 }
3065
3066 leaf = path->nodes[0];
3067 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3068 btrfs_set_stack_block_group_used(&bgi, used);
3069 btrfs_set_stack_block_group_chunk_objectid(&bgi,
3070 cache->global_root_id);
3071 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
3072 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
3073 btrfs_mark_buffer_dirty(trans, leaf);
3074 fail:
3075 btrfs_release_path(path);
3076 /*
3077 * We didn't update the block group item, need to revert commit_used
3078 * unless the block group item didn't exist yet - this is to prevent a
3079 * race with a concurrent insertion of the block group item, with
3080 * insert_block_group_item(), that happened just after we attempted to
3081 * update. In that case we would reset commit_used to 0 just after the
3082 * insertion set it to a value greater than 0 - if the block group later
3083 * becomes with 0 used bytes, we would incorrectly skip its update.
3084 */
3085 if (ret < 0 && ret != -ENOENT) {
3086 spin_lock(&cache->lock);
3087 cache->commit_used = old_commit_used;
3088 spin_unlock(&cache->lock);
3089 }
3090 return ret;
3091
3092 }
3093
cache_save_setup(struct btrfs_block_group * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)3094 static int cache_save_setup(struct btrfs_block_group *block_group,
3095 struct btrfs_trans_handle *trans,
3096 struct btrfs_path *path)
3097 {
3098 struct btrfs_fs_info *fs_info = block_group->fs_info;
3099 struct btrfs_root *root = fs_info->tree_root;
3100 struct inode *inode = NULL;
3101 struct extent_changeset *data_reserved = NULL;
3102 u64 alloc_hint = 0;
3103 int dcs = BTRFS_DC_ERROR;
3104 u64 cache_size = 0;
3105 int retries = 0;
3106 int ret = 0;
3107
3108 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
3109 return 0;
3110
3111 /*
3112 * If this block group is smaller than 100 megs don't bother caching the
3113 * block group.
3114 */
3115 if (block_group->length < (100 * SZ_1M)) {
3116 spin_lock(&block_group->lock);
3117 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3118 spin_unlock(&block_group->lock);
3119 return 0;
3120 }
3121
3122 if (TRANS_ABORTED(trans))
3123 return 0;
3124 again:
3125 inode = lookup_free_space_inode(block_group, path);
3126 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3127 ret = PTR_ERR(inode);
3128 btrfs_release_path(path);
3129 goto out;
3130 }
3131
3132 if (IS_ERR(inode)) {
3133 BUG_ON(retries);
3134 retries++;
3135
3136 if (block_group->ro)
3137 goto out_free;
3138
3139 ret = create_free_space_inode(trans, block_group, path);
3140 if (ret)
3141 goto out_free;
3142 goto again;
3143 }
3144
3145 /*
3146 * We want to set the generation to 0, that way if anything goes wrong
3147 * from here on out we know not to trust this cache when we load up next
3148 * time.
3149 */
3150 BTRFS_I(inode)->generation = 0;
3151 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3152 if (ret) {
3153 /*
3154 * So theoretically we could recover from this, simply set the
3155 * super cache generation to 0 so we know to invalidate the
3156 * cache, but then we'd have to keep track of the block groups
3157 * that fail this way so we know we _have_ to reset this cache
3158 * before the next commit or risk reading stale cache. So to
3159 * limit our exposure to horrible edge cases lets just abort the
3160 * transaction, this only happens in really bad situations
3161 * anyway.
3162 */
3163 btrfs_abort_transaction(trans, ret);
3164 goto out_put;
3165 }
3166 WARN_ON(ret);
3167
3168 /* We've already setup this transaction, go ahead and exit */
3169 if (block_group->cache_generation == trans->transid &&
3170 i_size_read(inode)) {
3171 dcs = BTRFS_DC_SETUP;
3172 goto out_put;
3173 }
3174
3175 if (i_size_read(inode) > 0) {
3176 ret = btrfs_check_trunc_cache_free_space(fs_info,
3177 &fs_info->global_block_rsv);
3178 if (ret)
3179 goto out_put;
3180
3181 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3182 if (ret)
3183 goto out_put;
3184 }
3185
3186 spin_lock(&block_group->lock);
3187 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3188 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3189 /*
3190 * don't bother trying to write stuff out _if_
3191 * a) we're not cached,
3192 * b) we're with nospace_cache mount option,
3193 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3194 */
3195 dcs = BTRFS_DC_WRITTEN;
3196 spin_unlock(&block_group->lock);
3197 goto out_put;
3198 }
3199 spin_unlock(&block_group->lock);
3200
3201 /*
3202 * We hit an ENOSPC when setting up the cache in this transaction, just
3203 * skip doing the setup, we've already cleared the cache so we're safe.
3204 */
3205 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3206 ret = -ENOSPC;
3207 goto out_put;
3208 }
3209
3210 /*
3211 * Try to preallocate enough space based on how big the block group is.
3212 * Keep in mind this has to include any pinned space which could end up
3213 * taking up quite a bit since it's not folded into the other space
3214 * cache.
3215 */
3216 cache_size = div_u64(block_group->length, SZ_256M);
3217 if (!cache_size)
3218 cache_size = 1;
3219
3220 cache_size *= 16;
3221 cache_size *= fs_info->sectorsize;
3222
3223 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3224 cache_size, false);
3225 if (ret)
3226 goto out_put;
3227
3228 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3229 cache_size, cache_size,
3230 &alloc_hint);
3231 /*
3232 * Our cache requires contiguous chunks so that we don't modify a bunch
3233 * of metadata or split extents when writing the cache out, which means
3234 * we can enospc if we are heavily fragmented in addition to just normal
3235 * out of space conditions. So if we hit this just skip setting up any
3236 * other block groups for this transaction, maybe we'll unpin enough
3237 * space the next time around.
3238 */
3239 if (!ret)
3240 dcs = BTRFS_DC_SETUP;
3241 else if (ret == -ENOSPC)
3242 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3243
3244 out_put:
3245 iput(inode);
3246 out_free:
3247 btrfs_release_path(path);
3248 out:
3249 spin_lock(&block_group->lock);
3250 if (!ret && dcs == BTRFS_DC_SETUP)
3251 block_group->cache_generation = trans->transid;
3252 block_group->disk_cache_state = dcs;
3253 spin_unlock(&block_group->lock);
3254
3255 extent_changeset_free(data_reserved);
3256 return ret;
3257 }
3258
btrfs_setup_space_cache(struct btrfs_trans_handle * trans)3259 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3260 {
3261 struct btrfs_fs_info *fs_info = trans->fs_info;
3262 struct btrfs_block_group *cache, *tmp;
3263 struct btrfs_transaction *cur_trans = trans->transaction;
3264 struct btrfs_path *path;
3265
3266 if (list_empty(&cur_trans->dirty_bgs) ||
3267 !btrfs_test_opt(fs_info, SPACE_CACHE))
3268 return 0;
3269
3270 path = btrfs_alloc_path();
3271 if (!path)
3272 return -ENOMEM;
3273
3274 /* Could add new block groups, use _safe just in case */
3275 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3276 dirty_list) {
3277 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3278 cache_save_setup(cache, trans, path);
3279 }
3280
3281 btrfs_free_path(path);
3282 return 0;
3283 }
3284
3285 /*
3286 * Transaction commit does final block group cache writeback during a critical
3287 * section where nothing is allowed to change the FS. This is required in
3288 * order for the cache to actually match the block group, but can introduce a
3289 * lot of latency into the commit.
3290 *
3291 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3292 * There's a chance we'll have to redo some of it if the block group changes
3293 * again during the commit, but it greatly reduces the commit latency by
3294 * getting rid of the easy block groups while we're still allowing others to
3295 * join the commit.
3296 */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans)3297 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3298 {
3299 struct btrfs_fs_info *fs_info = trans->fs_info;
3300 struct btrfs_block_group *cache;
3301 struct btrfs_transaction *cur_trans = trans->transaction;
3302 int ret = 0;
3303 int should_put;
3304 struct btrfs_path *path = NULL;
3305 LIST_HEAD(dirty);
3306 struct list_head *io = &cur_trans->io_bgs;
3307 int loops = 0;
3308
3309 spin_lock(&cur_trans->dirty_bgs_lock);
3310 if (list_empty(&cur_trans->dirty_bgs)) {
3311 spin_unlock(&cur_trans->dirty_bgs_lock);
3312 return 0;
3313 }
3314 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3315 spin_unlock(&cur_trans->dirty_bgs_lock);
3316
3317 again:
3318 /* Make sure all the block groups on our dirty list actually exist */
3319 btrfs_create_pending_block_groups(trans);
3320
3321 if (!path) {
3322 path = btrfs_alloc_path();
3323 if (!path) {
3324 ret = -ENOMEM;
3325 goto out;
3326 }
3327 }
3328
3329 /*
3330 * cache_write_mutex is here only to save us from balance or automatic
3331 * removal of empty block groups deleting this block group while we are
3332 * writing out the cache
3333 */
3334 mutex_lock(&trans->transaction->cache_write_mutex);
3335 while (!list_empty(&dirty)) {
3336 bool drop_reserve = true;
3337
3338 cache = list_first_entry(&dirty, struct btrfs_block_group,
3339 dirty_list);
3340 /*
3341 * This can happen if something re-dirties a block group that
3342 * is already under IO. Just wait for it to finish and then do
3343 * it all again
3344 */
3345 if (!list_empty(&cache->io_list)) {
3346 list_del_init(&cache->io_list);
3347 btrfs_wait_cache_io(trans, cache, path);
3348 btrfs_put_block_group(cache);
3349 }
3350
3351
3352 /*
3353 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3354 * it should update the cache_state. Don't delete until after
3355 * we wait.
3356 *
3357 * Since we're not running in the commit critical section
3358 * we need the dirty_bgs_lock to protect from update_block_group
3359 */
3360 spin_lock(&cur_trans->dirty_bgs_lock);
3361 list_del_init(&cache->dirty_list);
3362 spin_unlock(&cur_trans->dirty_bgs_lock);
3363
3364 should_put = 1;
3365
3366 cache_save_setup(cache, trans, path);
3367
3368 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3369 cache->io_ctl.inode = NULL;
3370 ret = btrfs_write_out_cache(trans, cache, path);
3371 if (ret == 0 && cache->io_ctl.inode) {
3372 should_put = 0;
3373
3374 /*
3375 * The cache_write_mutex is protecting the
3376 * io_list, also refer to the definition of
3377 * btrfs_transaction::io_bgs for more details
3378 */
3379 list_add_tail(&cache->io_list, io);
3380 } else {
3381 /*
3382 * If we failed to write the cache, the
3383 * generation will be bad and life goes on
3384 */
3385 ret = 0;
3386 }
3387 }
3388 if (!ret) {
3389 ret = update_block_group_item(trans, path, cache);
3390 /*
3391 * Our block group might still be attached to the list
3392 * of new block groups in the transaction handle of some
3393 * other task (struct btrfs_trans_handle->new_bgs). This
3394 * means its block group item isn't yet in the extent
3395 * tree. If this happens ignore the error, as we will
3396 * try again later in the critical section of the
3397 * transaction commit.
3398 */
3399 if (ret == -ENOENT) {
3400 ret = 0;
3401 spin_lock(&cur_trans->dirty_bgs_lock);
3402 if (list_empty(&cache->dirty_list)) {
3403 list_add_tail(&cache->dirty_list,
3404 &cur_trans->dirty_bgs);
3405 btrfs_get_block_group(cache);
3406 drop_reserve = false;
3407 }
3408 spin_unlock(&cur_trans->dirty_bgs_lock);
3409 } else if (ret) {
3410 btrfs_abort_transaction(trans, ret);
3411 }
3412 }
3413
3414 /* If it's not on the io list, we need to put the block group */
3415 if (should_put)
3416 btrfs_put_block_group(cache);
3417 if (drop_reserve)
3418 btrfs_delayed_refs_rsv_release(fs_info, 1);
3419 /*
3420 * Avoid blocking other tasks for too long. It might even save
3421 * us from writing caches for block groups that are going to be
3422 * removed.
3423 */
3424 mutex_unlock(&trans->transaction->cache_write_mutex);
3425 if (ret)
3426 goto out;
3427 mutex_lock(&trans->transaction->cache_write_mutex);
3428 }
3429 mutex_unlock(&trans->transaction->cache_write_mutex);
3430
3431 /*
3432 * Go through delayed refs for all the stuff we've just kicked off
3433 * and then loop back (just once)
3434 */
3435 if (!ret)
3436 ret = btrfs_run_delayed_refs(trans, 0);
3437 if (!ret && loops == 0) {
3438 loops++;
3439 spin_lock(&cur_trans->dirty_bgs_lock);
3440 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3441 /*
3442 * dirty_bgs_lock protects us from concurrent block group
3443 * deletes too (not just cache_write_mutex).
3444 */
3445 if (!list_empty(&dirty)) {
3446 spin_unlock(&cur_trans->dirty_bgs_lock);
3447 goto again;
3448 }
3449 spin_unlock(&cur_trans->dirty_bgs_lock);
3450 }
3451 out:
3452 if (ret < 0) {
3453 spin_lock(&cur_trans->dirty_bgs_lock);
3454 list_splice_init(&dirty, &cur_trans->dirty_bgs);
3455 spin_unlock(&cur_trans->dirty_bgs_lock);
3456 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3457 }
3458
3459 btrfs_free_path(path);
3460 return ret;
3461 }
3462
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans)3463 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3464 {
3465 struct btrfs_fs_info *fs_info = trans->fs_info;
3466 struct btrfs_block_group *cache;
3467 struct btrfs_transaction *cur_trans = trans->transaction;
3468 int ret = 0;
3469 int should_put;
3470 struct btrfs_path *path;
3471 struct list_head *io = &cur_trans->io_bgs;
3472
3473 path = btrfs_alloc_path();
3474 if (!path)
3475 return -ENOMEM;
3476
3477 /*
3478 * Even though we are in the critical section of the transaction commit,
3479 * we can still have concurrent tasks adding elements to this
3480 * transaction's list of dirty block groups. These tasks correspond to
3481 * endio free space workers started when writeback finishes for a
3482 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3483 * allocate new block groups as a result of COWing nodes of the root
3484 * tree when updating the free space inode. The writeback for the space
3485 * caches is triggered by an earlier call to
3486 * btrfs_start_dirty_block_groups() and iterations of the following
3487 * loop.
3488 * Also we want to do the cache_save_setup first and then run the
3489 * delayed refs to make sure we have the best chance at doing this all
3490 * in one shot.
3491 */
3492 spin_lock(&cur_trans->dirty_bgs_lock);
3493 while (!list_empty(&cur_trans->dirty_bgs)) {
3494 cache = list_first_entry(&cur_trans->dirty_bgs,
3495 struct btrfs_block_group,
3496 dirty_list);
3497
3498 /*
3499 * This can happen if cache_save_setup re-dirties a block group
3500 * that is already under IO. Just wait for it to finish and
3501 * then do it all again
3502 */
3503 if (!list_empty(&cache->io_list)) {
3504 spin_unlock(&cur_trans->dirty_bgs_lock);
3505 list_del_init(&cache->io_list);
3506 btrfs_wait_cache_io(trans, cache, path);
3507 btrfs_put_block_group(cache);
3508 spin_lock(&cur_trans->dirty_bgs_lock);
3509 }
3510
3511 /*
3512 * Don't remove from the dirty list until after we've waited on
3513 * any pending IO
3514 */
3515 list_del_init(&cache->dirty_list);
3516 spin_unlock(&cur_trans->dirty_bgs_lock);
3517 should_put = 1;
3518
3519 cache_save_setup(cache, trans, path);
3520
3521 if (!ret)
3522 ret = btrfs_run_delayed_refs(trans,
3523 (unsigned long) -1);
3524
3525 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3526 cache->io_ctl.inode = NULL;
3527 ret = btrfs_write_out_cache(trans, cache, path);
3528 if (ret == 0 && cache->io_ctl.inode) {
3529 should_put = 0;
3530 list_add_tail(&cache->io_list, io);
3531 } else {
3532 /*
3533 * If we failed to write the cache, the
3534 * generation will be bad and life goes on
3535 */
3536 ret = 0;
3537 }
3538 }
3539 if (!ret) {
3540 ret = update_block_group_item(trans, path, cache);
3541 /*
3542 * One of the free space endio workers might have
3543 * created a new block group while updating a free space
3544 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3545 * and hasn't released its transaction handle yet, in
3546 * which case the new block group is still attached to
3547 * its transaction handle and its creation has not
3548 * finished yet (no block group item in the extent tree
3549 * yet, etc). If this is the case, wait for all free
3550 * space endio workers to finish and retry. This is a
3551 * very rare case so no need for a more efficient and
3552 * complex approach.
3553 */
3554 if (ret == -ENOENT) {
3555 wait_event(cur_trans->writer_wait,
3556 atomic_read(&cur_trans->num_writers) == 1);
3557 ret = update_block_group_item(trans, path, cache);
3558 }
3559 if (ret)
3560 btrfs_abort_transaction(trans, ret);
3561 }
3562
3563 /* If its not on the io list, we need to put the block group */
3564 if (should_put)
3565 btrfs_put_block_group(cache);
3566 btrfs_delayed_refs_rsv_release(fs_info, 1);
3567 spin_lock(&cur_trans->dirty_bgs_lock);
3568 }
3569 spin_unlock(&cur_trans->dirty_bgs_lock);
3570
3571 /*
3572 * Refer to the definition of io_bgs member for details why it's safe
3573 * to use it without any locking
3574 */
3575 while (!list_empty(io)) {
3576 cache = list_first_entry(io, struct btrfs_block_group,
3577 io_list);
3578 list_del_init(&cache->io_list);
3579 btrfs_wait_cache_io(trans, cache, path);
3580 btrfs_put_block_group(cache);
3581 }
3582
3583 btrfs_free_path(path);
3584 return ret;
3585 }
3586
btrfs_update_block_group(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,bool alloc)3587 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3588 u64 bytenr, u64 num_bytes, bool alloc)
3589 {
3590 struct btrfs_fs_info *info = trans->fs_info;
3591 struct btrfs_block_group *cache = NULL;
3592 u64 total = num_bytes;
3593 u64 old_val;
3594 u64 byte_in_group;
3595 int factor;
3596 int ret = 0;
3597
3598 /* Block accounting for super block */
3599 spin_lock(&info->delalloc_root_lock);
3600 old_val = btrfs_super_bytes_used(info->super_copy);
3601 if (alloc)
3602 old_val += num_bytes;
3603 else
3604 old_val -= num_bytes;
3605 btrfs_set_super_bytes_used(info->super_copy, old_val);
3606 spin_unlock(&info->delalloc_root_lock);
3607
3608 while (total) {
3609 struct btrfs_space_info *space_info;
3610 bool reclaim = false;
3611
3612 cache = btrfs_lookup_block_group(info, bytenr);
3613 if (!cache) {
3614 ret = -ENOENT;
3615 break;
3616 }
3617 space_info = cache->space_info;
3618 factor = btrfs_bg_type_to_factor(cache->flags);
3619
3620 /*
3621 * If this block group has free space cache written out, we
3622 * need to make sure to load it if we are removing space. This
3623 * is because we need the unpinning stage to actually add the
3624 * space back to the block group, otherwise we will leak space.
3625 */
3626 if (!alloc && !btrfs_block_group_done(cache))
3627 btrfs_cache_block_group(cache, true);
3628
3629 byte_in_group = bytenr - cache->start;
3630 WARN_ON(byte_in_group > cache->length);
3631
3632 spin_lock(&space_info->lock);
3633 spin_lock(&cache->lock);
3634
3635 if (btrfs_test_opt(info, SPACE_CACHE) &&
3636 cache->disk_cache_state < BTRFS_DC_CLEAR)
3637 cache->disk_cache_state = BTRFS_DC_CLEAR;
3638
3639 old_val = cache->used;
3640 num_bytes = min(total, cache->length - byte_in_group);
3641 if (alloc) {
3642 old_val += num_bytes;
3643 cache->used = old_val;
3644 cache->reserved -= num_bytes;
3645 space_info->bytes_reserved -= num_bytes;
3646 space_info->bytes_used += num_bytes;
3647 space_info->disk_used += num_bytes * factor;
3648 spin_unlock(&cache->lock);
3649 spin_unlock(&space_info->lock);
3650 } else {
3651 old_val -= num_bytes;
3652 cache->used = old_val;
3653 cache->pinned += num_bytes;
3654 btrfs_space_info_update_bytes_pinned(info, space_info,
3655 num_bytes);
3656 space_info->bytes_used -= num_bytes;
3657 space_info->disk_used -= num_bytes * factor;
3658
3659 reclaim = should_reclaim_block_group(cache, num_bytes);
3660
3661 spin_unlock(&cache->lock);
3662 spin_unlock(&space_info->lock);
3663
3664 set_extent_bit(&trans->transaction->pinned_extents,
3665 bytenr, bytenr + num_bytes - 1,
3666 EXTENT_DIRTY, NULL);
3667 }
3668
3669 spin_lock(&trans->transaction->dirty_bgs_lock);
3670 if (list_empty(&cache->dirty_list)) {
3671 list_add_tail(&cache->dirty_list,
3672 &trans->transaction->dirty_bgs);
3673 trans->delayed_ref_updates++;
3674 btrfs_get_block_group(cache);
3675 }
3676 spin_unlock(&trans->transaction->dirty_bgs_lock);
3677
3678 /*
3679 * No longer have used bytes in this block group, queue it for
3680 * deletion. We do this after adding the block group to the
3681 * dirty list to avoid races between cleaner kthread and space
3682 * cache writeout.
3683 */
3684 if (!alloc && old_val == 0) {
3685 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3686 btrfs_mark_bg_unused(cache);
3687 } else if (!alloc && reclaim) {
3688 btrfs_mark_bg_to_reclaim(cache);
3689 }
3690
3691 btrfs_put_block_group(cache);
3692 total -= num_bytes;
3693 bytenr += num_bytes;
3694 }
3695
3696 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3697 btrfs_update_delayed_refs_rsv(trans);
3698 return ret;
3699 }
3700
3701 /*
3702 * Update the block_group and space info counters.
3703 *
3704 * @cache: The cache we are manipulating
3705 * @ram_bytes: The number of bytes of file content, and will be same to
3706 * @num_bytes except for the compress path.
3707 * @num_bytes: The number of bytes in question
3708 * @delalloc: The blocks are allocated for the delalloc write
3709 *
3710 * This is called by the allocator when it reserves space. If this is a
3711 * reservation and the block group has become read only we cannot make the
3712 * reservation and return -EAGAIN, otherwise this function always succeeds.
3713 */
btrfs_add_reserved_bytes(struct btrfs_block_group * cache,u64 ram_bytes,u64 num_bytes,int delalloc,bool force_wrong_size_class)3714 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3715 u64 ram_bytes, u64 num_bytes, int delalloc,
3716 bool force_wrong_size_class)
3717 {
3718 struct btrfs_space_info *space_info = cache->space_info;
3719 enum btrfs_block_group_size_class size_class;
3720 int ret = 0;
3721
3722 spin_lock(&space_info->lock);
3723 spin_lock(&cache->lock);
3724 if (cache->ro) {
3725 ret = -EAGAIN;
3726 goto out;
3727 }
3728
3729 if (btrfs_block_group_should_use_size_class(cache)) {
3730 size_class = btrfs_calc_block_group_size_class(num_bytes);
3731 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3732 if (ret)
3733 goto out;
3734 }
3735 cache->reserved += num_bytes;
3736 space_info->bytes_reserved += num_bytes;
3737 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3738 space_info->flags, num_bytes, 1);
3739 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3740 space_info, -ram_bytes);
3741 if (delalloc)
3742 cache->delalloc_bytes += num_bytes;
3743
3744 /*
3745 * Compression can use less space than we reserved, so wake tickets if
3746 * that happens.
3747 */
3748 if (num_bytes < ram_bytes)
3749 btrfs_try_granting_tickets(cache->fs_info, space_info);
3750 out:
3751 spin_unlock(&cache->lock);
3752 spin_unlock(&space_info->lock);
3753 return ret;
3754 }
3755
3756 /*
3757 * Update the block_group and space info counters.
3758 *
3759 * @cache: The cache we are manipulating
3760 * @num_bytes: The number of bytes in question
3761 * @delalloc: The blocks are allocated for the delalloc write
3762 *
3763 * This is called by somebody who is freeing space that was never actually used
3764 * on disk. For example if you reserve some space for a new leaf in transaction
3765 * A and before transaction A commits you free that leaf, you call this with
3766 * reserve set to 0 in order to clear the reservation.
3767 */
btrfs_free_reserved_bytes(struct btrfs_block_group * cache,u64 num_bytes,int delalloc)3768 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3769 u64 num_bytes, int delalloc)
3770 {
3771 struct btrfs_space_info *space_info = cache->space_info;
3772
3773 spin_lock(&space_info->lock);
3774 spin_lock(&cache->lock);
3775 if (cache->ro)
3776 space_info->bytes_readonly += num_bytes;
3777 cache->reserved -= num_bytes;
3778 space_info->bytes_reserved -= num_bytes;
3779 space_info->max_extent_size = 0;
3780
3781 if (delalloc)
3782 cache->delalloc_bytes -= num_bytes;
3783 spin_unlock(&cache->lock);
3784
3785 btrfs_try_granting_tickets(cache->fs_info, space_info);
3786 spin_unlock(&space_info->lock);
3787 }
3788
force_metadata_allocation(struct btrfs_fs_info * info)3789 static void force_metadata_allocation(struct btrfs_fs_info *info)
3790 {
3791 struct list_head *head = &info->space_info;
3792 struct btrfs_space_info *found;
3793
3794 list_for_each_entry(found, head, list) {
3795 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3796 found->force_alloc = CHUNK_ALLOC_FORCE;
3797 }
3798 }
3799
should_alloc_chunk(struct btrfs_fs_info * fs_info,struct btrfs_space_info * sinfo,int force)3800 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3801 struct btrfs_space_info *sinfo, int force)
3802 {
3803 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3804 u64 thresh;
3805
3806 if (force == CHUNK_ALLOC_FORCE)
3807 return 1;
3808
3809 /*
3810 * in limited mode, we want to have some free space up to
3811 * about 1% of the FS size.
3812 */
3813 if (force == CHUNK_ALLOC_LIMITED) {
3814 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3815 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3816
3817 if (sinfo->total_bytes - bytes_used < thresh)
3818 return 1;
3819 }
3820
3821 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3822 return 0;
3823 return 1;
3824 }
3825
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,u64 type)3826 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3827 {
3828 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3829
3830 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3831 }
3832
do_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags)3833 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3834 {
3835 struct btrfs_block_group *bg;
3836 int ret;
3837
3838 /*
3839 * Check if we have enough space in the system space info because we
3840 * will need to update device items in the chunk btree and insert a new
3841 * chunk item in the chunk btree as well. This will allocate a new
3842 * system block group if needed.
3843 */
3844 check_system_chunk(trans, flags);
3845
3846 bg = btrfs_create_chunk(trans, flags);
3847 if (IS_ERR(bg)) {
3848 ret = PTR_ERR(bg);
3849 goto out;
3850 }
3851
3852 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3853 /*
3854 * Normally we are not expected to fail with -ENOSPC here, since we have
3855 * previously reserved space in the system space_info and allocated one
3856 * new system chunk if necessary. However there are three exceptions:
3857 *
3858 * 1) We may have enough free space in the system space_info but all the
3859 * existing system block groups have a profile which can not be used
3860 * for extent allocation.
3861 *
3862 * This happens when mounting in degraded mode. For example we have a
3863 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3864 * using the other device in degraded mode. If we then allocate a chunk,
3865 * we may have enough free space in the existing system space_info, but
3866 * none of the block groups can be used for extent allocation since they
3867 * have a RAID1 profile, and because we are in degraded mode with a
3868 * single device, we are forced to allocate a new system chunk with a
3869 * SINGLE profile. Making check_system_chunk() iterate over all system
3870 * block groups and check if they have a usable profile and enough space
3871 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3872 * try again after forcing allocation of a new system chunk. Like this
3873 * we avoid paying the cost of that search in normal circumstances, when
3874 * we were not mounted in degraded mode;
3875 *
3876 * 2) We had enough free space info the system space_info, and one suitable
3877 * block group to allocate from when we called check_system_chunk()
3878 * above. However right after we called it, the only system block group
3879 * with enough free space got turned into RO mode by a running scrub,
3880 * and in this case we have to allocate a new one and retry. We only
3881 * need do this allocate and retry once, since we have a transaction
3882 * handle and scrub uses the commit root to search for block groups;
3883 *
3884 * 3) We had one system block group with enough free space when we called
3885 * check_system_chunk(), but after that, right before we tried to
3886 * allocate the last extent buffer we needed, a discard operation came
3887 * in and it temporarily removed the last free space entry from the
3888 * block group (discard removes a free space entry, discards it, and
3889 * then adds back the entry to the block group cache).
3890 */
3891 if (ret == -ENOSPC) {
3892 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3893 struct btrfs_block_group *sys_bg;
3894
3895 sys_bg = btrfs_create_chunk(trans, sys_flags);
3896 if (IS_ERR(sys_bg)) {
3897 ret = PTR_ERR(sys_bg);
3898 btrfs_abort_transaction(trans, ret);
3899 goto out;
3900 }
3901
3902 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3903 if (ret) {
3904 btrfs_abort_transaction(trans, ret);
3905 goto out;
3906 }
3907
3908 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3909 if (ret) {
3910 btrfs_abort_transaction(trans, ret);
3911 goto out;
3912 }
3913 } else if (ret) {
3914 btrfs_abort_transaction(trans, ret);
3915 goto out;
3916 }
3917 out:
3918 btrfs_trans_release_chunk_metadata(trans);
3919
3920 if (ret)
3921 return ERR_PTR(ret);
3922
3923 btrfs_get_block_group(bg);
3924 return bg;
3925 }
3926
3927 /*
3928 * Chunk allocation is done in 2 phases:
3929 *
3930 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3931 * the chunk, the chunk mapping, create its block group and add the items
3932 * that belong in the chunk btree to it - more specifically, we need to
3933 * update device items in the chunk btree and add a new chunk item to it.
3934 *
3935 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3936 * group item to the extent btree and the device extent items to the devices
3937 * btree.
3938 *
3939 * This is done to prevent deadlocks. For example when COWing a node from the
3940 * extent btree we are holding a write lock on the node's parent and if we
3941 * trigger chunk allocation and attempted to insert the new block group item
3942 * in the extent btree right way, we could deadlock because the path for the
3943 * insertion can include that parent node. At first glance it seems impossible
3944 * to trigger chunk allocation after starting a transaction since tasks should
3945 * reserve enough transaction units (metadata space), however while that is true
3946 * most of the time, chunk allocation may still be triggered for several reasons:
3947 *
3948 * 1) When reserving metadata, we check if there is enough free space in the
3949 * metadata space_info and therefore don't trigger allocation of a new chunk.
3950 * However later when the task actually tries to COW an extent buffer from
3951 * the extent btree or from the device btree for example, it is forced to
3952 * allocate a new block group (chunk) because the only one that had enough
3953 * free space was just turned to RO mode by a running scrub for example (or
3954 * device replace, block group reclaim thread, etc), so we can not use it
3955 * for allocating an extent and end up being forced to allocate a new one;
3956 *
3957 * 2) Because we only check that the metadata space_info has enough free bytes,
3958 * we end up not allocating a new metadata chunk in that case. However if
3959 * the filesystem was mounted in degraded mode, none of the existing block
3960 * groups might be suitable for extent allocation due to their incompatible
3961 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
3962 * use a RAID1 profile, in degraded mode using a single device). In this case
3963 * when the task attempts to COW some extent buffer of the extent btree for
3964 * example, it will trigger allocation of a new metadata block group with a
3965 * suitable profile (SINGLE profile in the example of the degraded mount of
3966 * the RAID1 filesystem);
3967 *
3968 * 3) The task has reserved enough transaction units / metadata space, but when
3969 * it attempts to COW an extent buffer from the extent or device btree for
3970 * example, it does not find any free extent in any metadata block group,
3971 * therefore forced to try to allocate a new metadata block group.
3972 * This is because some other task allocated all available extents in the
3973 * meanwhile - this typically happens with tasks that don't reserve space
3974 * properly, either intentionally or as a bug. One example where this is
3975 * done intentionally is fsync, as it does not reserve any transaction units
3976 * and ends up allocating a variable number of metadata extents for log
3977 * tree extent buffers;
3978 *
3979 * 4) The task has reserved enough transaction units / metadata space, but right
3980 * before it tries to allocate the last extent buffer it needs, a discard
3981 * operation comes in and, temporarily, removes the last free space entry from
3982 * the only metadata block group that had free space (discard starts by
3983 * removing a free space entry from a block group, then does the discard
3984 * operation and, once it's done, it adds back the free space entry to the
3985 * block group).
3986 *
3987 * We also need this 2 phases setup when adding a device to a filesystem with
3988 * a seed device - we must create new metadata and system chunks without adding
3989 * any of the block group items to the chunk, extent and device btrees. If we
3990 * did not do it this way, we would get ENOSPC when attempting to update those
3991 * btrees, since all the chunks from the seed device are read-only.
3992 *
3993 * Phase 1 does the updates and insertions to the chunk btree because if we had
3994 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3995 * parallel, we risk having too many system chunks allocated by many tasks if
3996 * many tasks reach phase 1 without the previous ones completing phase 2. In the
3997 * extreme case this leads to exhaustion of the system chunk array in the
3998 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3999 * and with RAID filesystems (so we have more device items in the chunk btree).
4000 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
4001 * the system chunk array due to concurrent allocations") provides more details.
4002 *
4003 * Allocation of system chunks does not happen through this function. A task that
4004 * needs to update the chunk btree (the only btree that uses system chunks), must
4005 * preallocate chunk space by calling either check_system_chunk() or
4006 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
4007 * metadata chunk or when removing a chunk, while the later is used before doing
4008 * a modification to the chunk btree - use cases for the later are adding,
4009 * removing and resizing a device as well as relocation of a system chunk.
4010 * See the comment below for more details.
4011 *
4012 * The reservation of system space, done through check_system_chunk(), as well
4013 * as all the updates and insertions into the chunk btree must be done while
4014 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
4015 * an extent buffer from the chunks btree we never trigger allocation of a new
4016 * system chunk, which would result in a deadlock (trying to lock twice an
4017 * extent buffer of the chunk btree, first time before triggering the chunk
4018 * allocation and the second time during chunk allocation while attempting to
4019 * update the chunks btree). The system chunk array is also updated while holding
4020 * that mutex. The same logic applies to removing chunks - we must reserve system
4021 * space, update the chunk btree and the system chunk array in the superblock
4022 * while holding fs_info->chunk_mutex.
4023 *
4024 * This function, btrfs_chunk_alloc(), belongs to phase 1.
4025 *
4026 * If @force is CHUNK_ALLOC_FORCE:
4027 * - return 1 if it successfully allocates a chunk,
4028 * - return errors including -ENOSPC otherwise.
4029 * If @force is NOT CHUNK_ALLOC_FORCE:
4030 * - return 0 if it doesn't need to allocate a new chunk,
4031 * - return 1 if it successfully allocates a chunk,
4032 * - return errors including -ENOSPC otherwise.
4033 */
btrfs_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags,enum btrfs_chunk_alloc_enum force)4034 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4035 enum btrfs_chunk_alloc_enum force)
4036 {
4037 struct btrfs_fs_info *fs_info = trans->fs_info;
4038 struct btrfs_space_info *space_info;
4039 struct btrfs_block_group *ret_bg;
4040 bool wait_for_alloc = false;
4041 bool should_alloc = false;
4042 bool from_extent_allocation = false;
4043 int ret = 0;
4044
4045 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
4046 from_extent_allocation = true;
4047 force = CHUNK_ALLOC_FORCE;
4048 }
4049
4050 /* Don't re-enter if we're already allocating a chunk */
4051 if (trans->allocating_chunk)
4052 return -ENOSPC;
4053 /*
4054 * Allocation of system chunks can not happen through this path, as we
4055 * could end up in a deadlock if we are allocating a data or metadata
4056 * chunk and there is another task modifying the chunk btree.
4057 *
4058 * This is because while we are holding the chunk mutex, we will attempt
4059 * to add the new chunk item to the chunk btree or update an existing
4060 * device item in the chunk btree, while the other task that is modifying
4061 * the chunk btree is attempting to COW an extent buffer while holding a
4062 * lock on it and on its parent - if the COW operation triggers a system
4063 * chunk allocation, then we can deadlock because we are holding the
4064 * chunk mutex and we may need to access that extent buffer or its parent
4065 * in order to add the chunk item or update a device item.
4066 *
4067 * Tasks that want to modify the chunk tree should reserve system space
4068 * before updating the chunk btree, by calling either
4069 * btrfs_reserve_chunk_metadata() or check_system_chunk().
4070 * It's possible that after a task reserves the space, it still ends up
4071 * here - this happens in the cases described above at do_chunk_alloc().
4072 * The task will have to either retry or fail.
4073 */
4074 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4075 return -ENOSPC;
4076
4077 space_info = btrfs_find_space_info(fs_info, flags);
4078 ASSERT(space_info);
4079
4080 do {
4081 spin_lock(&space_info->lock);
4082 if (force < space_info->force_alloc)
4083 force = space_info->force_alloc;
4084 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4085 if (space_info->full) {
4086 /* No more free physical space */
4087 if (should_alloc)
4088 ret = -ENOSPC;
4089 else
4090 ret = 0;
4091 spin_unlock(&space_info->lock);
4092 return ret;
4093 } else if (!should_alloc) {
4094 spin_unlock(&space_info->lock);
4095 return 0;
4096 } else if (space_info->chunk_alloc) {
4097 /*
4098 * Someone is already allocating, so we need to block
4099 * until this someone is finished and then loop to
4100 * recheck if we should continue with our allocation
4101 * attempt.
4102 */
4103 wait_for_alloc = true;
4104 force = CHUNK_ALLOC_NO_FORCE;
4105 spin_unlock(&space_info->lock);
4106 mutex_lock(&fs_info->chunk_mutex);
4107 mutex_unlock(&fs_info->chunk_mutex);
4108 } else {
4109 /* Proceed with allocation */
4110 space_info->chunk_alloc = 1;
4111 wait_for_alloc = false;
4112 spin_unlock(&space_info->lock);
4113 }
4114
4115 cond_resched();
4116 } while (wait_for_alloc);
4117
4118 mutex_lock(&fs_info->chunk_mutex);
4119 trans->allocating_chunk = true;
4120
4121 /*
4122 * If we have mixed data/metadata chunks we want to make sure we keep
4123 * allocating mixed chunks instead of individual chunks.
4124 */
4125 if (btrfs_mixed_space_info(space_info))
4126 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4127
4128 /*
4129 * if we're doing a data chunk, go ahead and make sure that
4130 * we keep a reasonable number of metadata chunks allocated in the
4131 * FS as well.
4132 */
4133 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4134 fs_info->data_chunk_allocations++;
4135 if (!(fs_info->data_chunk_allocations %
4136 fs_info->metadata_ratio))
4137 force_metadata_allocation(fs_info);
4138 }
4139
4140 ret_bg = do_chunk_alloc(trans, flags);
4141 trans->allocating_chunk = false;
4142
4143 if (IS_ERR(ret_bg)) {
4144 ret = PTR_ERR(ret_bg);
4145 } else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) {
4146 /*
4147 * New block group is likely to be used soon. Try to activate
4148 * it now. Failure is OK for now.
4149 */
4150 btrfs_zone_activate(ret_bg);
4151 }
4152
4153 if (!ret)
4154 btrfs_put_block_group(ret_bg);
4155
4156 spin_lock(&space_info->lock);
4157 if (ret < 0) {
4158 if (ret == -ENOSPC)
4159 space_info->full = 1;
4160 else
4161 goto out;
4162 } else {
4163 ret = 1;
4164 space_info->max_extent_size = 0;
4165 }
4166
4167 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4168 out:
4169 space_info->chunk_alloc = 0;
4170 spin_unlock(&space_info->lock);
4171 mutex_unlock(&fs_info->chunk_mutex);
4172
4173 return ret;
4174 }
4175
get_profile_num_devs(struct btrfs_fs_info * fs_info,u64 type)4176 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4177 {
4178 u64 num_dev;
4179
4180 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4181 if (!num_dev)
4182 num_dev = fs_info->fs_devices->rw_devices;
4183
4184 return num_dev;
4185 }
4186
reserve_chunk_space(struct btrfs_trans_handle * trans,u64 bytes,u64 type)4187 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4188 u64 bytes,
4189 u64 type)
4190 {
4191 struct btrfs_fs_info *fs_info = trans->fs_info;
4192 struct btrfs_space_info *info;
4193 u64 left;
4194 int ret = 0;
4195
4196 /*
4197 * Needed because we can end up allocating a system chunk and for an
4198 * atomic and race free space reservation in the chunk block reserve.
4199 */
4200 lockdep_assert_held(&fs_info->chunk_mutex);
4201
4202 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4203 spin_lock(&info->lock);
4204 left = info->total_bytes - btrfs_space_info_used(info, true);
4205 spin_unlock(&info->lock);
4206
4207 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4208 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4209 left, bytes, type);
4210 btrfs_dump_space_info(fs_info, info, 0, 0);
4211 }
4212
4213 if (left < bytes) {
4214 u64 flags = btrfs_system_alloc_profile(fs_info);
4215 struct btrfs_block_group *bg;
4216
4217 /*
4218 * Ignore failure to create system chunk. We might end up not
4219 * needing it, as we might not need to COW all nodes/leafs from
4220 * the paths we visit in the chunk tree (they were already COWed
4221 * or created in the current transaction for example).
4222 */
4223 bg = btrfs_create_chunk(trans, flags);
4224 if (IS_ERR(bg)) {
4225 ret = PTR_ERR(bg);
4226 } else {
4227 /*
4228 * We have a new chunk. We also need to activate it for
4229 * zoned filesystem.
4230 */
4231 ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4232 if (ret < 0)
4233 return;
4234
4235 /*
4236 * If we fail to add the chunk item here, we end up
4237 * trying again at phase 2 of chunk allocation, at
4238 * btrfs_create_pending_block_groups(). So ignore
4239 * any error here. An ENOSPC here could happen, due to
4240 * the cases described at do_chunk_alloc() - the system
4241 * block group we just created was just turned into RO
4242 * mode by a scrub for example, or a running discard
4243 * temporarily removed its free space entries, etc.
4244 */
4245 btrfs_chunk_alloc_add_chunk_item(trans, bg);
4246 }
4247 }
4248
4249 if (!ret) {
4250 ret = btrfs_block_rsv_add(fs_info,
4251 &fs_info->chunk_block_rsv,
4252 bytes, BTRFS_RESERVE_NO_FLUSH);
4253 if (!ret)
4254 trans->chunk_bytes_reserved += bytes;
4255 }
4256 }
4257
4258 /*
4259 * Reserve space in the system space for allocating or removing a chunk.
4260 * The caller must be holding fs_info->chunk_mutex.
4261 */
check_system_chunk(struct btrfs_trans_handle * trans,u64 type)4262 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4263 {
4264 struct btrfs_fs_info *fs_info = trans->fs_info;
4265 const u64 num_devs = get_profile_num_devs(fs_info, type);
4266 u64 bytes;
4267
4268 /* num_devs device items to update and 1 chunk item to add or remove. */
4269 bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4270 btrfs_calc_insert_metadata_size(fs_info, 1);
4271
4272 reserve_chunk_space(trans, bytes, type);
4273 }
4274
4275 /*
4276 * Reserve space in the system space, if needed, for doing a modification to the
4277 * chunk btree.
4278 *
4279 * @trans: A transaction handle.
4280 * @is_item_insertion: Indicate if the modification is for inserting a new item
4281 * in the chunk btree or if it's for the deletion or update
4282 * of an existing item.
4283 *
4284 * This is used in a context where we need to update the chunk btree outside
4285 * block group allocation and removal, to avoid a deadlock with a concurrent
4286 * task that is allocating a metadata or data block group and therefore needs to
4287 * update the chunk btree while holding the chunk mutex. After the update to the
4288 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4289 *
4290 */
btrfs_reserve_chunk_metadata(struct btrfs_trans_handle * trans,bool is_item_insertion)4291 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4292 bool is_item_insertion)
4293 {
4294 struct btrfs_fs_info *fs_info = trans->fs_info;
4295 u64 bytes;
4296
4297 if (is_item_insertion)
4298 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4299 else
4300 bytes = btrfs_calc_metadata_size(fs_info, 1);
4301
4302 mutex_lock(&fs_info->chunk_mutex);
4303 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4304 mutex_unlock(&fs_info->chunk_mutex);
4305 }
4306
btrfs_put_block_group_cache(struct btrfs_fs_info * info)4307 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4308 {
4309 struct btrfs_block_group *block_group;
4310
4311 block_group = btrfs_lookup_first_block_group(info, 0);
4312 while (block_group) {
4313 btrfs_wait_block_group_cache_done(block_group);
4314 spin_lock(&block_group->lock);
4315 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4316 &block_group->runtime_flags)) {
4317 struct inode *inode = block_group->inode;
4318
4319 block_group->inode = NULL;
4320 spin_unlock(&block_group->lock);
4321
4322 ASSERT(block_group->io_ctl.inode == NULL);
4323 iput(inode);
4324 } else {
4325 spin_unlock(&block_group->lock);
4326 }
4327 block_group = btrfs_next_block_group(block_group);
4328 }
4329 }
4330
4331 /*
4332 * Must be called only after stopping all workers, since we could have block
4333 * group caching kthreads running, and therefore they could race with us if we
4334 * freed the block groups before stopping them.
4335 */
btrfs_free_block_groups(struct btrfs_fs_info * info)4336 int btrfs_free_block_groups(struct btrfs_fs_info *info)
4337 {
4338 struct btrfs_block_group *block_group;
4339 struct btrfs_space_info *space_info;
4340 struct btrfs_caching_control *caching_ctl;
4341 struct rb_node *n;
4342
4343 if (btrfs_is_zoned(info)) {
4344 if (info->active_meta_bg) {
4345 btrfs_put_block_group(info->active_meta_bg);
4346 info->active_meta_bg = NULL;
4347 }
4348 if (info->active_system_bg) {
4349 btrfs_put_block_group(info->active_system_bg);
4350 info->active_system_bg = NULL;
4351 }
4352 }
4353
4354 write_lock(&info->block_group_cache_lock);
4355 while (!list_empty(&info->caching_block_groups)) {
4356 caching_ctl = list_entry(info->caching_block_groups.next,
4357 struct btrfs_caching_control, list);
4358 list_del(&caching_ctl->list);
4359 btrfs_put_caching_control(caching_ctl);
4360 }
4361 write_unlock(&info->block_group_cache_lock);
4362
4363 spin_lock(&info->unused_bgs_lock);
4364 while (!list_empty(&info->unused_bgs)) {
4365 block_group = list_first_entry(&info->unused_bgs,
4366 struct btrfs_block_group,
4367 bg_list);
4368 list_del_init(&block_group->bg_list);
4369 btrfs_put_block_group(block_group);
4370 }
4371
4372 while (!list_empty(&info->reclaim_bgs)) {
4373 block_group = list_first_entry(&info->reclaim_bgs,
4374 struct btrfs_block_group,
4375 bg_list);
4376 list_del_init(&block_group->bg_list);
4377 btrfs_put_block_group(block_group);
4378 }
4379 spin_unlock(&info->unused_bgs_lock);
4380
4381 spin_lock(&info->zone_active_bgs_lock);
4382 while (!list_empty(&info->zone_active_bgs)) {
4383 block_group = list_first_entry(&info->zone_active_bgs,
4384 struct btrfs_block_group,
4385 active_bg_list);
4386 list_del_init(&block_group->active_bg_list);
4387 btrfs_put_block_group(block_group);
4388 }
4389 spin_unlock(&info->zone_active_bgs_lock);
4390
4391 write_lock(&info->block_group_cache_lock);
4392 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4393 block_group = rb_entry(n, struct btrfs_block_group,
4394 cache_node);
4395 rb_erase_cached(&block_group->cache_node,
4396 &info->block_group_cache_tree);
4397 RB_CLEAR_NODE(&block_group->cache_node);
4398 write_unlock(&info->block_group_cache_lock);
4399
4400 down_write(&block_group->space_info->groups_sem);
4401 list_del(&block_group->list);
4402 up_write(&block_group->space_info->groups_sem);
4403
4404 /*
4405 * We haven't cached this block group, which means we could
4406 * possibly have excluded extents on this block group.
4407 */
4408 if (block_group->cached == BTRFS_CACHE_NO ||
4409 block_group->cached == BTRFS_CACHE_ERROR)
4410 btrfs_free_excluded_extents(block_group);
4411
4412 btrfs_remove_free_space_cache(block_group);
4413 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4414 ASSERT(list_empty(&block_group->dirty_list));
4415 ASSERT(list_empty(&block_group->io_list));
4416 ASSERT(list_empty(&block_group->bg_list));
4417 ASSERT(refcount_read(&block_group->refs) == 1);
4418 ASSERT(block_group->swap_extents == 0);
4419 btrfs_put_block_group(block_group);
4420
4421 write_lock(&info->block_group_cache_lock);
4422 }
4423 write_unlock(&info->block_group_cache_lock);
4424
4425 btrfs_release_global_block_rsv(info);
4426
4427 while (!list_empty(&info->space_info)) {
4428 space_info = list_entry(info->space_info.next,
4429 struct btrfs_space_info,
4430 list);
4431
4432 /*
4433 * Do not hide this behind enospc_debug, this is actually
4434 * important and indicates a real bug if this happens.
4435 */
4436 if (WARN_ON(space_info->bytes_pinned > 0 ||
4437 space_info->bytes_may_use > 0))
4438 btrfs_dump_space_info(info, space_info, 0, 0);
4439
4440 /*
4441 * If there was a failure to cleanup a log tree, very likely due
4442 * to an IO failure on a writeback attempt of one or more of its
4443 * extent buffers, we could not do proper (and cheap) unaccounting
4444 * of their reserved space, so don't warn on bytes_reserved > 0 in
4445 * that case.
4446 */
4447 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4448 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4449 if (WARN_ON(space_info->bytes_reserved > 0))
4450 btrfs_dump_space_info(info, space_info, 0, 0);
4451 }
4452
4453 WARN_ON(space_info->reclaim_size > 0);
4454 list_del(&space_info->list);
4455 btrfs_sysfs_remove_space_info(space_info);
4456 }
4457 return 0;
4458 }
4459
btrfs_freeze_block_group(struct btrfs_block_group * cache)4460 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4461 {
4462 atomic_inc(&cache->frozen);
4463 }
4464
btrfs_unfreeze_block_group(struct btrfs_block_group * block_group)4465 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4466 {
4467 struct btrfs_fs_info *fs_info = block_group->fs_info;
4468 struct extent_map_tree *em_tree;
4469 struct extent_map *em;
4470 bool cleanup;
4471
4472 spin_lock(&block_group->lock);
4473 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4474 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4475 spin_unlock(&block_group->lock);
4476
4477 if (cleanup) {
4478 em_tree = &fs_info->mapping_tree;
4479 write_lock(&em_tree->lock);
4480 em = lookup_extent_mapping(em_tree, block_group->start,
4481 1);
4482 BUG_ON(!em); /* logic error, can't happen */
4483 remove_extent_mapping(em_tree, em);
4484 write_unlock(&em_tree->lock);
4485
4486 /* once for us and once for the tree */
4487 free_extent_map(em);
4488 free_extent_map(em);
4489
4490 /*
4491 * We may have left one free space entry and other possible
4492 * tasks trimming this block group have left 1 entry each one.
4493 * Free them if any.
4494 */
4495 btrfs_remove_free_space_cache(block_group);
4496 }
4497 }
4498
btrfs_inc_block_group_swap_extents(struct btrfs_block_group * bg)4499 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4500 {
4501 bool ret = true;
4502
4503 spin_lock(&bg->lock);
4504 if (bg->ro)
4505 ret = false;
4506 else
4507 bg->swap_extents++;
4508 spin_unlock(&bg->lock);
4509
4510 return ret;
4511 }
4512
btrfs_dec_block_group_swap_extents(struct btrfs_block_group * bg,int amount)4513 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4514 {
4515 spin_lock(&bg->lock);
4516 ASSERT(!bg->ro);
4517 ASSERT(bg->swap_extents >= amount);
4518 bg->swap_extents -= amount;
4519 spin_unlock(&bg->lock);
4520 }
4521
btrfs_calc_block_group_size_class(u64 size)4522 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4523 {
4524 if (size <= SZ_128K)
4525 return BTRFS_BG_SZ_SMALL;
4526 if (size <= SZ_8M)
4527 return BTRFS_BG_SZ_MEDIUM;
4528 return BTRFS_BG_SZ_LARGE;
4529 }
4530
4531 /*
4532 * Handle a block group allocating an extent in a size class
4533 *
4534 * @bg: The block group we allocated in.
4535 * @size_class: The size class of the allocation.
4536 * @force_wrong_size_class: Whether we are desperate enough to allow
4537 * mismatched size classes.
4538 *
4539 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4540 * case of a race that leads to the wrong size class without
4541 * force_wrong_size_class set.
4542 *
4543 * find_free_extent will skip block groups with a mismatched size class until
4544 * it really needs to avoid ENOSPC. In that case it will set
4545 * force_wrong_size_class. However, if a block group is newly allocated and
4546 * doesn't yet have a size class, then it is possible for two allocations of
4547 * different sizes to race and both try to use it. The loser is caught here and
4548 * has to retry.
4549 */
btrfs_use_block_group_size_class(struct btrfs_block_group * bg,enum btrfs_block_group_size_class size_class,bool force_wrong_size_class)4550 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4551 enum btrfs_block_group_size_class size_class,
4552 bool force_wrong_size_class)
4553 {
4554 ASSERT(size_class != BTRFS_BG_SZ_NONE);
4555
4556 /* The new allocation is in the right size class, do nothing */
4557 if (bg->size_class == size_class)
4558 return 0;
4559 /*
4560 * The new allocation is in a mismatched size class.
4561 * This means one of two things:
4562 *
4563 * 1. Two tasks in find_free_extent for different size_classes raced
4564 * and hit the same empty block_group. Make the loser try again.
4565 * 2. A call to find_free_extent got desperate enough to set
4566 * 'force_wrong_slab'. Don't change the size_class, but allow the
4567 * allocation.
4568 */
4569 if (bg->size_class != BTRFS_BG_SZ_NONE) {
4570 if (force_wrong_size_class)
4571 return 0;
4572 return -EAGAIN;
4573 }
4574 /*
4575 * The happy new block group case: the new allocation is the first
4576 * one in the block_group so we set size_class.
4577 */
4578 bg->size_class = size_class;
4579
4580 return 0;
4581 }
4582
btrfs_block_group_should_use_size_class(struct btrfs_block_group * bg)4583 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg)
4584 {
4585 if (btrfs_is_zoned(bg->fs_info))
4586 return false;
4587 if (!btrfs_is_block_group_data_only(bg))
4588 return false;
4589 return true;
4590 }
4591